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Learned IMU Bias Prediction for Invariant Visual
Inertial Odometry

Abdullah Altawaitan1, Jason Stanley1, Sambaran Ghosal1, Thai Duong2, and Nikolay Atanasov1

Abstract—Autonomous mobile robots operating in novel envi-
ronments depend critically on accurate state estimation, often
utilizing visual and inertial measurements. Recent work has
shown that an invariant formulation of the extended Kalman
filter improves the convergence and robustness of visual-inertial
odometry by utilizing the Lie group structure of a robot’s
position, velocity, and orientation states. However, inertial sensors
also require measurement bias estimation, yet introducing the
bias in the filter state breaks the Lie group symmetry. In
this paper, we design a neural network to predict the bias
of an inertial measurement unit (IMU) from a sequence of
previous IMU measurements. This allows us to use an invariant
filter for visual inertial odometry, relying on the learned bias
prediction rather than introducing the bias in the filter state.
We demonstrate that an invariant multi-state constraint Kalman
filter (MSCKF) with learned bias predictions achieves robust
visual-inertial odometry in real experiments, even when visual
information is unavailable for extended periods and the system
needs to rely solely on IMU measurements.

Index Terms—Localization, Aerial Systems: Applications, Deep
Learning Methods

I. INTRODUCTION

MANY core robot autonomy functions, including map-
ping and control, depend on accurate state estimation.

Visual-inertial odometry (VIO) [1], [2] offers a reliable and
cost-effective approach to estimate the position, orientation,
and velocity of mobile robots equipped with cameras and
inertial measurement units (IMUs). Cameras can estimate pose
displacements but are sensitive to lighting change and motion
blur. IMUs, on the other hand, deliver high-frequency data
independent of visual conditions but lead to estimate drift over
time due to measurement bias. Thus, visual and inertial sensors
complement each other effectively but estimating IMU bias is
crucial for ensuring reliable state estimation, especially with
poor or intermittent visual information.

Traditional VIO methods like the multi-state constraint
Kalman filter (MSCKF) [3] include the IMU bias, together
with the system position, orientation, and velocity, in the
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Fig. 1: Monocular images and keypoints from a quadrotor with a
FLIR Chameleon camera and VectorNav VN-100 IMU.

filter state and estimate it sequentially from sensor measure-
ments. We explore an alternative formulation using a learned
sequence-to-sequence model to predict the IMU bias based on
a longer history of IMU measurements. Moreover, VIO sys-
tems typically model IMU bias as a random process driven by
white noise rather than as an unknown term. This distinction
impacts the observability properties of the VIO system: bias
is observable when modeled as noise but unobservable when
considered as an unknown term, as shown in [4]. In practice,
IMU biases often exhibit slow time-varying drift rather than
the rapid fluctuations characteristic of white noise. In this
work, we design a neural network that predicts IMU biases
directly from a sequence of previous IMU measurements,
avoiding the need to include the bias in the filter state and
allowing the use of an invariant Kalman filter formulation as
we discuss later.

First, we review learning-based methods that leverage IMU
data for state estimation. IONet [5] uses a long-short-term
memory (LSTM) network to predict velocities from buffered
IMU measurements that are then integrated to estimate the
2D motion of pedestrians. RoNIN [6] continues this direction
by presenting three different neural network architectures:
Temporal Convolutional Network (TCN), Residual Network
(ResNet), and LSTM to predict velocities which, when in-
tegrated with known orientation, yield 2D pedestrian motion
estimates. TLIO [7] extends previous works to 3D and uses a
ResNet to estimate pedestrian displacements in a local gravity-
aligned frame and their uncertainty from a buffer of IMU
measurements, which serve as measurements in an extended
Kalman filter (EKF). While [5]–[7] focus on pedestrian mo-
tions, Zhang et al. [8] show that a series of neural networks
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can be used to estimate IMU bias, thrust correction, and inte-
gration errors for a quadrotor robot using IMU readings and
motor speeds. Likewise, Cioffi et al. [9] use a TCN network
to predict 3D relative position from thrust and gyroscope
measurements for drone racing. However, the methods in [5]–
[9] are trajectory-specific and cannot generalize to unseen
trajectories at test time. Moreover, these methods often assume
that the IMU measurements are transformed into the world
frame using the ground-truth pose but, during deployment,
the pose is typically estimated via Kalman filtering, mak-
ing the transformation inaccurate. To address this limitation,
Buchanan et al. [10] propose a neural network to predict
the IMU bias directly instead of learning a motion model,
enabling the system to generalize to unseen trajectories at
test time. However, the network is trained with ground-truth
IMU biases, which are unavailable in real-world scenarios.
Qiu et al. [11] extend [10] by learning both IMU bias and
measurement uncertainty through IMU preintegration in pose
graph optimization. Denoising IMU Gyroscopes [12] learns
only the gyroscope bias, which is not enough for accurate
inertial integration, and evaluates rotational accuracy alone. In
contrast, we learn both gyroscope and accelerometer biases
and evaluate both translational and rotational accuracy. TLIO
[7] trains a network to estimate relative positions directly from
IMU measurements in a local gravity-aligned frame, implicitly
learning the unobserved initial velocity in a time window from
pedestrian motion patterns. Instead, we train a neural network
to estimate IMU bias from past IMU measurements using a
Lie algebra error between the integrated measurements and
the ground-truth robot state. DIDO [8] learns biases separately
for gyroscope and accelerometer and relies on a tachometer,
prior knowledge of quadrotor parameters, and near hover flight
assumption, and decouples rotational and translational dynam-
ics to estimate relative positions and velocities for inertial-
only odometry. DIDO overfits to motion patterns seen during
training due to the unobserved initial velocity, similar to TLIO.
Our method removes these requirements by predicting both
biases with a single bias prediction network and integrating
it into visual-inertial odometry. Finally, AirIMU [11] trains a
network to estimate the IMU bias for an IMU-GPS pose graph
optimization. However, AirIMU assumes access to ground-
truth positions during deployment and does not claim real-time
performance. In contrast, we learn the bias prediction model in
the same way but integrate it with an invariant filter, enabling
real-time visual-inertial odometry.

