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Abstract— The existence of a Control Barrier Function
(CBF) for a control-affine system provides a powerful design
tool to ensure safety. Any controller that satisfies the CBF
condition and ensures that the trajectories of the closed-
loop system are well defined makes the zero superlevel set
forward invariant. Such a controller is referred to as safe.
This paper studies the regularity properties of the minimum-
norm safe controller as a stepping stone towards the design of
general continuous safe feedback controllers. We characterize
the set of points where the minimum-norm safe controller is
discontinuous and show that it depends solely on the safe
set and not on the particular CBF that describes it. Our
analysis of the controller behavior as we approach a point of
discontinuity allows us to identify sufficient conditions deter-
mining whether the controller grows unbounded or remains
bounded. Examples illustrate our results, providing insight
into the conditions that lead to (un)bounded discontinuous
minimum-norm controllers.

I. Introduction
Safety-critical control for dynamical systems is an

active area of research with applications to multiple
domains such as transportation, autonomy, power sys-
tems, robotics, and manipulation. The notion of Control
Barrier Function (CBF) has revealed to be a particularly
useful tool as it provides a mathematically precise formu-
lation of the range of design choices available to keep a
desired set safe. This has spurred a flurry of activity
aimed at synthesizing safe controllers as solutions to
optimization-based formulations whose cost functions
may encode energy considerations, minimal deviation
from prescribed controllers, or other performance goals.
A critical aspect in this endeavor is ensuring that safe
controllers enjoy appropriate regularity (boundedness,
continuity, Lipschitzness, smoothness) properties for ease
of implementation and to ensure well-posedness of the
resulting closed-loop system. Motivated by these obser-
vations, this work studies the continuity properties of the
minimum-norm safe controller and analyzes conditions
under which the existence of a bounded safe controller
is guaranteed.

Literature Review: The notion of CBF builds on
Nagumo’s theorem [1], which establishes the invariance
of a set with respect to trajectories of an autonomous
system given suitable transversality conditions are sat-
isfied on the boundary of that set. In [2], a Nagumo-
like condition is enforced to hold on the whole set
–not only the boundary– to facilitate the controller
construction. This condition was relaxed in [3] to arrive
at the concept of CBF used here. The use of CBFs
to enforce safety as forward set invariance has since
expanded to many domains (we refer to [4], [5] for a
comprehensive overview).
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Particularly useful is the fact that, if a CBF-certified
safe controller is Lipschitz, then the closed-loop system is
well posed and the superlevel set of the CBF is forward
invariant. It is common to synthesize such controllers
via optimization formulations which are examples of
parametric optimization problems, with the optimization
variable being the control signal and the parameter being
the state. The resulting controller is well defined but
is generally not guaranteed to be continuous, let alone
Lipschitz. If the controller is discontinuous, then it might
become unbounded even if the safe set is compact,
violating hard limits imposed by hardware constraints
or energy considerations. This has motivated the study
in the literature of various sufficient conditions to en-
sure Lipschitzness or continuity of optimization-based
controllers. One set of conditions [3] relies on assuming
uniform relative degree 1 of the CBF with respect to
the dynamical system. Another condition [6] asks that
the properties defining the CBF are satisfied on an open
set containing the safe set. This is especially relevant
in systems subject to disturbances, as the satisfaction
of safety conditions around the set under consideration
is required to counter the disturbance-induced safety
violations [3], [7], [8]. Other works [9] derive continuity-
ensuring conditions resorting to the classical parametric
optimization literature [10], of which the optimization-
based controller synthesis problem is a special case.
In parametric optimization, the work [11] proves the
continuity of the optimizer under continuity properties
of the point-to-set map defined by the constraints. Other
works derive continuity results under different types
of constraint qualification conditions, including linear
independence [12] and Mangasarian-Fromovitz [13]. The
work [9] builds on this body of work to relax linear
independence qualification for the special case of a
convex linearly constrained quadratic parametric pro-
gram. Our basic motivation here is the fact that the
mere satisfaction of the standard CBF definition is not
enough to ensure the existence of a safe controller.
This is the case when the minimum-norm CBF-based
controller goes unbounded in a compact set. In that case,
no other continuous feedback controller can guarantee
safety, since any feedback CBF-based controller is, by
definition, of greater norm than the min-norm controller.
To address this concern fully, our exposition provides a
generalization of conditions appearing in the literature,
ensuring continuity of the min-norm safe controller. We
then analyze the boundedness of the controller when
the conditions are not met and discontinuity arises. Our
work is also relevent to research in CBF verification [14],
[15] and CBF design [16], [17]. By characterizing un-
boundedness of the min-norm controller, we show what
verified CBFs will give rise to bounded safe controllers.

Statement of Contributions: Given a CBF for a
control-affine system, we study the boundedness prop-
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erties of the associated minimum-norm safe controller.
Apart from its intrinsic interest, the focus on this
controller is justified by the fact that if it is not bounded,
then no safe controller is. We start by explaining the
limitations of the state of the art to guarantee the
boundedness of safe controllers and illustrating them
in two examples. Our first contribution is a rigorous
characterization of the points of discontinuity of the
minimum-norm safe controller. As a byproduct, this
result allows us to generalize the known conditions
for ensuring continuity. We show that the points of
discontinuity are fully determined by the safe set and
are independent of the specific choice of the CBF or the
sensitivity to the violation of the CBF condition. These
results set the basis for our second contribution, which
is the identification of tight conditions to ensure the
(un)boundedness of the minimum-norm controller when
approaching a point of discontinuity. We revisit the two
examples in light of the technical discussion to explain
the observed behavior of the minimum-norm controller.
Our results are applicable to more general formulations
of safety filters beyond the minimum-norm controller
and have important implications for the synthesis of safe
feedback controllers subject to hard constraints on the
control effort.

