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Abstract— This work develops a distributed optimization al-
gorithm for multi-robot 3-D semantic mapping using streaming
range and visual observations and single-hop communication.
Our approach relies on gradient-based optimization of the
observation log-likelihood of each robot subject to a map
consensus constraint to build a common multi-class map of
the environment. This formulation leads to closed-form updates
which resemble Bayes rule with one-hop prior averaging. To
reduce the amount of information exchanged among the robots,
we utilize an octree data structure that compresses the multi-
class map distribution using adaptive-resolution.

I. INTRODUCTION

Dense semantically-rich environment representations, such
as multi-class volumetric maps [1], can be built online by
mobile robots thanks to the availability of on-board GPU-
accelerated segmentation models. Distributed 3-D mapping
requires designing optimization algorithms that take into
account the communication and computation limits of multi-
robot systems. Among the recent works in distributed map-
ping for robotics, Corah et al. [2] proposed a distributed
Gaussian mixture model (GMM) in which a GMM repre-
sentation is communicated over a network of robots and is
utilized by each robot to build a local occupancy grid map
for planning. The distributed estimation work by Paritosh et
al. [3] uses mirror descent optimization of an information-
theoretic cost function to obtain the probability density
function (PDF) of unknown continuous variables by com-
municating local estimates among the agents. The metric-
semantic mapping approach in Kimera-multi [4] builds a
dense multi-class mesh representation from visual-inertial
observations and local trajectory communication used to
estimate a global reference frame in a decentralized manner.

In this work, we propose a multi-class mapping algorithm
for a team of mobile robots. Our main contribution is
an online distributed multi-robot semantic octree mapping
method, where each node in the octree maintains a categor-
ical distribution over various object classes, and is updated
using local range and category observations. We approach
the multi-robot mapping problem using distributed gradient
optimization of the observation log-likelihood, and show that
every iteration contains a consensus step where neighbors
average their map distributions and a Bayesian update step
where new local observations are incorporated into the map
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Fig. 1: Semantically annotated point cloud obtained from a range
and category observation zit . Each object category is shown with a
unique color.

distribution by each robot. Through a simulated experiment,
we show that our algorithm leads to globally consistent
Bayesian multi-class mapping and the octree data structure
helps to achieve memory and communication efficiency.

II. PROBLEM STATEMENT

Consider a network of robots represented by an undirected
graph G(V, E) where V denotes the set of robots and E ⊆
V×V encodes the existence of a communication link between
each pair of robots, assumed to be constant throughout the
task. The robots are navigating in an environment consisting
of a collection of disjoint sets Sk ⊂ R3, each associated
with a semantic category c ∈ C := {0, 1, . . . , C}. Let S0

denote free space, while each Sc for c > 0 represents a
different category, such as building, vegetation, terrain. Each
robot i is equipped with a sensor that provides a stream
of ray-based observations zit ∈ R × C at time t. Each
observation contains information about the distance to and
semantic category of the observed object along the ray. See
Fig. 1 for an example. Such information may be obtained
by processing the measurements of an RGBD camera or a
LiDAR with a semantic segmentation algorithm.

The robots aim to construct a common multi-class map m
of the environment by utilizing their semantically-annotated
local range measurements as well as communication with
their teammates. We model the map m as a grid of inde-
pendent cells, where each individual cell m is labeled with a
category in C. To model measurement noise, we consider a
PDF p(zit | m) for each observation. The goal is to compute
the map estimate that maximizes the sum of expected log-
likelihood of data, i.e. local observations {ziτ}tτ=1 for each
robot i ∈ V:

max
p∈P

N∑

i=1

Em∼p

[ t∑

τ=1

log p(ziτ |m)
]
,



where N = |V| and P is the space of all probability mass
functions (PMF) over the set of possible maps. To remove
the constraint p ∈ P , we utilize a multi-class log-odds ratio
representation of the categorical distribution [1]:

h :=
[
log p(m=0)

p(m=0) · · · log p(m=C)
p(m=0)

]⊤
∈ RC+1.

A probability mass function and its log-odds representation
have a one-to-one correspondence through the softmax func-
tion σ : RC+1 7→ RC+1:

p(m = c) = σc+1(h) :=
e⊤c+1 exp(h)

1⊤ exp(h)
,

where ec is the standard basis vector with c-th element equal
to 1 and 0 elsewhere, 1 is the vector with all elements
equal to 1, and exp(·) is applied element-wise to the vector
h. Applying Bayes rule to the observation model p(ziτ |m)
and using the map cell independence assumption makes it
possible to solve the optimization for individual cells instead
of maintaining the joint distribution over all cells. Thus, the
estimation objective can then be written as an unconstrained
optimization for each map cell:

max
h∈RC+1

N∑

i=1

C∑

m=0

σm+1(h) log
qi(m)

σm+1(h)
,

where qi(m) = t

√∏t
τ=1 p(m|ziτ ) is the temporal geometric

average of the inverse observation model. In order to enable
distributed optimization of the objective, we introduce a
constraint that requires the robots to agree on a common
map estimate via only one-hop communication as follows.

Problem. Let G(V, E) be a network of N robots, where each
robot i ∈ V collects observations {ziτ}tτ=1 and maintains its
own local estimate of the map cell distribution hi. Estimate
the globally consistent common map such that:

max
h1:N∈R(C+1)×N

N∑

i=1

C∑

m=0

σm+1(hi) log
qi(m)

σm+1(hi)
,

s.t.
∑

{i,j}∈E

Aij∥hj − hi∥22 = 0, (1)

where Aij is the ij-th entry of the weighted adjacency matrix
of G with

∑
j Aij = 1.

