
Admissible abstractions for near-optimal task and motion planning

William Vega-Brown and Nicholas Roy
Massachusetts Institute of Technology

{wrvb, nickroy}@mit.edu

Abstract— We define an admissibility condition for abstrac-
tions expressed using angelic semantics and show that these
conditions allow us to accelerate planning while preserving
the ability to find the optimal motion plan. We then derive
admissible abstractions for two motion planning domains with
continuous state. We extract upper and lower bounds on
the cost of concrete motion plans using local metric and
topological properties of the problem domain. These bounds
guide the search for a plan while maintaining performance
guarantees. We show that we can use these abstractions to
simultaneously search for semantic plans and primitive motion
plans, dramatically reduce the complexity of search relative to
a direct motion planner. Using our abstractions, we find near-
optimal motion plans in planning problems involving 1013 states
without using a separate task planner.

I. INTRODUCTION

Consider a problem domain like the one shown in figure 1.
A holonomic two-dimensional agent is tasked with navigat-
ing to a specified goal region as quickly as possible. The
path is blocked by doors that can only opened by pressing
the appropriate switch. Planning the sequence of switches
to toggle requires combinatorial search; deciding if a path
exists to each switch requires motion planning. As in many
real-world planning domains, such as object manipulation or
navigation among movable objects, the combinatorial search
and motion planning problems are coupled and cannot be
completely separated.

A standard approach to making such problems compu-
tationally tractable is to use abstraction to reason about
the properties of groups of primitive plans simultaneously.
For example, we could choose a semantically-meaningful
high level plan using a task planner, ignoring the details
of the underlying motion plan. If we later determine that
we cannot find a motion plan consistent with our high-
level plan, we can use that information to modify our high-
level plan. For example, Gravot, Cambon, and Alami (2005)
describe an integrated approach that relies on a heuristic
search for a high-level plan and uses motion planners as
subroutines to deal with detailed geometry. Kaelbling and
Lozano-Pérez (2011) use a hierarchy to guide high-level
decision making, resolving low-level decisions arbitrarily and
trusting in the reversibility of the system to ensure hierar-
chical completeness. Although these and other approaches
(e.g., Garrett, Lozano-Pérez, and Kaelbling 2015; Cambon,
Alami, and Gravot 2009; Srivastava et al. 2013) vary in how
they deal with the interaction between geometric planning
and combinatorial search, they share a common weakness:
they can only make guarantees about the plans they generate
relative to the abstraction they are provided. Even optimizing
approaches (Wolfe, Marthi, and Russell 2010) are generally

5

2

4

1

3Start

Goal

5

2

413

(a) The door puzzle problem

Start

Goal

3

5

1 4

2

(b) An example solution

Fig. 1: The door-switch problem, an example task and motion
planning domain. A two-dimensional robot must navigate from the
start location to a goal location, but the way is obstructed by doors
that can only be opened by toggling a corresponding switch. The
optimal solution to this problem instance is to toggle the switches
in the order (1, 3, 2, 4, 5) and then go to the goal set. Because the
size of the configuration space grows exponentially with the number
of doors, planning is computationally challenging. Abstraction can
render such planning problems tractable.

limited to guarantees of hierarchical optimality.
Angelic semantics (Marthi, Russell, and Wolfe 2008)

provide a way to describe an abstraction that preserves opti-
mality, but it is not clear what criteria an angelic abstraction
must satisfy in order to make guarantees about the quality of
synthesized plans. In this paper, we describe conditions under
which an abstraction will preserve the ability to find the
optimal motion plan while accelerating planning. We derive
abstractions for two continuous planning domains, and using
these abstractions we can dramatically reduce the complexity
of search relative to a direct motion planner. We find near-
optimal motion plans in planning problems involving 1013

states without using a separate task planner.

II. PROBLEM FORMULATION

We are interested in planning problems involving some
underlying continuous configuration space X , such as the
position of a robot or the configuration of its joints. Our task
is to find a path through free space that starts in a specified
state s0 and ends in a goal set Sgoal. This goal set may be
specified implicitly, as the set of all states satisfying some
constraint.