Notation: The closure, interior, and boundary of a set
X are denoted by X̄ , int(X ), and ∂X , respectively. Given
s : X ⊆ Rn → R, s ∈ C denotes that s is continuous and
s ∈ Cn denotes that s has a continuous nth derivative.
The gradient of s ∈ C1 is denoted by ∇s and written as
a row vector. A function s is locally Lipschitz at x with
respect to X if there exists a neighborhood N and a
constant L ∈ R such that ∥s(x1)− s(x2)∥ ≤ L∥x2 − x1∥,
for all x1, x2 ∈ N ∩ X . A function s is locally Lipschitz
on X ′ if it is locally Lipschitz at x with respect to X ′,
for all x ∈ X ′. A function α : (−a, b) → R is an extended
class-κ function if it is strictly increasing and α(0) = 0.

II. Problem Statement
We consider a non-linear control affine system over an

open set X ⊆ Rn

ẋ = f(x) +G(x)u, (1)
where x ∈ X and u ∈ Rm. Here, f : X → Rn and the
column components gi : X → Rn, i ∈ {1, . . . ,m} of G
are locally Lipschitz on X . Safety of the system can be
certified through the following notion.
Definition II.1 (Control Barrier Function [4]). Let h :
X → R be C1 and define its superlevel set C , {x ∈
Rn | h(x) ≥ 0} ⊆ X . The function h is a CBF if ∇h(x) ̸=
0 for all x ∈ ∂C and there exists a set D ⊆ X such that
C ⊆ D and for all x ∈ D, there exists u ∈ Rm,

∇h(x)f(x) + α(h(x)) +∇h(x)G(x)u ≥ 0. (2)
where α is an extended class-κ function.

If h admits an open set D satisfying the above
definition, then we refer to it as a strong CBF, otherwise
we call it a weak CBF.
Remark II.2. (Role of Weak and Strong CBFs in Safety
Under Uncertainty): The distinction between weak and
strong CBFs is known to be relevant in the study of safety

under uncertainty, though with a different terminology.
For example, [3], [8] require a strong CBF for safety to
be robust. Another instance is [7], where the condition
for stochastic safety can be shown not to hold for a weak
CBF. Here we show that the distinction between these
notions is also relevant for the question of continuity of
the min-norm safe feedback controller. •

For each x ∈ D, we denote by Kcbf(x) the set of
input values u satisfying (2) which, by Definition II.1, is
nonempty.

The central result [4, Theorem 2] of CBF-based safety
is that, if there exists a Lipschitz feedback controller
ū : Rn → Rm satisfying ū(x) ∈ Kcbf(x) in D, then the
set C is forward invariant with respect to the trajectories
of the closed-loop system (1) under u = ū(x). One
particular choice of controller that satisfies the CBF
condition (2) by construction but that is not necessarily
continuous is the widely used so-called min-norm safe
feedback controller u∗(x) , argminu∈Kcbf(x) ∥u∥

2. In
fact, the min-norm controller might not be bounded,
even when it is well defined for all x in a compact
superlevel set C. This motivates our problem statement.
Problem 1. Let h be a CBF with a compact superlevel
set C. Determine the states in C where the min-norm
safe feedback controller u∗ is discontinuous and find
conditions under which it is bounded/unbounded as the
discontinuous states are approached. •

Our focus on establishing boundedness when continu-
ity of the min-norm controller fails is motivated by three
reasons. First, proving that the min-norm controller
is unbounded shows that no safe bounded controller
exists. This would also mean that there does not exit
a continuous safe feedback controller. Second, if the
min-norm is discontinuous but bounded, then there is
room for finding a safe continuous controller. Finally,
our investigation provides grounds for exploring whether
the use of discontinuous controllers to ensure control-
invariance for safety is applicable to a larger class of
scenarios.

We note that our results are directly applicable to
safety filters based on quadratic programming (QP). In
fact, any controller u that minimizes a cost function
∥u−unom(x)∥2 subject to (2), where unom is a predefined
nominal controller, can be interpreted as a min-norm
controller after the change of variables u′ = u − unom.
Finally, the choice of control-affine systems is motivated
by the existence of an explicit expression for the min-
norm controller due to the linearity of its constraints on
u. Most of our derivations are dependent on that explicit
expression. Thus, we note that they are not directly
extensible to the more general case of ẋ = f(x, u) where
constraints of the min-norm controller are not necessarily
linear in u.

III. Continuity of the Min-Norm Safe Controller:
Limitations of the State of the Art

This section reviews known conditions in the literature
that ensure the min-norm controller u∗ is continuous
and thus bounded in a compact set C, and illustrates its
limitations in a couple of simple examples. Considering
the CBF condition (2), notice that if ∇h(x)f(x) +
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α(h(x)) ≥ 0, then u = 0 validates (2). For such points,
the min-norm controller u∗(x) = 0. On the other hand,
when ∇h(x)f(x) + α(h(x)) < 0, a non-zero control is
needed to ensure (2). We thus split D into the two sets

D+ , {x ∈ D | ∇h(x)f(x) + α(h(x)) ≥ 0}, (3a)
D− , {x ∈ D | ∇h(x)f(x) + α(h(x)) < 0}. (3b)

Notice that u∗ is defined as the optimizer of a quadratic
program with one linear constraint. Such programs have
a unique solution, cf. [18, 8.1.1], with the closed-form
formula

u∗(x)=

{
0, x ∈ D+

−∇h(x)f(x)+α(h(x))

∥∇h(x)G(x)∥2 (∇h(x)G(x))T , x ∈ D−.
(4)

This expression is well defined on D since (2) implies
that, if x̄ ∈ D−, then ∥∇h(x̄)G(x̄)∥ ̸= 0.
Lemma III.1 (Strong CBF Implies Continuous Min-Norm
Controller [6, Thm. 5]). Let h be a strong CBF with a
compact superlevel set C. Then u∗ is continuous on C.