The position, orientation, and velocity of a robot system
evolve on a matrix Lie group and possess symmetries (or
invariance) in the sense that certain transformations leave the
system state unchanged. Barrau et al. [13] introduced an invari-
ant EKF in which the estimation errors remain invariant under
the action of a matrix Lie group. Hartley et al. [14] showed
improved convergence and robustness of the invariant EKF
in contact-aided inertial navigation, even when including bias
terms in the filter state. Lin et al. [15] extend the latter work
by developing an invariant state estimation approach using
only onboard proprioceptive sensors. However, the inclusion
of bias terms within the filter state breaks the Lie group
symmetry, causing the linearized error dynamics to depend

on the state estimates rather than remaining state-independent.
Fornasier et al. [16] introduced an equivariant filter for VIO
that integrates IMU bias and camera intrinsic-extrinsic param-
eters into a symmetry group structure. The approach achieves
state-of-the-art accuracy and consistent estimation without the
need for additional consistency enforcement techniques, e.g.,
observability constraint [17]. The equivariant filter extends the
invariant filter by operating on homogeneous spaces, reducing
to the invariant case with a specific choice of symmetry [18].
In this context, invariance corresponds to symmetries that leave
the system state unchanged, whereas equivariance involves
symmetries that change it in a structured manner [19].

Our contribution is a sequence-to-sequence neural network
that predicts IMU biases directly from past inertial measure-
ments, which enables three key capabilities. First, estimating
the bias outside the filter state enables an invariant Kalman
filter, whose state covariance evolution is independent of the
state estimates. Second, the proposed method achieves real-
time visual inertial odometry. Third, we demonstrate the per-
formance of the bias prediction network in visually degraded
scenarios where the system relies solely on IMU measure-
ments for motion estimation. Our evaluation demonstrates
that this approach yields bias estimates that are physically
consistent and stable (unlike the fluctuating estimates obtained
from a standard EKF), and achieves reliable state estimation,
even with poor or no visual features for extended periods of
time.

II. PROBLEM STATEMENT
Consider a robot equipped with an IMU and a camera.

The IMU provides noisy measurements of angular velocity
ω(t) ∈ R3 and linear acceleration a(t) ∈ R3. The camera
provides the pixel coordinates z(t) ∈ R2 of keypoints tracked
across consecutive images. IMU and camera measurements are
assumed to be generated synchronously at the same discrete
time steps tk.

Our goal is to estimate the robot’s state at time t:

X(t) =

R(t) v(t) p(t)
0 1 0
0 0 1

 ∈ SE2(3), (1)

where R(t) ∈ SO(3), v(t) ∈ R3, and p(t) ∈ R3 denote the
orientation, linear velocity, and position of the inertial frame
relative to the global frame, respectively, and SE2(3) denotes
the extended special Euclidean group [20].

The gyroscope and accelerometer measurements are cor-
rupted by additive white noise ng(t), na(t) ∈ R3 and time-
varying bias bg(t), ba(t) ∈ R3, respectively:

ω̄(t) = ω(t) + bg(t) + ng(t),

ā(t) = a(t)−R⊤(t) g + ba(t) + na(t),
(2)

where ω̄(t) ∈ R3 is the measurement of angular veloc-
ity in body-frame coordinates, ā(t) ∈ R3 is the measure-
ment of linear acceleration in body-frame coordinates, and
g ∈ R3 is the gravity vector in world-frame coordinates.
Let u(t) = (ω(t), a(t)) the denote noiseless measurements,
ū(t) = (ω̄(t), ā(t)) denote the noisy measurements, and
b(t) = (bg(t), ba(t)) denote the IMU bias.
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The evolution of state X(t) with input u(t) is governed by
a continuous-time motion model:

Ẋ(t) = f(X(t), u(t)) =

R(t)(ω(t))× R(t)a(t) + g v(t)
0 0 0
0 0 0


(3)

where the operator (·)× : R3 → so(3) maps a vector in R3 to
a 3× 3 skew-symmetric matrix.