A path is a continuous map p : [0, 1] → X . We define a
concatenation operator ◦ for paths.

(p1 ◦ p2)(t) =

{
p1(2t) if t ≤ 1

2

p2(2t− 1) if 1
2 < t ≤ 1

(1)

Let P(S, S′) be the set of all paths starting in S ⊂ X and
ending in S′ ⊂ X ′. Let c : X × TX → R>0 be a cost
function, where TX is the tangent space of X . We can define
an associated cost functional C : P → R≥0.

C[p] =

∫ 1

0

c(p(t), ṗ(t)) dt (2)

Because C is additive, C[p1 ◦ p2] = C[p1] + C[p2]. We define
the set-valued optimal cost function c∗ : 2X × 2X → R≥0 as

c∗(S, S′) = inf{C(p) : p ∈ P(S, S′)}. (3)

We define the ε-approximate planning problem as the
search for a path p̂ ∈ P({s0}, Sg) with cost less than (1+ε)
the optimal cost for any ε ∈ R≥0 ∪ {∞}.

p̂ ∈ {p ∈ P({s0}, Sg) : C(p̂) ≤ (1 + ε)c∗(s0, Sg)} (4)

The case where ε = ∞, when we wish to find any feasible
path to the goal set, is the problem of satisficing planning.
The case where ε = 0 is optimal planning.

The set P(X ,X) of all possible paths from all possible
start and goal locations is continuous and topologically
complex. To simplify planning, we assume we have available
a finite set A0 of primitive operators, low-level actions
that can be executed in the real world. The problem of
constructing such a set of operators in continuous motion
planning domains is well studied; in this document, we will
assume the set of operators are given by the edges in a
probabilistic roadmap (PRM*). That is, we randomly sample
a finite set of configurations Vn ⊂ X , and for each such
configuration v, we define an operator pv . The operator pv
ensures that the robot will end at the state v if executed
from any state in the open ball of radius rn around v,
where rn ∝ (log n/n)1/d is a radius that increases slowly
with the size of the discretization. Any feasible plan can be
well-approximated by a sequence of these randomly sampled
operators as the number of sampled configurations tends to
infinity. For example, we can show that if A∗0,n is the set
of all paths through a PRM* with n sampled configurations,
then

lim
n→∞

{C[p] : p ∈ A∗0,n ∩ P({s0}, Sg)} =

{C[p] : p ∈ P({s0}, Sg)}. (5)

This was proven by Karaman and Frazzoli (2011) for the
case where the system is subject to analytic differential
constraints, and by Vega-Brown and Roy (2016) when the
system has piecewise-analytic differential constraints (as in
object manipulation problems).

Because the set of primitive operators can grow quite large,
especially in problems with high-dimensional configuration
spaces, a direct search for primitive plans is computationally
intractable. Instead, we will use angelic semantics to encode
bounds on the cost of large groups of plans. We can use
these bounds to plan efficiently while preserving optimality.

III. ANGELIC SEMANTICS

We define a semantic operator a ⊂ P(X ,X) as a set
of primitive plans. Because the space of plans is infinite,
we define operators implicitly, in terms of constraints on
the underlying primitive plans. For example, in a navigation
problem, we might define an operator as any primitive plan
that remains inside a given set of configuration space and
ends in a different set of configuration space.

The concatenation of two operators a1 ◦ a2 is a semantic
plan containing all possible concatenations of primitive plans
in the operators.

a1 ◦ a2 = {p1 ◦ p2 : p1 ∈ a1, p2 ∈ a2, p1(1) = p2(0)} (6)

Concatenations of a well-chosen small set of semantic oper-
ators can express very complicated plans in a compact way.

In order to use these semantic operators for planning, we
need a way to compare semantic plans. We do this using the
valuation of an operator or plan. A valuation V [a] for an
operator or plan a is the unique map V [a] : X ×X → R≥0
that takes a pair of states and gives the lowest cost path
between the pair.

V [a](s1, s2) = inf{C(σ) : σ ∈ a, σ(0) = s1, σ(1) = s2}
(7)

Note that if there are no paths in a linking s1 and s2, then
V [a](s1, s2) = inf ∅ =∞.