A condition similar to CBF-strongness is used also in
approaches to safety different but similar to CBFs, such
as control barrier certificates (CBCs) [7], [19]. There,
the strict satisfaction of a Nagumo-like condition on
the boundary implies safety. This is equivalent to CBF-
strongness when the safe set is compact. According to [3,
Thm. 8], u∗ is locally Lipschitz if the CBF h has relative
degree 1, that is, for all x ∈ D, ∥∇h(x)G(x)∥ ̸= 0. The
next result is a generalization of this fact.
Lemma III.2 (Generalization of Relative Degree 1 CBF
Implies Continuous Min-Norm Controller). Let h be a
CBF with compact superlevel set C and assume that,
for all x′ ∈ ∂C at which ∥∇h(x′)G(x′)∥ = 0, the strict
inequality ∇h(x′)f(x′) > 0 holds. Then u∗ is locally
Lipschitz on C.

We postpone the proof of Lemma III.2 as it is a
corollary of Lemma IV.1 below.
Remark III.3 (Assumption of uniform relative degree is
limiting). The assumption of uniform relative degree of
the CBF, cf. [3, Thm. 8], has also been exploited for
higher-order relative degree CBFs, cf. [20]. However, this
assumption fails for the following two general cases:
(i) Let h be a continuously differentiable CBF with

compact superlevel set C. For such h, there always
exists y ∈ int(C) where ∥∇h(y)G(y)∥ = 0. To see
that, note that by continuity of h and compactness
of its superlevel set, h has a maximum value at
some state y ∈ C [21, Thm. 4.16]. Recalling that
h(x) = 0 at ∂C and h(x) > 0 in int(C), we deduce
that y ∈ int(C). By differentiability and standard
KKT conditions [18, 5.5.3], ∇h(y) = 0 and, hence,
∥∇h(y)G(y)∥ = 0, which counters the uniformity of
the relative degree.

(ii) Consider the n-dimensional linear system (A,B),
where B does not have full row rank. Let h be
a continuously differentiable CBF with compact
convex superlevel set C. Then, there always exists
y ∈ ∂C where ∥∇h(y)G(y)∥ = ∥∇h(y)B∥ = 0. To
see this, note that since B is not full row rank, there
is a unit vector v ∈ Rn such that ∥vTB∥ = 0. By

the surjectivity of the Gauss map 1 on the compact
smooth surface ∂C [22, Thm. A], there is a point
y ∈ ∂C at which the unit normal vector to ∂C is v.
By [23, Thm. 3.15], ∇h(y) is normal to ∂C at y and
thus parallel to v. Hence, ∥∇h(y)B∥ = 0. •

From the continuity of the min-controller on C ensured
by either Lemmas III.1 or III.2, it follows from standard
results in analysis, cf. [21, Thm. 5.15], that u∗ is bounded
if C is compact. As we show later in Lemma IV.4, the
conditions of Lemmas III.1 and III.2 are not totally
independent: rather, if the condition of Lemma III.1
is not met (i.e., h is weak), then the condition of
Lemma III.2 is not met either.

CBFs that do not meet the conditions of these results
are easy to encounter and arise in practice in contexts as
simple as the problem of confining a double integrator
to a circle centered at the origin. We next present
two examples that do not satisfy the assumptions and
generate discontinuous min-norm controllers: one being
bounded and the other one unbounded.
Example III.4 (Weak CBF with Bounded Min-Norm
Controller). Consider the double-integrator dynamics
on R2 defined by f(x) = (x2, 0) and G(x) = (0, 1).
The function h(x) = 1 − x2

1 − x2
2 is a CBF with any

extended class-κ function α. Notice further that h is
a weak CBF. To see this, let x̄ = (1 + ϵ, 0) with
any arbitrarily small ϵ > 0. Since x̄ /∈ C, we have
∇h(x̄)f(x̄) + α(h(x̄)) + ∇h(x̄)G(x̄)u = α(h(x̄)) < 0,
and therefore condition (2) cannot be satisfied at x̄.
Therefore, h does not admit an open set D satisfying
Definition II.1. In addition, the condition of Lemma III.2
is not satisfied at the boundary point (1, 0). Consider now
the norm of the min-norm safe controller (4) defined on
D = C,

|u∗
1(x)| =

{
0, x ∈ D+,
2x1x2−α(h(x))

2x2
, x ∈ D−,

where D− = {x ∈ C | 1 − x2
1 − x2

2 − 2x1x2 < 0}
and D+ is its complementary in C. Note that u∗

1 is
continuous on C \ {(±1, 0)}. However, choosing α(r) =
r, we have that lim supx→(1,0),x∈D−

|u∗
1(x)| ≤ 1 and

limx→(1,0),x∈D+
|u∗

1(x)| = 0. The first inequality can be
deduced from

|u∗
1(x)| =

2x1 + x2

2
+

x2
1 − 1

2x2
,

since the first term goes to 1 and the second term is
non-positive for all x ∈ D− as x approaches (1, 0). Thus,
although discontinuous at (1, 0), u∗

1 is bounded at this
point, cf. top plot in Figure 1. •

Example III.4 shows that the min-norm safe controller
might be bounded even if the CBF does not satisfy the
continuity conditions in the literature. The next example
shows this fact is not generic.
Example III.5 (Weak CBF with Unbounded Min-Norm
Controller). Consider the dynamics f(x) = (x2, 0) and

1The Gauss map assigns points on the manifold ∂C to the unit
sphere embedded in Rn such that the image of any point in ∂C is
the unit vector normal to ∂C at that point.
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Fig. 1: Illustration of boundedness of the min-norm safe controller.
Top (resp. bottom) plot corresponds to Example III.4 (resp.,
Example III.5). In each case, the unit circle is the superlevel set
of the weak CBF h, black arrows show the vector field f(x), red
arrows show G(x)u∗(x), and the color map shows the magnitude
of the input u∗.