The IMU bias is typically modeled using a Brownian motion
model (i.e., random walk) [10]:

ḃ(t) = η(t), η(t) =
[
ηg(t)⊤ ηa(t)⊤

]⊤ ∈ R6, (4)

where η is the IMU bias noise. While this assumption provides
a simple linear approximation of bias evolution, it might fail
to capture complex behaviors. Instead, we consider learning a
sequence-to-sequence parametrized model dθ that maps a se-
quence of IMU measurements to their corresponding sequence
of biases, offering a more expressive model than a random
walk. To achieve this, given a set of raw measurements ū

(i)
0:N ,

we predict the corresponding IMU biases b̂
(i)
0:N using dθ and

roll out the IMU kinematics f in Eq. (3) with initial state X
(i)
0

and corrected measurements ū
(i)
k − b̂

(i)
k , for k = 0, . . . , N . We

assume both the IMU measurements u(t) and bias b(t) remain
constant during the time interval [tk, tk+1).

Problem 1. Given dataset D = {t(i)0:N , X
(i)
0:N , ū

(i)
0:N}Di=1, learn

an IMU bias prediction model dθ by determining the param-
eters θ that minimize the following:

min
θ

D∑
i=1

N∑
k=1

c(X̂
(i)
k , X

(i)
k ) (5)

s.t. X̂
(i)
k+1 = ODESolver(f, X̂(i)

k , ū
(i)
k − b̂

(i)
k , t

(i)
k+1 − t

(i)
k )

b̂
(i)
0:N = dθ(ū

(i)
0:N ), for k = 0, . . . , N and i = 1, . . . , D,

for a given initial state X̂
(i)
0 = X

(i)
0 . The cost function c

may be chosen as a suitable distance metric on the SE2(3)
manifold. Instead of using an ODE solver (e.g., Runge-Kutta
[21]), we compute the integration of Eq. (3) on the SE2(3)
group in closed-form (shown in Sec. III-B, Eq. (13)).

III. PRELIMINARIES

This section introduces background material that will be
used throughout the paper.

A. Lie Group Operators

Let X denote an element of the extended special Euclidean
Lie group SE2(3), with structure defined in Eq. (1). The
corresponding Lie algebra se2(3) consists of 9× 9 matrices:

ξ∧ =

(ξR)× ξv ξp

0 0 0
0 0 0

 , ξ =

ξRξv
ξp

 , ξR, ξv, ξp ∈ R3. (6)

The vector ξ ∈ R9 parametrizes the Lie algebra via the
hat operator (·)∧ : R9 → se2(3), while the vee operator
(·)∨ : se2(3) → R9 is its inverse. A group element X ∈
SE2(3) is related to an algebra element ξ∧ ∈ se2(3) through

the exponential exp(·) : se2(3) → SE2(3) and logarithm
log(·) : SE2(3) → se2(3) maps:

X = exp(ξ∧), ξ∧ = log(X), (7)

where exp(ξ∧) admits a closed-form expression:

exp (ξ∧) =

Γ0(ξ
R) Γ1(ξ

R)ξv Γ1(ξ
R)ξp

0 1 0
0 0 1

 ,

where Γ0(·) and Γ1(·) denote the SO(3) exponential map and
left Jacobian, respectively (see [14]).

We consider right-invariant error associated with left per-
turbation. The group error state X̃ and retraction ξ ⊕ X̂ are
defined as follows:

X̃ = XX̂−1, ξ ⊕ X̂ = exp (ξ∧)X̂, (8)

where the vector ξ represents a perturbation in se2(3). For X ∈
SE2(3), the adjoint map is defined as AdX(ξ∧) = Xξ∧X−1

and its matrix representation can be written as:

AdX =

 R 0 0
(v)×R R 0
(p)×R 0 R

 . (9)

Please refer to [22] for further details.

B. Multi-state Constraint Kalman Filter (MSCKF)

The MSCKF [3] is a VIO method that marginalizes land-
mark positions instead of incorporating them in the filter state,
thereby avoiding to build a map of 3D landmark positions.
The MSCKF maintains a sliding window of past sensor poses
to triangulate keypoints via least-squares optimization using
geometric constraints from multiple images.