Valuations allow us to compare semantic plans without
reference to the primitive plans they contain. Given two
semantic plans p and p′, if we can prove that for any pair of
states s, s′, either V [p](s, s′) < V [p′](s, s′) or V ′(s, s′) =
∞, then either there is a solution to our planning problem
in p, or there is no solution in p or p′. Either way, we
do not need to consider any plan in p′; we can prune p′

from our search space. Under such a condition, we say that
p dominates p′ and we write p ≺ p′. Similarly, if either
V [p](s, s′) ≤ V [p′](s, s′) or V ′(s, s′) = ∞, then we say
that p weakly dominates p′ and we write p � p′.

Unfortunately, determining the valuation of an operator is
itself an optimization problem, and one that is not necessarily
any easier than the planning problem we are trying to
solve. The computational advantage comes from reasoning
about bounds on the valuation of an semantic operator. By
representing these bounds symbolically, we are able to reason
without reference to the underlying states or plans.

A symbolic valuation bound is a set of tuples {(s, s′, v)}.
A bound L[p] is optimistic, written L[p] ≺ V [p], if

l ≤ inf{inf{V [p](s, s′) : s ∈ s} : s′ ∈ s′}
∃(s, s′, l) ∈ L[p]. (8)

A bound is pessimistic, written V [p] ≺ U [p], if

u ≥ sup{inf{V [p](s, s′) : s ∈ s} : s′ ∈ s′}
∀(s, s′, u) ∈ U [p]. (9)

By construction, if U [p] and U [p′] are bounds on the
valuations of p and p′, then U [p] ∪ U [p′] is a bound on
the valuation of p ∪ p′.

As we will see in sections IV-A and IV-B, for many
domains we will not need to write down a valuation ex-
plicitly. Instead, we can use domain information to make
metric computations and generate the necessary elements of
a valuation procedurally.

By working with symbolic bounds, we can efficiently
compute bounds on the cost of plans consisting of sequences
of semantic operators, without reference to a dense dis-
cretization of the underlying space of plans. For example,
if we know bounds L[p] and U [p] on the valuation of a plan
p, we can compute bounds on the valuation of the plan p◦a.

L[p ◦ a] = {(l + l′, s, s′′) : (l, s0, s1) ∈ L[p],

(l′, s′0, s
′
1) ∈ L[a], s′0 ∩ s1 6= ∅} (10)

U [p ◦ a] = {(u+ u′, s, s′′) : (u, s0, s1) ∈ U [p],

(u′, s′0, s
′
1) ∈ U [a], s1 ⊆ s′0} (11)

IV. ADMISSIBLE ABSTRACTIONS

We can use angelic semantics to specify an abstraction
that will enable efficient planning. Suppose that p,p′ are
semantic plans, with p ⊂ p′. Then p′ � p, since any
plan in p is also in p′—but because p is a smaller set
than p′, our bounds may tighter. If our bounds allow us to
conclude that U [p′] ≺ L[p], then we can also conclude that
p′ \p ≺ p′. We can incrementally construct an increasingly
accurate estimate of V [p] by iteratively considering smaller
and smaller subsets of an operator p and pruning those
subsets that cannot contain an optimal plan.

We can make precise the construction of these increasingly
fine subsets by introducing a refinement relation R ⊂ A∗ ×
A∗, where ∗ denotes the Kleene closure. The elements of R
are ordered pairs (p,p′) such that p′ ⊂ p. We can construct
a relation R by defining several simple operations. First, we
define operations BASE : A∗ → A∗, HEAD : A∗ → A, and
EXT : A∗ → A∗ that split a plan into three segments so
that p = BASE(p) ◦HEAD(p) ◦ EXT(p). Second, we define
a relation R̄ ⊂ A × A∗. Then (p,p′) ∈ R if and only if
p′ = BASE(p) ◦ p′′ ◦ EXT(p) and (HEAD(p),p′′) ∈ R̄.