G(x) = (0, x2
2). With the same reasoning as in Exam-

ple III.4, h(x) = 1 − x2
1 − x2

2 is a weak CBF that does
not satisfy the requirement of Lemma III.2. The norm
of the min-norm safe controller is:

|u∗
2(x)| =

{
0, x ∈ D+,
2x1x2−α(h(x))

2x3
2

, x ∈ D−,

where D,D+, and D− are the same as in Example III.4.
Observe that u∗

2 is continuous on C \{(±1, 0)}. However,
with the choice α(r) = r, lim supx→(1,0),x∈D−

|u∗
2(x)| =

∞ and limx→(1,0),x∈D+
|u∗

2(x)| = 0. Thus, u∗
2 is neither

continuous nor bounded on C, cf. bottom plot in Figure 1.
•

IV. Points of Discontinuity of The Min-Norm Safe
Controller

Here we characterize the points of (dis)continuity of
the min-norm controller u∗ in C. This is motivated by
the fact that if u∗ goes unbounded when approaching a
point in C, then it is discontinuous at it. Therefore, the
results of this section are a stepping stone towards the
identification of conditions for (un)boundedness of u∗.
Lemma IV.1 (Points of discontinuity of u∗ in C). Let h
be a CBF for a system (1) with a Lipschitz gradient and
an associated Lipschitz class-κ function α, and let u∗

be the min-norm controller given by (4). Define Zh,α ,
{x ∈ C | ∇h(x)f(x) + α(h(x)) = 0 = ∥∇h(x)G(x)∥}.
Then, u∗ is locally Lipschitz (and hence continuous) on
C \ Zh,α.

Proof. The proof is an extension of the proof of [3,
Thm. 8]. Note that Since h is a CBF, (2) is satisfied for
D = C and therefore ∥∇h(x)G(x)∥ ̸= 0, for all x ∈ D−.
Thus, on D−, u∗ is a quotient with a non-zero Lipschitz
denominator and a Lipschitz numerator. Hence, both
expressions in the piecewise definition of u∗ in (4) are
locally Lipschitz on their respective domains D+ and
D−. It remains to prove that u∗ is locally Lipschitz
with respect to C at all the points in the boundary
between D+ and D− that are not in Zh,α. For a point
x in the boundary between D+ and D−, ∇h(x)f(x) +
α(h(x)) = 0. If at such a point ∥∇h(x)G(x)∥ ̸= 0
(i.e., x /∈ Zh,α), then there is a neighborhood N of
x such that ∥∇h(y)G(y)∥ ̸= 0 for all y ∈ N . Thus
u∗(x) = ω(∇h(x)f(x)+α(h(x))

∥∇h(x)G(x)∥ )(∇h(x)G(x))T for x ∈ N ,
where

ω(r) =

{
0, r ≥ 0,

−r, r < 0,

which is locally Lipschitz on R. That u∗ is locally
Lipschitz at x follows from the facts that the composition
and product of locally Lipschitz functions is locally
Lipschitz, and the quotient of locally Lipschitz functions
is locally Lipschitz provided that the denominator is not
zero.

Lemma IV.1 can be seen as an extension of previous
results, cf. [3, Thm. 8], establishing local Lipschitzness
of u∗ by assuming uniform relative degree 1 of h. If this
is the case, then Zh,α is empty and thus u∗ is locally
Lipschitz on C. Given the dependency of Zh,α on h and α,
one might consider the possibility that a suitable choice
of these functions might eliminate the potential points
of discontinuity. The following results rule this out.
Theorem IV.2 (Discontinuity Points Are Independent of
α). Let h be a CBF. Then there exists an extended
class-κ function α2 that validates the CBF condition (2)
and such that Zh,α2 ⊆ ∂C. Moreover, let α1 and α2 be
two extended class-κ functions that validate the CBF
definition for h. Then Zh,α1 ∩ ∂C = Zh,α2 ∩ ∂C.
Proof. We prove that if α1 validates Definition II.1 for
h, then any class-κ function α2 that satisfies α2(r) >
α1(r) for all r > 0 validates Definition II.1 for h and
gives Zh,α2

∩ int(C) = ∅. That α2 validates the CBF
condition (2) is immediate. Now let x̄ ∈ int(C) be
such that ∇h(x̄)f(x̄) + α2(h(x̄)) = 0. We show that
∥∇h(x̄)G(x̄)∥ ̸= 0 and thus x̄ /∈ Zα2,h. Since α2(r) >
α1(r) for r > 0, ∇h(x̄)f(x̄) + α1(h(x̄)) < 0 by our
supposition that ∇h(x̄)f(x̄)+α2(h(x̄)) = 0 and the fact
that h(x̄) > 0 as x̄ ∈ int(C). But α1 validates condition
(2) by assumption and thus ∥∇h(x̄)G(x̄)∥ ̸= 0. The proof
of the last claim in the statement is immediate from the
fact that α1(h(x)) = α2(h(x)) = 0 on ∂C.

If we thus define
Zh , {x ∈ ∂C | ∇h(x)f(x) = ∥∇h(x)G(x)∥ = 0}, (5)

then Lemma IV.1 and Theorem IV.2 justify stating that
u∗ is continuous on C\Zh. This shows that u∗ is continu-
ous on int(C) and that the possible points of discontinuity
are independent of the choice of α. This also shows that,
if enough control authority is available to apply u∗ as
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a feedback to the system, then the discontinuous points
cannot be reached in finite time as long as the initial
state lies in the interior of C. To see this, consider a
linear class-κ function with slope a > 0. By definition of
u∗, ḣ(x(t)) = ∇h(x)ẋ(x, u∗(x)) ≥ −ah(x(t)). Therefore,
by [24, Lemma 3.4], h(x(t)) ≥ h(x(0)) exp(−at), which is
strictly positive for all finite time as long as h(x(0)) > 0.
Theorem IV.3 (Discontinuity Points Are Independent of
h). Let h1, h2 ∈ C1 be CBFs with the same superlevel
set C. Then, Zh1

= Zh2
.