The filter state consists of the robot state Xk ∈ SE2(3),
IMU bias bk at time tk, and a window of W historical states
Xk−1 . . . , Xk−W . Given inertial measurement ūk, the mean
of the state X̂(t) and of the bias b̂(t) are propagated as:

˙̂
X(t) = f(X̂(t), ūk − b̂(t)),

˙̂
b(t) = 0. (10)

In the remainder of the paper, we omit the time dependence
of the variables for readability. We denote estimated quantities
with (̂·) and error quantities with (̃·). The MSCKF uses
decoupled error states exp(ξR×) = RR̂⊤, ξv = v − v̂,
ξp = p − p̂, and b̃ = b − b̂ to propagate the IMU covariance
P ∈ R15×15 through the linearized error-state dynamics:[

ξ̇
˙̃
b

]
= A

[
ξ

b̃

]
+G

[
n
η

]
, (11)

where n =
[
ng⊤ na⊤ nv⊤] ∈ R9 is the noise associated

with angular velocity, linear acceleration, linear velocity. Here,
A and G represent the Jacobians resulting from linearizing the
error-state dynamics around the filter state estimate [3]. Thus,
the IMU covariance evolution is governed by the continuous-
time Riccati equation [14]:

Ṗ = AP + PA⊤ +Q, Q = GCov(n)G⊤. (12)
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Filter propagation: To propagate the means of the state
X̂k and of the bias b̂k between tk and tk+1, with the assump-
tion that the IMU measurement ūk remains constant over the
time interval ∆tk = tk+1 − tk, [14] provides closed-form
integration of Eq. (10):

R̂k+1 = R̂kΓ0((ω̄k − b̂gk)∆tk),

v̂k+1 = v̂k + g∆tk + R̂kΓ1((ω̄k − b̂gk)∆tk)(āk − b̂ak),

p̂k+1 = p̂k + v̂k∆tk +
1

2
g∆t2k

+ R̂kΓ2((ω̄k − b̂gk)∆tk)(āk − b̂ak), (13)

where Γ2(ϕ) is defined in [14]. To obtain the covariance of
X̂k and b̂k, we approximate the integration of Eq. (12):

Pk+1 = ΦkPkΦ
⊤
k +Qd

k, Φk = exp(Ak∆tk),

Qd
k ≈ ΦkQkΦ

⊤
k ∆tk, Qk = GkCov(n)G

⊤
k .

(14)

Since past states remain constant, their covariance entries are
propagated using an identity Jacobian and zero process noise,
as described in [23].

Filter update: Consider a keypoint zk,m ∈ R2, obtained
from an image keypoint detection algorithm such as FAST
[24], associated with landmark ℓm ∈ R3 and state Xk. The
variables are related by the measurement model [25]:

zk,m = h(Xk, ℓm) + ρk,m, (15)

where h is the image projection of landmark ℓm and ρk,m
is the keypoint detection noise. Define the keypoint error
for each measurement as ek,m = zk,m − h(X̂k, ℓ̂m). After
applying the left null-space projection step from [3], let ê, H ,
and V represent the stacked errors, measurement Jacobians,
and noise covariances for all landmarks. We update the mean
X̂k = (X̂k, b̂k, X̂k−1, . . . , X̂k−W ), and covariance Pk as:

X̂k+1 = (Kê)⊕ X̂k+1,

Pk+1 = (I −KH)Pk+1(I −KH)⊤ +KVK⊤,

K = PkH
⊤ (

HPkH
⊤ + V

)−1
.

(16)

IV. LEARNING IMU BIAS FOR VIO
Typically, the IMU bias is not directly observable from a

single IMU measurement. Instead, bias estimation requires
integrating a sequence of IMU measurements and comparing
against an external sensor for ground truth (e.g., motion
capture system). This sequence dependence motivates us to
predict IMU biases from a sequence of raw IMU measure-
ments via a neural network model and using the ground-
truth state for training. If ground-truth poses are unavailable, a
camera sensor can be used to track keypoints across frames to
estimate relative poses X−1

k+1Xk, which can be used as ground-
truth. Recent works propose using deep learning architectures,
such as Convolutional Neural Network (CNN), ResNet, or
transformer, to capture temporal dependencies and patterns
in IMU measurements [5]–[11]. In this work, we learn a
sequence-to-sequence neural network model dθ, mapping a
sequence of IMU measurements ū

(i)
k−L, . . . , ū

(i)
k to a corre-

sponding sequence of IMU bias estimates (b̂
(i)
k−L, . . . , b̂

(i)
k ):

dθ(ū
(i)
k−L, . . . , ū

(i)
k ) = (b̂

(i)
k−L, . . . , b̂

(i)
k ). (17)

IMU Buffer ResNet Network

-

Invariant EKF Images

Fig. 2: Block diagram of our system.

Due to the correlation between angular velocity and accelera-
tion at slow-varying velocities, e.g., observed in [12], we use
a single model dθ to infer the IMU bias instead of separate
models for the gyroscope and accelerometer.

To optimize θ, we partition the collected trajectories into
non-overlapping D segments, each consisting of N samples
of ground-truth state X

(i)
k and raw IMU measurements ū

(i)
k .