We can combine these elements into an abstraction over
a problem domain (X , c, s0, Sg). Formally, an abstraction is
a tuple (S,A, R̄, L, U), where
• S is a collection of propositional symbols,
• A is a collection of operators, including a distinguished

top-level operator Act,
• R̄ ⊂ A ×A∗ is a refinement relation, and
• L and U are lower and upper bounds, respectively, on

the valuation of each operator.
The valuation bounds encode both the cost and the dynamics
of our problem domain. The refinement relation structures
the space of semantic plans.

Angelic planning algorithms accept an abstraction as an
argument in much the same way that the A* search algorithm
(Hart, Nilsson, and Raphael 1968) accepts a heuristic. This
raises an important question: under what circumstances will
an abstraction (S,A, R̄, L, U) allow us to find the optimal
primitive plan for a domain (X , c, s0, Sg), and to prove we

have done so? We will generalize the idea of an admissible
heuristic to define an admissible abstraction.

In fact, two properties suffice.
1) For each semantic operator a ∈ A, for each primitive

plan in a, there is a refinement p of a such that p ∈ p.

∀a ∈ A,∀p ∈ a,∃(a,p) ∈ R̄ : p ∈ p (12)

2) L and U are valid bounds. That is, L[p] � V [p] �
U [p] for each semantic plan p ∈ A∗.

The first property ensures that we do not “lose track” of any
primitive plans while refining a plan. Plans are only removed
from consideration when they are deliberately pruned. The
second property ensures that if semantic plans p,p′ ∈ P ,
where P is a collection of abstract plans, and U [p] ≺ L[p′],
then no optimal plan is in p′ and thus the best plan in p is
also in the set P ′ = P \{p′}. Taken together, these properties
ensure that if P ′ is the result of refining and pruning a
collection of plans P , then for every plan in P there is a plan
that is no worse in P ′. If we start with the set P0 = {Act}, no
sequence of refinement and pruning operations will discard
an optimal solution. This ensures completeness. To construct
planning algorithms, we simply need to choose an order in
which to refine and prune, and keep track of bounds to know
when we can terminate the search.

Not every admissible abstraction is useful for planning.
A good abstraction must be concise: it must be informative
enough to enable us to explore the space of plans quickly. In
general, designing useful abstractions for a given domain is
a complex exercise. In the remainder of this section, we will
provide concrete examples of admissible abstractions for a
pair of simple continuous planning problems.

A. An abstraction for navigation

A common problem in robotics is navigating to some
specified goal location in a structured environment. Simple
heuristics like the Euclidean distance to the goal work well
in environments that are cluttered but largely unstructured,
where the distance is a good proxy for the true cost. In highly
structured environments, however, the Euclidean distance can
be quite a bad proxy for cost. Consider the example in
figure 3, in which the robot starts just on the other side of
a wall from the goal. Using A* with a Euclidean heuristic
requires searching almost the entire space.

We can plan more efficiently by taking advantage of struc-
ture in the environment. Suppose we have a decomposition
of the environment into a finite set of overlapping regions,
and we know which regions overlap. Then any plan can be
described by the sequence of regions it moves through.We
can use this to define an abstraction. Let S = {Ri}, where
∪iRi = X ,and let A = A0 ∪ {aij : Ri ∩Rj 6= ∅} ∪ {Act},
where p ∈ aij if p(t) ∈ Ri∀t ∈ [0, 1) ∧ p(1) ∈ Rj . Define
the refinement relation as follows.

R̄ =
⋃
ij

{(Act,aij ◦Act)}∪

{(Act,aij) : Rj ∩ Xg 6= ∅}∪
{(aij , a ◦ a) : a(t) ∈ Ri∀s}∪
{(aij , a) : a(t) ∈ Ri∀t, a(1) ∈ Rj}

(13)

In practice, we will not iterate over all possible refinements,
but will instead use spatial indices like k-D trees and R-trees
to find the operators that are valid from a particular state.
It is straightforward to show this satisfies the completeness
property.