Proof. By Definition II.1, ∇hi(x) ̸= 0, i ∈ {1, 2} on
∂C. By [25, Thm. 5.1], both h1 = 0 and h2 = 0
define the same differentiable manifold ∂C of dimension
n− 1 embedded in Rn. By [23, Thm. 3.15], the tangent
space Tx of this manifold at a point x is given by
Tx = kernel(∇h1(x)) = kernel(∇h2(x)). Thus ∇h1(x)
and ∇h2(x) are parallel, and the result follows using the
definition of Zh.

Theorem IV.3 shows that Zh is associated to the set
C and is independent of the CBF that has this set as its
superlevel set. We thus write Z to denote Zh without
loss of generality.

Lemma III.2 can now be readily proved: in fact, the
hypotheses there imply that Z is empty, and therefore, by
Lemma IV.1, u∗ is continuous on C. Now that it is proved
that the non-emptiness of the set Z implies potential
discontinuity; one might then hope that boundedness of
u∗ can be established for a weak CBF h by ensuring
that Z is empty. The next result shows that the latter
is never the case.
Lemma IV.4 (Weak CBF Implies Possible Discontinuity).
If h is a weak CBF, then Z is nonempty.
Proof. Define the sequence of sets Dn , {x ∈
Rn | d(x, C) < 1/n}, where d(x, C) is the distance
function from x to set C, which is continuous, cf. [26,
Thm. 3.1]. Note that C ⊂ Dn and Dn is open for all
n ∈ N. Since h is a weak CBF, for each n ∈ N, there
exists xn ∈ Dn\C such that for all u ∈ Rm and all class-κ
functions α, ∇h(xn)f(xn)+α(h(xn))+∇h(xn)G(xn)u <
0. This implies that necessarily ∥∇h(xn)G(xn)∥ = 0 and
∇h(xn)f(xn) + α(h(xn)) < 0. Consider the sequence
{xn}. Since C is compact (cf. statement of Problem 1),
and points of D1 are at most of distance 1 to C; the clo-
sure of D1, namely D̄1, is closed and bounded in Rn and
thus compact [21, Thm. 2.41]. Since {xn} ⊆ D̄1, there
exists, cf. [21, Thm. 3.6], a convergent subsequence of
{xn}, denoted {yn}, whose limit is ȳ. By the definition of
{yn}, we have d(yn, C) → 0, and by continuity, d(ȳ, C) =
0, and so ȳ ∈ C. Since h(yn) < 0 for all n, it follows that
h(ȳ) ≤ 0, and therefore it must be that h(ȳ) = 0, i.e.,
ȳ ∈ ∂C. Continuity and the fact that ∥∇h(yn)G(yn)∥ = 0
for all n implies ∥∇h(ȳ)G(ȳ)∥ = 0. Similarly, continuity
and the fact that ∇h(yn)f(yn) + α(h(yn)) < 0 implies
that ∇h(ȳ)f(ȳ) + α(h(ȳ)) = ∇h(ȳ)f(ȳ) ≤ 0. Since h
is a CBF and ȳ ∈ C, we have ∇h(ȳ)f(ȳ) + α(h(ȳ)) =
∇h(ȳ)f(ȳ) ≥ 0. Therefore ∇h(ȳ)f(ȳ) = 0 and thus,
ȳ ∈ Z, implying Z ̸= ∅.

This result provides a connection between the known
conditions from the literature to ensure continuity, as
presented in Section III.

V. (Un)Boundedness Conditions For The Min-Norm
Safe Controller

This section identifies conditions to determine when
the min-norm controller is bounded. For a compact
safe set C, the controller can go unbounded only if
approaching a state at which it is discontinuous (see e.g.,
Example III.5 for an illustration). From the exposition in
Section IV, we know that the points of discontinuity of
the min-norm controller are contained in Z, cf. (5). The
following result provides computable sufficient conditions
for (un)boundedness when approaching a point in Z.
Theorem V.1 ((Un)Boundedness Conditions of
Min-Norm Controller). Let h ∈ C2 be a CBF with
compact superlevel set C and an associated α that is
differentiable at 0. Assume f and G are differentiable
at x̄ ∈ Z and let Hh(x̄), Jf (x̄), and Jgi(x̄) denote the
Hessian of h and the Jacobians of f and gi, respectively.
Consider the linear equation

Av =

[
c1
c2
0

]
, (6)

with v ∈ Rn, c1, c2 ∈ R. Here, 0 is the zero vector in
Rm, A ,

[
∇h(x̄)T βf (x̄) βG(x̄)

]T and

βf (x) , Hh(x)f(x) + (JT
f (x) + α′(h(x))In)∇h(x)T ∈ Rn,

βgi(x) , Hh(x)gi(x) + JT
gi(x)∇h(x)T ∈ Rn,

βG(x) , [βg1(x) . . . βgm(x)] ∈ Rn×m.

Then, the following statements hold:
(i) if (6) has a solution v with c1 ≥ 0 and c2 < 0, then

u∗ is not bounded as x → x̄ in C from the direction
of v, i.e., u∗(x̄+ vt) goes unbounded as t → 0+.

(ii) if (6) does not have a solution with c1 ≥ 0 and c2 ≤ 0
(other than the trivial one), then u∗ is bounded as
it approaches x̄ from all possible directions in C.