For each segment, we feed the raw IMU measurements into
the neural network model dθ to predict the corresponding
bias estimates b̂

(i)
0:N as in Eq. (17), which are expected to

initially be inaccurate. These predicted biases are then used
to correct the raw IMU measurements with ū

(i)
k − b̂

(i)
0:N .

Then, we roll out an estimated state trajectory X̂
(i)
1:N with the

corrected IMU measurements ū
(i)
k − b̂

(i)
0:N and an initial state

X
(i)
0 using Eq. (13). To update the neural network parameters

θ, we use a cost function c(X̂
(i)
k , X

(i)
k ) that measures the

discrepancy between the predicted state X̂
(i)
k and the ground-

truth X
(i)
k . As states lie on SE2(3), we compute the group

error X̃
(i)
k = X

(i)
k X̂

(i)−1

k ∈ SE2(3), map it onto the Lie
algebra ξ

(i)∧
k = log(X̃

(i)
k ) ∈ se2(3), and calculate the norm of

its vector representation ξ
(i)
k = log(X̃

(i)
k )∨ ∈ R9 as follows:

c(X̂
(i)
k , X

(i)
k ) =

∥∥∥log (X(i)
k X̂

(i)−1

k )∨
∥∥∥
h
. (18)

We use the Huber loss ∥·∥h in the cost function definition
above to prioritize early trajectory estimates, which are less
corrupted by the noise inherent in the IMU measurements
which accumulates with long-horizon integration of Eq. (13).
Alternatively, the network can be trained with a loss on
relative poses X−1

k+1Xk, which delivers similar results. The 9-
dimensional state error vector evaluated by the Huber loss is
weighted by 103 for orientation, 102 for position, and 101 for
velocity to give the three components equal influence despite
their different units. We use the Adam optimizer [26] with
learning rate 1 × 10−3 to iteratively optimize the parameters
θ. Our approach provides high-frequency bias estimates com-
pared to updating the bias only at the lower-frequency update
step, typically at the camera frame rate. In addition, our model
decouples the bias prediction from visual information, which
can be unreliable for extended periods.

We use the invariant EKF [13] to track the filter state mean
X̂k, . . . , X̂k−W on the matrix Lie group SE2(3), while the
covariance Pk is propagated in the corresponding Lie algebra.
Relying on learned bias predictions from dθ allows us to
formulate the IMU dynamics without introducing the bias in
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the filter state:

Ẋ = f(X, ūk − b)−Xn∧, (19)

where n is the propagation noise as in Eq. (11). From [13],
the deterministic system f satisfies the group-affine property.
Thus, using the group error defined in Eq. (8), the linearized
IMU error-state dynamics:

ξ̇ = Aξ + AdXn, A =

 0 0 0
(g)× 0 0
0 I 0

 , (20)

can be propagated as in Eq. (12) with G = AdX . Note that
for the deterministic system ξ̇ = Aξ, since the Jacobian A
is state-independent, the error propagation is independent of
the state estimate. When noise is brought to the system, the
state covariance mapping remains state-independent, whereas
the noise mapping depends on the state estimate as in Eq. (14),
which is an advantage over the standard EKF. To summarize,
as shown in Fig. 2, for a given state mean X̂k and covariance
Pk with raw IMU measurements ūk−L, . . . , ūk, we have:

(b̂k−L, . . . , b̂k) = dθ(ūk−L, . . . , ūk),

Φk = exp(A∆tk), (21)

Pk+1 = ΦkPkΦ
⊤
k +ΦkAdXk

Cov(n)Ad⊤Xk
Φ⊤

k ∆tk,

and Eq. (13).

V. EVALUATION

We present our choice of neural network architecture for
IMU bias prediction in Sec. V-A. Then, we evaluate our
method against state-of-the-art VIO baselines using both pub-
licly available dataset and Aerodrome dataset with challenging
motions in Sec. V-B. We demonstrate the robustness of our
method under challenging conditions where visual features
are temporarily lost, requiring the filter to rely solely on
IMU measurements, in Sec. V-C. Finally, in Sec. V-D, we
evaluate our method as an inertial-only odometry approach and
compare it against two popular inertial-odometry baselines.

Datasets: We evaluate on the public EuRoC dataset [27]
and our Aerodrome dataset. The EuRoC dataset provides 200
Hz IMU, 20 Hz camera, and 100 Hz ground truth from a
quadrotor operating at maximum speeds of 2.3 m/s. Per [12],
MH and VR1 were captured on consecutive days, while VR2
was acquired later. Thus, we train on (MH01, MH03, MH04),
validate on (MH02, MH05), and test on (V102, V103, V202).
The Aerodrome dataset consists of five trajectories with 200
Hz IMU data, 25 Hz camera, and 100 Hz ground truth from a
quadrotor operating at maximum speeds of 5.4 m/s. We train
on A01, validate on A02, and test on (A03, A04, A05).