If the cost function is path length, then we can compute
bounds using geometric operations. Executing the action aij
from a state in Rk∩Ri would incur a cost at least as great as
the set distance inf{‖s−s′‖ : s ∈ Ri∩Rk, s

′ ∈ Ri∩Rj}. If
the intersections between sets are small and well-separated,
this lower bound will be an accurate estimate. This has the
effect of heuristically guiding the search towards the next
region, allowing us to perform a search in the (small) space
of semantic plans rather than the (large) space of primitive
plans. The Euclidean heuristic can deal with things like
clutter and unstructured obstacles, while the abstraction can
take advantage of structure in the environment.

Note that we have made no reference to the shape of the
regions, nor even to their connectedness. If regions can be
disconnected, semantic operators can have no upper bound,
which can lead the search to be inefficient. If we additionally
require the regions to be convex, then we can use the Haus-
dorff distance between sets as an upper bound. Executing
the action aij from a state in Rk ∩Ri would incur a cost no
greater than the Hausdorff distance dH(Ri ∩ Rk, Ri ∩ Rj),
where

dH(X,Y) = max(sup
x∈X

inf
y∈Y
‖x−y‖, sup

y∈Y
inf
x∈X
‖x−y‖). (14)

Convexity is quite a strong requirement. In a cluttered
environment, a convex representation may need to contain
many regions. We can relax the requirement of convexity,
and generalize to costs besides path length, by defining ε-
convexity. A region R is ε-convex if

inf
p∈PR(x,x′)

C[p] ≤ (1 + ε)‖x− x′‖. (15)

B. An abstraction for the door puzzle

The door puzzle introduced in the introduction combines
the motion-planning aspects of navigation with a high-level
task planning problem: the choice of which doors to open
and in which order. Unlike in the navigation problem, the
configuration space for the door problem involves discrete
components: X ⊂ R2 × {0, 1}N , where where N is the
number of doors. We use the same region-based abstraction
to guide the search for motion plans, and construct a relaxed
representation of the effects of toggling switches in PDDL.
Using this representation, we can quickly compute a partial
ordering on the sequence of switches that need to be pressed
in order to reach the goal. For example, in figure 2, the path
to the goal is blocked by six doors. Before we can move
towards the goal, we must move to and press each of the six
switches. This leaves us with the task of computing a lower
bound on the cost to reach and toggle each switch.

We can find such a bound in two steps. First, we construct
a directed graph whose vertices are the possible effects of
executing each operator, and whose edges have weights that
lower bound the cost of executing each operator. This reduces
the problem of finding a lower bound to solving a travelling

salesperson problem (TSP). While it is believed that solving
a TSP requires exponential time, we can compute a lower
bound on the cost of the optimal solution by computing a
minimum spanning tree of the directed graph—and this is
a computation that can be done in polynomial time with
standard methods. This bound is not tight, and even if it
were, it neglects possible interactions between the operators.
However, it is a valid lower bound, and as such we can use
this bound to guide the search for a complete, ordered se-
mantic plan. Once we find a sequence of semantic operators,
we can use it to guide the search for a full primitive motion
plan.

V. ACYCLIC APPROXIMATE ANGELIC SEARCH

Algorithm 1 is a reformulation and extension of the angelic
hierarchical A* algorithm developed by Marthi, Russell, and
Wolfe (2008). Angelic A* is effectively a best-first forward
search over semantic plans. It accepts an abstraction and a
positive weight w ≥ 1, and maintains a queue of plans to
expand. The algorithm repeatedly removes from the queue
the plan with the lowest lower bound on the cost to reach the
goal (lines 8-12). It then constructs a set of child plans by
selecting one operator from the plan and replacing it with its
refinements. Any successor plan that cannot possibly contain
an acceptable solution is pruned, while any plan that could
contain an acceptable solution is added to the priority queue.
The algorithm terminates when we remove a plan from the
queue that is dominated by a previously expanded primitive
plan.

The primary data structure maintained by our algorithm
is a tree. Each node in the tree represents a plan as the
concatenation of a predecessor plan p− and an operator a.
Nodes store the following information:
• an semantic operator a,
• the predecessor plan p−,
• the parent plan, from which this plan was refined,
• the base plan BASE(p), which is used in choosing

refinements, and
• upper and lower bounds on the valuation of the plan

represented by the node.
The root of the tree is a node that contains no operator,
predecessor, or base, and whose upper and lower valuation
bounds are zero at the start state and infinite elsewhere.