Proof. The proof proceeds by examining the limit
lim supt→0 ∥u∗(x̄+ vt)∥ for v ∈ Rn. In doing so, we face
the challenge that u∗ is given by a piecewise expression
that is generally discontinuous at x̄. In addition, when
computing the limit, one finds an indeterminate form of
the type 0/0. This leads us to the use of a particular form
of L’Hôpital’s rule [21] that can handle the discontinuous
piecewise expression and the presence of the lim sup.

For brevity, we use x̄t , x̄+ vt, hG(t) , ∇h(x̄t)G(x̄t),
N(t) , ∇h(x̄t)f(x̄t) + α(h(x̄t)), and D(t) , ∥hG(t)∥.
According to (3b), ∥u∗(x̄t)∥ = −N(t)

D(t) for x̄t ∈ D−.
The notation βf , βG in the statement simplifies the
expression of the derivatives of N and D, which will be
used for applying L’Hôpital’s rule. Specifically, d

dtN(t) =

vTβf (x̄t) and d
dtD(t) = vTβG(x̄t)

hG(t)
∥hG(t)∥ .

(i) Let v be a solution of (6) with c1 ≥ 0 and c2 < 0.
Because of the first row of (6), we have that d

dth(x̄t) =
∇h(x̄)v = c1 ≥ 0. If ∇h(x̄)v > 0, then by continuity,
∇h(x̄t) > 0 for small enough t. Thus by [21, Thm. 5.11],
h(x̄t) > 0, i.e., x̄t ∈ C, for small enough t. If ∇h(x̄)v = 0,
then v is tangential to C. Hence x̄t approaches x̄ from
within C or tangentially to it, meaning that v is a
valid direction of approach to consider. The second row
of (6) ensures that d

dtN(t)|t=0+ = vTβf (x̄) = c2 < 0,
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which again by [21, Thm. 5.11] proves that N(t) < 0,
i.e., x̄t ∈ D− by (3b), for sufficiently small t. Hence,
limt→0+ ∥u∗(x̄t)∥ = limt→0+

−N(t)
D(t) . Direct evaluation of

this expression at t = 0 (where x̄t = x̄) yields an
indeterminate form of the type 0/0. We therefore resort
to L’Hôpital’s rule [21, Thm. 5.13], which requires the
existence of the limit of the derivative of the numerator
−N(t) and denominator D(t). For the numerator, we
have already established limt→0+

d
dtN(t) = c2. As for the

denominator, it is the norm of the differentiable function
hG(t), and its derivative exists at t where hG(t) ̸= 0. But
since x̄t ∈ D− for small enough t, the CBF condition (2)
ensures that hG(t) ̸= 0 for sufficiently small t. Thus,
the derivative of the denominator exists for sufficiently
small t > 0. A proof of the existence of the limit of this
derivative limt→0+

d
dt (D(t)) = limt→0+ vTβG(x̄t)

hG(t)
∥hG(t)∥

follows. By Hölder’s inequality,∣∣∣vTβG(x̄t)hG(t)

∥hG(t)∥

∣∣∣≤∥vTβG(x̄t)∥
∥hG(t)∥
∥hG(t)∥

=∥vTβG(x̄t)∥.

Hence, using the last m rows of (6), the assumption
of continuous differentiability, and the sandwich the-
orem for limits [27, Thm. 3.3.3], limt→0+

d
dtD(t) = 0.

By L’Hôpital, limt→0+ ∥u∗(x̄t)∥ = limt→0+
−N(t)
D(t) =

limt→0+
−N ′(t)
D′(t) = ∞.

(ii) We prove the contrapositive: assume there exists a
vector v such that x̄t = x̄+ vt approaches x̄ from within
C or tangent to it as t → 0+ and lim supt→0+ ∥u∗(x̄t)∥ =
∞, and let us show that then v solves (6) with c1 ≥ 0
and c2 ≤ 0. Note that ∇h(x̄)v ≥ 0, since otherwise,
under the theorem assumptions, for sufficiently small t,
x̄t /∈ C, i.e., x̄t would approach x̄ from outside C, which
is a contradiction. This ensures the satisfaction of the
first row in (6). Similarly, if vTβf (x̄) > 0, then under the
theorem assumptions, for sufficiently small t, x̄t ∈ D+

and thus lim supt→0+ u∗(x̄t) = 0, which contradicts
lim supt→0+ ∥u∗(x̄t)∥ = ∞. This ensures the satisfaction
of the second row in (6). According to Lemma I.3, there
exists a sequence {t̄i} → 0+ with {x̄t̄i} ⊂ D− such
that D′(t̄i) = vTβG(x̄t̄i)

hG(t̄i)
∥hG(t̄i)∥ → 0. It remains to

show that this implies vTβG(x̄) = 0T . We reason by
contradiction and assume vTβG(x̄) ̸= 0T . Without loss
of generality, we can assume that the limit of hG(t̄i)

∥hG(t̄i)∥ ,
denoted ζ ∈ Rn, exists (this can be done because
{ hG(t̄i)
∥hG(t̄i)∥} is a sequence from the set of unit vectors

in Rn, which is compact, so there exists a convergent
subsequence [21, Thm. 3.6]). This and the continuity of
βG imply that D′(t̄i) → vTβG(x̄)ζ = 0. Without loss of
generality, assume ∥hG(t̄i)∥

∥hG(t̄i+1)∥ → ∞ (that this does not
undermine generality is shown by Lemma I.1(i)). Now,
Lemma I.1(ii) applied element-wise gives

hG(t̄i)− hG(t̄i+1)

∥hG(t̄i)∥ − ∥hG(t̄i+1)∥
→ ζ. (7)

The sequence in (7) can be written as

hG(t̄i+1)− hG(t̄i)

t̄i+1 − t̄i

t̄i+1 − t̄i
∥hG(t̄i+1)∥ − ∥hG(t̄i)∥

. (8)

Using the continuous differentiability of ∇h and G at x̄,
the first term of (8)
hG(t̄i+1)− hG(t̄i)

t̄i+1 − t̄i
→ d

dt
(hG(t))

∣∣∣∣
t=0

= (vTβG(x̄))
T ̸= 0,

by hypothesis of contradiction. Consequently, the second
term in (8) converges to a non-zero scalar, which we
denote by a. Therefore, ζ = a(vTβG(x̄))

T . This implies
that D(t̄i) → vTβG(x̄)ζ = a∥vTβG(x̄)∥2 ̸= 0, which is a
contradiction.