Metrics: To assess IMU bias prediction accuracy in Sec.
V-A, we compute the cost defined in Eq. (5) over the test
data along with the average error norms of the orientation
∥ξR∥ = ∥ log(R̂R⊤)∨∥, velocity ∥ξv∥ = ∥v̂−v∥, and position
∥ξp∥ = ∥p̂− p∥. For quantitative trajectory evaluation in Sec.
V-B, V-C, and V-D, we report the Absolute Trajectory Error
(ATE) in translation and rotation and the Relative Error (RE)
in translation. These metrics are defined in [28].

TABLE I: IMU Noise Parameters

Parameter Symbol EuRoC Aerodrome Unit
Gyro. Noise Density σg 1e−2 1e−2 rad

s
1√
Hz

Gyro. Random walk σbg 8e−4 6e−4 rad
s2

1√
Hz

Accel. Noise Density σa 3e−2 1e−1 m
s2

1√
Hz

Accel. Random Walk σba 2e−4 7e−3 m
s3

1√
Hz

Baselines: We evaluate our approach against three VIO
methods: MSCKF [23], a monocular multi-state constraint
Kalman filter with IMU bias estimated in the filter state,
MSCEqF [16], an equivariant formulation of the monocular
MSCKF with IMU bias estimated in the filter state, and
LBMSCKF, an MSCKF with learned bias. In addition, we
evaluate our approach as an inertial-only odometry against
two learning-based inertial odometry methods: IMO [9], which
combines a TCN to estimate relative positions from IMU and
thrust inputs with an EKF, and TLIO [7], which uses a ResNet
to estimate relative position displacements in a local gravity-
aligned frame and its uncertainty from IMU measurements. In
both methods, the IMU bias is estimated within the filter state.

A. Model Architecture Choice and Implementation Details

We investigate the choice of neural network architecture for
IMU bias prediction that obtains the best state prediction on
the EuRoC and Aerodrome datasets. Motivated by the sequen-
tial dependence in Sec. IV, we compare three commonly used
sequential architectures: ResNet [7], TCN [9], and CodeNet
[11] as candidate models for dθ.

Implementation Details: The neural network architec-
tures compared in this evaluation have a comparable number
of trainable parameters: 300K for ResNet, 500K for TCN, and
400K for CodeNet. Given a sequence of IMU measurements
sampled at 200 Hz over a one-second window (L = 200),
along with an initial state X0, each network estimates biases
b̂k−L, . . . , b̂k, as in Eq. (17), and corrects for the raw measure-
ments before integration as in Eq. (13). The ResNet follows
its original design, predicting a single bias estimate assumed
constant b̂k = b̂i for all i = k − L, . . . , k throughout the
prediction window. The implementation of TCN in [9] outputs
a 3-dimensional vector. We modified the TCN architecture to
predict a sequence of 6-dimensional output, representing both
gyroscope and accelerometer biases. In our implementation,
the filter state maintains up to W = 11 past states, enabling
real-time operation with filter update steps at 20 Hz, while
neural network inference runs at 200 Hz on every incoming
IMU measurement using an overlapping one-second sliding
window. Table I presents the IMU noise parameters used for
the filters in all experiments. The computation times, recorded
onboard the quadrotor with an Intel i7 NUC, are listed in
Table V, showing that bias inference adds negligible overhead
to the total processing time.

Training Results: Table II summarizes the state prediction
accuracy achieved with bias correction using different network
architectures, measured by the metrics defined earlier. ResNet
shows average improvements in test, velocity, and position
losses, while TCN achieves the best rotation estimation per-
formance on average. We observe a comparable performance
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Fig. 3: Predicted position, orientation, and velocity over a 1-second window from initial state X0 on the Aerodrome dataset, comparing
CodeNet, TCN, and ResNet predictions against ground-truth.

Fig. 4: RE on EuRoC and Aerodrome over 2.5%, 5%, 7.5%, and 10% traveled distances of the total trajectory, averaged over five runs.

TABLE II: IMU bias learning with different network architectures.

Metrics Dataset TCN CodeNet ResNet
Test loss in Eq. (18) EuRoC 0.022 0.023 0.022

∥ log(R̂R⊤)∨∥ (avg.) EuRoC 1.76× 10−6 1.70× 10−6 2.3× 10−6

∥v̂ − v∥ (avg.) EuRoC 7.46× 10−4 8.01× 10−4 7.26× 10−4

∥p̂− p∥ (avg.) EuRoC 1.27× 10−4 1.35× 10−4 1.24× 10−4

Test loss in Eq. (18) Aerodrome 0.013 0.005 0.005

∥ log(R̂R⊤)∨∥ (avg.) Aerodrome 6.88× 10−3 1.69× 10−3 2.27× 10−3

∥v̂ − v∥ (avg.) Aerodrome 2.37× 10−2 2.66× 10−2 2.32× 10−2

∥p̂− p∥ (avg.) Aerodrome 1.12× 10−2 1.03× 10−3 1.03× 10−3

TABLE III: Ablation on window size L for Aerodrome dataset.
Metrics Architecture L = 50 L = 100 L = 150 L = 200