Marthi et al. showed this algorithm will return the optimal
refinement of the top-level operator Act after a finite number
of iterations, provided the lower bound on the cost of every
operator is greater than zero. We provide two key modifica-
tions. First, instead of expanding the plan with the smallest
lower bound, we order the queue with a priority that is no
greater than w times the lower bound on the cost a plan. This
allows us to exchange optimality for approximate optimality
and an accelerated search, in much the same fashion as
weighted A* (Pohl 1970). Inflating the lower bound may
accelerate search by providing a more accurate estimate of
the true value of a semantic plan. This is especially true
in domains where formulating a semantic plan is difficult:
inflating our lower bounds can allow us to focus our search
on a single, reasonable semantic plan, rather than considering
every possible semantic plan.

040203 060501Start Goal
04

02

03

06
05

01

(a) Problem

02 050304 0601Start Goal

(b) Lower bound

03 0501 060402Start Goal

(c) Solution

Fig. 2: In the problem shown in (a), it is easy to conclude that all N = 6 doors must be opened before the robot can reach the goal.
However, there are N ! = 720 possible orders in which we might press the switches. We can bound the cost of any sequence by solving
a travelling salesperson problem (b, dotted lines), where the edge costs are the minimal distance the robot must travel to move between
switches. Although this is an NP-hard problem, we can compute a lower bound on the cost of a solution in polynomial time by computing
a minimum spanning tree (b, solid red line). This allows the planner to quickly find a near-optimal solution (c).

Second, the original formulation of angelic A* required
strictly positive lower bounds on the cost of any operator.
In discrete problems, this is reasonable restriction, but it
presents challenges in continuous problems. For example,
suppose we have a plan consisting of two operators aij ◦ai′j′
from our navigation abstraction. If the destination regions
intersect—if Rj ∩ R′j 6= ∅—then the largest possible lower
bound for the valuation of ai′,j′ is zero. This phenomenon
can lead to a zero-cost cycle: a sequence of operators that can
optimistically returns to a given state with zero cost. Even
positive cost-cycles are problematic, if the lower bound l on
the cost of a cycle is much smaller than the upper bound u:
the algorithm can only prune a plan if it executes the cycle
du/le times. Unfortunately, we cannot simply discard any
semantic plan with a cycle: the optimal plan may leave and
return to an abstract state if the state is non-convex. Typically,
this indicates a poor choice of abstraction, but we can deal
with such edge cases while still avoiding cycles with a minor
modification to the algorithm.

We define an acyclic plan as any plan p that cannot be
partitioned into two plans p0 ◦ p1 such that L[p0] � L[p]
(algorithm 1, lines 58-66). If when computing the successors
of a plan p, we find the extension pext would create a
deferred plan when propagated on top of BASE(p), we do
not add p ◦ pext to the set of successors. Instead, we add
(BASE(p),pext) to the set of deferred plans (algorithm 1,
line 30). When any descendent of p is expanded, we consider
activating any deferred extension of p by propagating it on
top of the descendent plan. If the resulting plan is no longer
acyclic, we add it to the set of successors (line 37). This
ensures that only acyclic plans will ever be added to the
queue of plans without sacrificing completeness.

VI. RESULTS

We implemented algorithm 1 and the abstractions de-
scribed in sections IV-A and IV-B in the Python program-
ming language. We then compared the performance of the
planner to the original angelic A* search algorithm (Marthi,
Russell, and Wolfe 2008) and to a search without abstraction
using A*.

In the navigation domain, we constructed a random dis-
cretization with 104 states. Examples of the search trees
constructed by A* and by algorithm 1 are given in figure 3.

Start

Goal

(a) A*

Start

Goal

(b) Acyclic Angelic A*

Fig. 3: The search trees constructed by A* (a) and by algorithm 1
(b). Note that the A* search needs to explore almost the entire
space, due to limitations of the Euclidean distance as a heuristic.
In contrast, when provided with a decomposition of the world
into nearly-convex regions, angelic A* can find a path to the goal
while exploring far fewer states. By avoiding plans with cycles, our
modified angelic planning algorithm can explore these states while
expanding far fewer plans.