Theorem V.1 provides sufficient conditions for bound-
edness of the min-norm controller at a point of possible
discontinuity. Note that the second row of the the
matrix A in (6) is the gradient of ∇h(x)f(x) + α(h(x)).
Similarly, the (2+ i)th row is the gradient of ∇h(x)gi(x).
Each of the two equations ∇h(x)f(x) + α(h(x)) = 0
and ∇h(x)gi(x) = 0 defines a differentiable (n − 1)-
dimensional surface embedded in Rn. Thus, the existence
of a solution v for (6) with c1 > 0 and c2 < 0 amounts
to the existence of a vector that
(i) points to the region in C that requires non-zero

control for safety, and
(ii) is perpendicular to the surfaces defined by

∇h(x)G(x) = 0.
This provides with a geometric intuition for the condi-
tions identified in Theorem V.1. Figure 2(a)-(b) illus-
trates them for a generic two-dimensional single-input
system.

We note that condition (ii) (with c2 ≤ 0) in The-
orem V.1 is almost a negation of condition (i) (with
c2 < 0). This shows that (i) is almost a sufficient
and necessary condition for unboundedness of u∗. The
gap between both conditions stems from the fact that
L’Hôpital’s rule is indeterminate when both derivatives
of the numerator and the denominator approach 0. A
geometric interpretation of this situation is depicted in
Figure 2c.
Corollary V.2 (Condition for Boundedness of Min-Norm
Controller on C). If condition (ii) in Theorem V.1 holds
for all x̄ ∈ Z, then u∗ is bounded on C.

We revisit now Examples III.4 and III.5 in light
of the above results. Notice that in both cases Z =
{(1, 0), (−1, 0)}. Taking α with α′(0) = 1, (6) at x̄ =
(1, 0) becomes

−2

[
1 0
1 1
0 d

]
v =

[
c1
c2
0

]
,

where d = 1 for Example III.4 and d = 0 for Exam-
ple III.5. It is clear that the only possible solution for this
system of equations with c1 ≥ 0 and c2 ≤ 0 with d = 1
is the trivial solution v = 0. Thus, by Theorem V.1(ii),
u∗
1 from Example III.4 is bounded as its argument

approaches x̄, as we would expect by our analysis of
Example III.4. However, a solution v = (0, 1) solves the
system with d = 0, c1 = 0 ≥ 0 and c2 = −2 < 0. By
Theorem V.1(i), u∗

2 from Example III.5 goes unbounded
as it approaches x̄ from the direction of v, which is
tangential to C. This is also expected by our analysis
of Example III.5.
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v

N = 0

∇h · g = 0

N < 0

N > 0
h = 0

(a) Condition (i) in Theorem V.1 holds.

N = 0

∇h · g = 0

N < 0

N > 0

h = 0

(b) Condition (ii) in Theorem V.1 holds.

N = 0

∇h · g = 0

N < 0

N > 0
h = 0

v

(c) Neither condition in Theorem V.1 holds.

Fig. 2: Illustration of the conditions identified in Theorem V.1. In (a), v solves (6) with c1 = 0 and c2 < 0. In (b), there is no vector v
that points to the region in C where N < 0 and is also tangential to the curve {∇h · g = 0}. In (c), v solves (6) with c1 > 0 but with
c2 = 0, and thus neither condition in Theorem V.1 is satisfied.

Remark V.3 (When Unbounded Min-Norm Is In-
evitable). The system of linear equations in (6) has a
coefficient matrix A with m+ 2 rows and n columns. A
non-trivial solution v to (6) exists if the first two rows of
A are linearly independent and the remaining rows are
linearly independent of the first two. This shows that, if
the system data is such that the matrix A satisfies these
independence properties, then an unbounded min-norm
controller is inevitable. •

VI. Conclusions
We have studied the continuity and boundedness

properties of the min-norm safe feedback controller for
general control-affine systems within the framework of
control barrier functions (CBF). After re-interpreting
the known results in the literature in light of the notion
of strong and weak CBFs, we have characterized the
set of possible points of discontinuity of the minimum-
norm safe controller and shown that it only depends
on the safe set (and not on the specific CBF or the
sensitivity to the violation of the CBF condition). Based
on this characterization, we have generalized the known
conditions to guarantee the continuity of the min-
norm safe controller and identified sufficient conditions
for its (un)boundedness. Our results have important
implications for the synthesis of safe feedback controllers
subject to hard constraints on control effort. Future
work will explore the modification of CBFs that admit
safe controllers when no control bounds are present
to incorporate input constraints, the design of discon-
tinuous (but bounded) safe controllers, and the study
of continuity and boundedness of safe controllers for
systems subjective to disturbances and noise.
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Appendix I
The next results are exploited in the proof of Theo-

rem V.1.
Lemma I.1 (Basic facts on real sequences). The following
facts hold:
(i) Any sequence {an} ⊂ R>0 convergent to 0 contains

a subsequence {ān} with ān

ān+1
→ ∞.

(ii) If the sequences {an}, {bn} ⊂ R both converge to 0,
an

bn
→ L, and bn

bn+1
→ c ̸= 1 (not excluding c = ∞),

then an−an+1

bn−bn+1
→ L.