∥ log(R̂R⊤)∨∥ (avg.) 1.1× 10−2 8.6× 10−3 7.8× 10−3 6.9× 10−3

∥v̂ − v∥ (avg.) TCN 6.9× 10−2 4.7× 10−2 4.6× 10−2 2.4× 10−2

∥p̂− p∥ (avg.) 7.5× 10−2 4.3× 10−2 3.9× 10−2 1.1× 10−2

∥ log(R̂R⊤)∨∥ (avg.) 8.9× 10−3 3.2× 10−3 1.8× 10−3 1.7× 10−3

∥v̂ − v∥ (avg.) CodeNet 7.0× 10−2 4.8× 10−2 4.6× 10−2 2.7× 10−2

∥p̂− p∥ (avg.) 7.5× 10−2 4.4× 10−2 3.8× 10−2 1.0× 10−3

∥ log(R̂R⊤)∨∥ (avg.) 1.1× 10−2 4.3× 10−3 2.3× 10−3 2.2× 10−3

∥v̂ − v∥ (avg.) ResNet 7.0× 10−2 4.7× 10−2 4.5× 10−2 2.3× 10−2

∥p̂− p∥ (avg.) 7.5× 10−2 4.3× 10−2 3.9× 10−2 1.0× 10−3

across the architectures, with ResNet showing a slight edge.
A qualitative evaluation is provided in Fig. 3, illustrating the
predicted position, orientation, and linear velocity over a one-
second interval starting from a known initial state X0. Visually,
these predictions align with the quantitative results reported in
Table II. Therefore, we use the ResNet architecture to evaluate
our IMU bias prediction for VIO in the remainder of the
paper. In addition, we provide an ablation study on the window
length L, reported in Table III. The error decreases with longer
windows, so we set L = 200 in our model for VIO evaluation.

B. Comparison to MSCKF and MSCEqF
We use the inertial noise parameters in Table I and disable

the SLAM features of the MSCKF baseline [23] for a fair
comparison. We omitted MSCEqF from the Aerodrome evalu-
ation due to issues in the open-source code with the keypoint
detector failing to extract image features. Table IV and Fig. 4
present results on the EuRoC and Aerodrome datasets using the
ATE and RE metrics. MSCKF and LBMSCKF achieve nearly
the same accuracy on EuRoC, while on Aerodrome, which
includes maneuvers up to 5.4 m/s, LBMSCKF outperforms
MSCKF across all sequences. Our method achieves the best
or second-best ATE results on all sequences, except on V102,
thereby outperforming the baselines on average. Similarly, Fig.
4 shows lower mean RE for our method across all sequences.
In addition, we achieve lower variance errors compared to
the baselines, suggesting better reliability. Overall, our method
exhibits a slight edge in performance in normal scenarios. Both
the learned bias prediction and the invariant filter formulation
contribute complementary improvements in the performance.
In the next subsection, we examine the robustness of our
approach against the MSCKF under challenging conditions,
where visual features are temporarily lost.

C. Comparison to MSCKF in Extreme Scenarios
To demonstrate the benefits of our IMU bias learning

approach, we evaluate it in scenarios where visual features
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TABLE IV: Evaluation on EuRoC and Aerodrome: best in bold,
second-best underlined, averaged over five runs per sequence.

Metrics Sequence MSCKF [23] MSCEqF [16] LBMSCKF Ours
ATE trans. [m] V102 0.111 0.140 0.122 0.129
ATE rot. [deg] V102 3.931 1.470 2.877 2.193
ATE trans. [m] V103 0.158 0.164 0.157 0.140
ATE rot. [deg] V103 0.858 3.598 1.834 1.584
ATE trans. [m] V202 0.148 0.182 0.153 0.125
ATE rot. [deg] V202 2.372 1.707 3.973 2.198
ATE trans. [m] A03 0.220 - 0.142 0.142
ATE rot. [deg] A03 1.524 - 0.524 0.641
ATE trans. [m] A04 1.355 - 0.742 0.386
ATE rot. [deg] A04 4.841 - 3.508 3.860
ATE trans. [m] A05 0.201 - 0.191 0.190
ATE rot. [deg] A05 1.382 - 0.773 0.821
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Fig. 5: Comparison of IMU bias estimates over time on Aerodrome
A03 sequence between MSCKF (blue) and our network (red).