By using the abstraction, the algorithm can avoid exploring
large parts of the configuration space. Our quantitative results
bear this out: using abstraction allows us to reduce the
number of states explored by a factor of three and the number
of plans considered by several orders of magnitude.

Using abstraction in the door puzzle domain resulted
in even larger speedups. Even in easy problem instances
with only a few doors, search without abstraction quickly
became infeasible (figure 4). Using abstraction reduced the
number of states explored by orders of magnitude. However,
the unmodified angelic search spent a great deal of time
exploring plans with cycles. By deferring these plans, our
algorithms were able to reduce the number of plans expanded
by an order of magnitude. In fact, only our algorithm was
able to solve problem instances with more than ten doors.
We were able to find 2-optimal plans for instances with up
to 32 doors and 104 sampled configurations (corresponding
to a discretized state space with approximately 40 trillion
states). Unfortunately, software limitations prevented us from
experimenting on states with more than 32 doors.

Algorithm 1 Angelic Approximate A*

1: function SEARCH(abstraction (S,A, R̄, V̂), weight w)
2: root = (∅,∅,∅, {(xs, xs, 0, 0)})
3: p∗ = ∅
4: BOUND(∅) = V̂ [ACT]
5: p0 = PROPAGATE(root, [ACT])
6: Q = {p0}
7: while |Q| > 0 do
8: p = arg min{KEY(p, w) : p ∈ Q}
9: if PRIMITIVE(p∗) and V̂U [p∗] ≺ V̂L[p] then

10: return p∗

11: else
12: Q← Q \ {p}
13: S ← SUCCESSORS(p)
14: for p′ ∈ S do
15: if V̂U [p′] < V̂U [p∗] then
16: p∗ ← p′

17: Q← Q ∪ {p′ ∈ S : ¬V̂U [p∗] ≺ V̂L[p]}
18: return ∅
19: function SUCCESSORS(plan node p)
20: . D is a global variable, initially set to ∅.
21: POST(BASE(p)) = {s′ : (s, s′, l, u) ∈ V̂ [BASE(p)]}
22: S = ∅
23: a = OPERATOR(HEAD(p))
24: for p′ : (a,p′) ∈ R̄, ∃s ∈ POST(BASE(p)) : HEAD(p′)∩s 6= ∅

do
25: pref ← PROPAGATE(BASE(p),p′ ◦ EXT(p))
26: if V̂L[pref](xs, Xg) <∞ then
27: if ACYCLIC(p′,∅) then
28: S ← S ∪ {p′}
29: else
30: D ← D ∪ {(BASE(p), EXT(p′))}
31: pa ← p
32: while BASE(PARENT(pa)) 6= ∅ do
33: pa ← BASE(PARENT(pa))
34: for pext : (pa,pext) ∈ D do
35: p′ ← PROPAGATE(BASE(p),pext)
36: if ACYCLIC(p′,∅) and V̂L[p′] <∞ then
37: S ← S ∪ {p′}
38: return S
39: function PROPAGATE(base node p, list pext)
40: b← p
41: while pext is not empty do
42: a← POP(pext)
43: if a is more primitive than OPERATOR(p) then
44: b← p

45: p← (a,p,b, V̂ [p ◦ a])
46: if V̂ [p] = ∅ then return
47: else if BOUND(pext) ≺ V̂L[p′] then
48: return ∅
49: else
50: BOUND(pext)← BOUND(pext) ∪ V̂ [p]

51: return A
52: function KEY(node p, weight w ∈ R≥1)
53: p− ← PREDECESSOR(p)
54: if p− = ∅ then
55: return 0
56: else
57: return min(KEY(p−) + w(V̂L[p]− V̂L[p−]), V̂U [p])

58: function ACYCLIC(plan nodes p,p′)
59: if p = ∅ then
60: return true
61: else if p′ = ∅ then
62: p− ← PREDECESSOR(p)
63: return ACYCLIC(p−,∅) ∧ ACYCLIC(p−,p)
64: else
65: p− ← PREDECESSOR(p)
66: return ¬(V̂L[p] � V̂L[p′]) ∧ ACYCLIC(p−,∅)

102 103 104

Sample count

0

2000

4000

6000

8000

10000

P
la

n
s

e
xp

a
n

d
e
d

AAA* (w=1.)