Proof. To prove (i), the subsequence {ān} can be con-
structed as follows. Take ā1 = a1. By definition of
convergence, for any ān > 0, there is am ≤ ān/n.
Taking ān+1 = am gives ān

ān+1
≥ n. Statement (ii) follows

directly from noting that an−an+1

bn−bn+1
− an

bn
=

(
an

bn
− an+1

bn+1

)
/
(

bn
bn+1

− 1
)
→ 0.

The following generalized version of L’Hôpital’s rule
is convenient for our purposes.
Lemma I.2 (Generalized L’Hôpital [28, Thm. II]). Let the
functions f, g : (a, b) → R be continuously differentiable
on (a, b), with neither g nor g vanishing on (a, b). Then
lim inft→a+

f ′(t)
g′(t) ≤ lim inft→a+

f(t)
g(t) ≤ lim supt→a+

f(t)
g(t) ≤

lim supt→a+
f ′(t)
g′(t) .

The following result shows a key property in the
technical argumentation of the proof of Theorem V.1.
Lemma I.3. Under the assumptions of Theorem V.1,
let v ∈ Rn be such that lim supt→0+ ∥u∗(x̄t)∥ = ∞
(recall x̄t = x̄ + vt) and vTβf (x̄) ≤ 0. Then, there
exists a sequence {ti} → 0+ with {x̄ti} ⊂ D− such that
vTβG(x̄ti)

(∇h(x̄ti
)G(x̄ti

))T

∥∇h(x̄ti
)G(x̄ti

)∥ → 0.

Proof. We utilize the abbreviations introduced at the
beginning of the proof of Theorem V.1 for convenience.
We consider the cases vTβf (x̄) < 0 and vTβf (x̄) = 0
separately.

Case 1: If vTβf (x̄) < 0, then by [21, Thm.
5.11], x̄t ∈ D− for sufficiently small t. Hence,
lim supt→0+ ∥u∗(x̄t)∥ = limt→0+

−N(t)
D(t) = ∞. Direct

evaluation gives a 0
0 type of limit. By Lemma I.2,

lim supt→0+
−d/dt(N(t))
d/dt(D(t)) = ∞. Since d

dt (N(t)) = vTβf (x̄t)
is continuous at t = 0, it is bounded on a small
enough interval t ∈ [0, ϵ]. Thus, the only way the lim sup
approaches ∞ is that there exists a sequence {ti} such
that d

dt (D(t))|t=ti = vTβG(x̄ti)
hG(ti)

∥hG(ti)∥ → 0.
Case 2: If vTβf (x̄) = 0, then for small enough positive

t, either x̄t ∈ D+, x̄t ∈ D−, or x̄t alternates between D−
and D+ indefinitely. The first case is impossible if u∗ goes
unbounded as t → 0+. The second case can be handled
analogously to Case 1. Hence, we focus on the last case,
where x̄t alternates between D− and D+ indefinitely
as t → 0+. This means that the continuous function
N approaches 0 by alternating between positive and
negative values indefinitely as t → 0+. By assumption,
there exists {ti} such that ∥u∗(x̄ti)∥ → ∞. Without loss
of generality, we assume that x̄ti ∈ D− for all i and that
u∗(x̄ti) grows monotonically (a subsequence satisfying
these assumptions can always be found). By continuity
of N(t) and the intermediate value theorem [21, Thm.
4.23], for every ti there is an interval (t1,i, t2,i) such that
x̄t ∈ D− for all t ∈ (t1,i, t2,i) and N(t1,i) = N(t2,i) = 0.
We distinguish two cases.

Case 2.1: Assume there exists n̄ such that
D(t1,i)D(t2,i) ̸= 0 for all i ≥ n̄. Thus, N(t1,i)

D(t1,i)
=

N(t2,i)
D(t2,i)

=

0. This together with the continuity of N(t)/D(t)
in (t1,i, t2,i) implies that there exists t̄i ∈ (t1,i, t2,i)
where −N(t)/D(t) attains its maximum in (t1,i, t2,i).
Therefore, the sequence −N(t̄i)

D(t̄i)
approaches ∞ since

−N(t̄i)
D(t̄i)

≥ −N(ti)
D(ti)

→ ∞. The continuous differentiability
of −N(t)/D(t) in (t1,i, t2,i) for all i, ensured by the
lemma’s assumptions, implies that 0 = d

dt

(−N(t)
D(t)

)∣∣
t=t̄i

=
N ′(t̄i)D(t̄i)−N(t̄i)D

′(t̄i)
D(t̄i)2

. Keeping in mind that x̄t̄i ∈ D−

and thus D(t̄i) ̸= 0, it follows that N ′(t̄i) = D′(t̄i)
N(t̄i)
D(t̄i)

.
Now since N(t̄i)

D(t̄i)
→ −∞ but N ′(t) = vTβf (x̄t) → 0, it

should be that D′(t̄i) = vTβG(x̄t̄i)
hG(t̄i)

∥hG(t̄i)∥ → 0, which
proves the statement.

Case 2.2: Assume that for all n, there exists i > n
such that D(t1,i)D(t2,i) = 0. Without loss of generality,
assume D(t1,i) = 0 for all i (the same reasoning can
be applied when D(t2,i) = 0 for all i or when this
alternates). By assumption, both functions N and D
are continuous on [t1,i, ti] and differentiable on (t1,i, ti).
Using [21, Theorem 5.9], for each i, there exists t̄i
such that N ′(t̄i) =

N(ti)−N(t1,i)
D(ti)−D(t1,i)

D′(t̄i) = N(ti)
D(ti)

D′(t̄i).
A reasoning similar to that of Case 2.1 now yields
D′(t̄i) → 0.
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