are temporarily lost, requiring the filter to rely solely on the
IMU measurements for motion estimation. We introduced a
single visual feature failure point of durations 1, 2, 3, and
4 seconds to each of the A03, A04, and A05 sequences
of the Aerodrome dataset. In Fig. 6, we show the ATE in
translation averaged over all three sequences and provide a
sample trajectory estimate for the A03 sequence. Our proposed
method outperforms the MSCKF, particularly in instances
where the filter’s bias estimation is inaccurate. The MSCKF
estimates bias by minimizing visual measurement residuals,
an approach that may not yield the true IMU bias [10]. In
contrast, our method predicts the IMU bias independently of
visual information, resulting in improved reliability. Therefore,
accurate IMU bias estimation becomes critical during visual
feature blackouts to maintain reliable inertial integration. To
illustrate this, Fig. 5 demonstrates that under normal conditions
with consistent visual measurements, MSCKF bias estimates
often converge to values already predicted by our method.
Additionally, while the true IMU bias typically exhibits slow
time-varying behavior, the MSCKF bias estimates fluctuate,
which is inconsistent with expected physical behavior.

D. Comparison with IMO

So far, our IMU bias prediction model was used in the
MSCKF propagation step. Here, we use it in the update
step and benchmark against IMO [9] for patterned motion
without visual information on the Blackbird dataset [29]. IMO
predicts relative positions from world-frame IMU with a neural
network and uses them as update measurements for an EKF.
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Fig. 6: (Top) Translational ATE under different visual blackout
durations, averaged across Aerodrome sequences. (Bottom) Position
estimates on Aerodrome A03 with a 4-second blackout at 10 seconds.

TABLE V: Computation times in milliseconds [ms] of our pipeline.

Processing Step Min Mean Max
Tracking 6.83 18.06 67.67

Propagation 0.28 0.77 2.48
Update 0.03 9.19 50.01

Bias inference 0.56 2.18 9.10
Retriangulation and marginalization 4.35 10.11 22.47

Total 14.99 38.14 102.62

IMO also uses a sliding window, similar to the MSCKF, to
attenuate large error instances from the network predictions.

Our method differs by predicting IMU biases directly from
the IMU measurements, correcting the measurements, and
integrating to obtain relative position estimates. The biases
estimated in this section no longer represent the physical IMU
biases alone. Instead, they represent the physical biases plus a
correction that compensates the unobservable initial velocity
so that the integrated position increments align with the ground
truth. We compute the relative velocity and position increments
∆vij = vj − vi and ∆pij = pj − pi as:

∆vij =

j−1∑
k=i

(
Rk(āk − b̂ak) + g

)
∆tk, (22)

∆pij =

j−1∑
k=i

(vi +∆vik)∆tk +
1

2

(
Rk(āk − b̂ak) + g

)
∆t2k.

Because ∆pij depends on the unobservable initial velocity vi,
both IMO and our approach implicitly compensate the term∑j−1

k=i vi∆tk. We train only the accelerometer bias with the
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TABLE VI: Inertial odometry on Blackbird Clover over 30 seconds.

Metrics Sequence TLIO [7] IMO [9] Ours
ATE x-axis [m] Clover 7.340 0.357 0.431
ATE y-axis [m] Clover 3.139 0.207 0.299
ATE z-axis [m] Clover 2.332 0.061 0.571
ATE trans. [m] Clover 8.318 0.417 0.776
ATE rot. [deg] Clover 75.341 3.028 7.736

loss ∥∆pij −∆p̂ij∥2, where

∆p̂ij =

j−1∑
k=i

∆vik∆tk +
1

2

(
Rk(āk − b̂ak) + g

)
∆t2k.

Note that ∆p̂ij omits the initial velocity term. Following [9],
we use ground-truth Rk during training and the estimated
R̂k from the filter at deployment. IMO performs well on in-
distribution data, achieving an ATE of 0.418 in translation
and 3.028 in rotation. This accurate performance arises from
directly estimating relative positions from rotated IMU mea-
surements in the world frame, simplifying the network’s learn-
ing task. However, IMO struggles with out-of-distribution data
since it implicitly learns initial velocities specific to patterned
motion. In contrast, our method achieves an ATE of 0.772 in
translation and 14.156 in rotation, yielding relatively accurate
estimates along the x and y axes, as presented in Table VI.
Our method is less accurate along the z axis due to the double
integration of accelerometer measurements āk along with
gravitational acceleration g and bias compensation b̂ak, which
makes the network’s learning task more challenging. However,
IMO is designed mainly for improving state estimation around
known trajectories, e.g., for drone racing. Meanwhile, the
primary strength of our approach lies in generalizing to unseen
data through IMU bias estimation, which enables the use of
an invariant filter in VIO, shown in Sec. V-B and V-C.

VI. CONCLUSION

We developed a learning-based invariant filter for VIO,
estimating the IMU bias externally to the filter state via a
neural network. This allows us to preserve the system’s in-
variance and achieve robustness over traditional VIO methods,
especially in visually degraded scenarios. Future work will
focus on learning the measurement uncertainty to assess the
reliability of the IMU measurements more accurately and in
addition to using additional information as input to the neural
network, such as past images or image features.
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