AAA* (w=2.5)

Angelic A*

A*

WA* (w=2.5)

102 103 104

Sample count

0

1000

2000

3000

4000

5000

6000

7000

S
ta

te
s

e
xp

lo
re

d

AAA* (w=1.)

AAA* (w=2.5)

Angelic A*

A*

WA* (w=2.5)

Fig. 4: Quantitative evaluation on an easy instance of the door
puzzle domain with only two doors. More difficult instances could
not be solved by any algorithm considered except algorithm 1. The
abscissa measures the number of randomly sampled states in the
discretization of the configuration space. The ordinate axes measure
the number plans expanded by each algorithm and the number of
distinct configurations explored during search.

cost time plans states

A* 33.430 42.119 11807 7948
Angelic A* 33.430 160.256 25770 4758
AAA* (w=1.) 33.430 4.159 706 3068
AAA* (w=2.5) 35.586 0.697 48 1443

TABLE I: Quantitative performance on a problem instance in
the navigation domain. The discretized state space includes 104

sampled configurations. We see that abstraction and approximation
result expanding fewer plans and exploring fewer states, yielding a
faster search and optimal or nearly optimal results.

VII. CONCLUSIONS

We have defined conditions on an abstraction that allow
us to accelerate planning while preserving the ability to
find an optimal or near-optimal solution to complex motion
planning problems. We motivate these conditions by deriving
two admissible abstractions and showing they improve the
efficiency of search without adversely affecting the quality
of the resulting solutions. We view this work as a proof of
concept, demonstrating that a good abstraction can render
optimal planning feasible even on large problems. It may
provide a path forward for domains where conventional
abstraction strategies have proven ineffective.

REFERENCES

Cambon, Stephane, Rachid Alami, and Fabien Gravot (2009).
“A hybrid approach to intricate motion, manipulation and
task planning”. In: IJRR 28.1, pp. 104–126.

Garrett, Caelan Reed, Tomás Lozano-Pérez, and Leslie Pack
Kaelbling (2015). “FFROB: An efficient heuristic for task
and motion planning”. In: WAFR.

Gravot, Fabien, Stephane Cambon, and Rachid Alami (2005).
“aSyMov: a planner that deals with intricate symbolic and
geometric problems”. In: ISRR.

Hart, Peter, Nils Nilsson, and Bertram Raphael (1968). “A
formal basis for the heuristic determination of minimum
cost paths”. In: IEEE Transactions on Systems Science and
Cybernetics 4.2, pp. 100–107.

Kaelbling, Leslie Pack and Tomás Lozano-Pérez (2011).
“Hierarchical task and motion planning in the now”. In:
ICRA.

Karaman, Sertac and Emilio Frazzoli (2011). “Sampling-
based algorithms for optimal motion planning”. In: IJRR
30.7, pp. 846–894.

Marthi, Bhaskara, Stuart Russell, and Jason Wolfe (2008).
“Angelic Hierarchical Planning: Optimal and Online Al-
gorithms”. In: ICAPS.

Pohl, Ira (1970). “Heuristic search viewed as path finding in
a graph”. In: Artificial intelligence 1.3-4, pp. 193–204.

Srivastava, Siddharth et al. (2013). “Using classical plan-
ners for tasks with continuous operators in robotics”. In:
ICAPS.

Vega-Brown, William and Nicholas Roy (2016). “Asymp-
totically optimal planning under piecewise-analytic con-
straints”. In: WAFR.

Wolfe, Jason, Bhaskara Marthi, and Stuart Russell (2010).
“Combined Task and Motion Planning for Mobile Manip-
ulation”. In: ICAPS.

	Introduction
	Problem formulation
	Angelic semantics
	Admissible abstractions
	An abstraction for navigation
	An abstraction for the door puzzle

	Acyclic approximate angelic search
	Results
	Conclusions