III. DISTRIBUTED SEMANTIC MAPPING

The optimization objective in (1) has a specific structure as
the sum of local objective functions over all robots, subject
to a consensus constraint among all hi, i ∈ V . We develop
an iterative gradient-based method inspired by the general
distributed optimization framework presented in [5]. The
underlying idea is to interleave local gradient updates for the
individual objective function and for the consensus constraint
at each robot. Alg. 1 presents the update steps for each
map cell in order to solve (1) in a distributed manner. We
initialize the log-odds h

(0)
i with prior h0 for each robot i.

We continuously apply the update steps until a maximum
number of iterations is reached, or the update norm is

smaller than a threshold. The update step in line 6 guides
the local log-odds towards satisfaction of the consensus
constraint, which only requires single-hop communication
between neighboring robots j ∈ Ni. Line 11 incorporates the
local observations logqi = [log qi(m)]Cm=0 via ∆i, where ⊙
is the element-wise multiplication. This step is only local to
each robot i and does not require communication. Note that
both update steps 6 and 13 resemble the log-odds equivalent
of the Bayes rule for updating multi-class probabilities (see
(8) in [1]). Alg. 1 results in a globally consistent multi-
class probabilistic grid map of the environment that is shared
amongst all robots in V . Proofs of convergence to consensus
and optimality with respect to the objective function (1) will
be shown in future work.

The distributed semantic mapping algorithm we developed
assumes a regular grid representation of the environment.
To reduce the storage and communication requirements, we
may utilize a semantic octree data structure which provides
a lossless compression of the original 3-D multi-class map.
In this case, the update rules in Alg. 1 should be applied to
all leaf nodes in the semantic octree map of each robot i.
Please refer to Alg. 3 in [1] for the octree equivalents of the
update steps in 6 and 13.

Algorithm 1 Distributed Semantic Mapping

Input: Local observations {ziτ}tτ=1 for each robot i ∈ V
1: h

(0)
i = h0 ∀i ∈ V ▷ Initialize all log-odds to h0

2: k = 0
3: loop
4: for each robot i ∈ V do
5: ▷ Enforce consensus with step size ϵ:
6: h̃

(k+1)
i = h

(k)
i + 2ϵ

∑
j∈Ni

Aij(h
(k)
j − h

(k)
i )

7: ▷ Gradient computation:
8: ∆i = h̃

(k+1)
i − logqi

9: α
(k+1)
i = (exp(h̃

(k+1)
i )⊤∆i)1

10: β
(k+1)
i = (exp(h̃

(k+1)
i )⊤1)∆i

11: g
(k+1)
i = (α

(k+1)
i − β

(k+1)
i )⊙ exp(h̃

(k+1)
i )

(exp(h̃
(k+1)
i )⊤1)2

12: ▷ Apply gradient with step size γ(k+1):
13: h

(k+1)
i = h̃

(k+1)
i + γ(k+1)g

(k+1)
i

14: h
(k+1)
i,1 = 0 ▷ h

(k+1)
i,1 = log p(m=0)

p(m=0) = 0

15: k = k + 1

16: return h
(k)
i ∀i ∈ V

IV. EVALUATION

We tested our distributed semantic octree mapping al-
gorithm in a 3-D photo-realistic Unity simulation envi-
ronment, resembling an outdoor village area with various
object classes, such as grass, dirt road, building, car, etc.
Six ClearPath Husky robots each equipped with an RGB-
D camera explore the unknown environment using frontier-
based exploration [6]. The RGB sensor measurements are
used to perform pixel classification, which combined with
the depth input, are provided as local observations to build
semantic octree maps. We assume known robot poses and



(a) Multi-robot exploration begins (b) Exploration at t = 100s

(c) Semantic octree map after 300 s of exploration

(d) Photo-realistic Unity simulation environment

Fig. 2: Time lapse of multi-robot autonomous exploration and
semantic octree mapping in the environment shown in (d). Different
colors represent different semantic categories (building, dirt road,
grass, etc.). Local semantic maps are overlaid with each other such
that the transparency of each cell directly relates to the deviation
between the local map estimates.

fully connected communication graph G throughout the ex-
periment. Each robot publishes its local map every 1s, and
upon arrival of a map, one iteration of Alg. 1 is executed.
Fig. 2 shows several snapshots of the multi-robot semantic
octree mapping, as well as the simulation environment.
Fig. 3 shows the total distance in local map estimates,
i.e.

∑
{i,j}∈E ∥hj − hi∥22, summed over all semantic octree

map leaf nodes. Note that we did not account for the
communication strength coefficients Aij ≤ 1 since doing
so would underestimate the actual divergence in the local
map estimates. As the figure shows, our distributed mapping
algorithm leads to reduction of the total distance in local
map estimates. Regarding communication requirements of
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Fig. 3: Time evolution of the total distance in local map estimates.
Iteration of Alg. 1 is executed in each robot every one second, upon
arrival of a local map estimate from a neighboring robot.
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Fig. 4: Packet size used for local map communication for uniform
resolution grid map (blue) and semantic octree map (red). The solid
lines and the dashed lines show the average over all robots and one
standard deviation from the average, respectively.

our distributed semantic octree mapping, Fig. 4 illustrates
the size of the communicated local semantic octree maps,
with comparison to running the same distributed mapping
experiment using uniform resolution grid maps. Our semantic
octree map shows more than four times saving in commu-
nication bandwidth, empirically validating the benefit of our
map representation for distributed multi-robot applications.

In this work, we presented distributed construction of
semantic octree maps of unknown environments using a
team of robots. The global map can be accessed via query
from any of the robots, eliminating the need for a central
estimation unit. Such common map can be utilized by
robots for decentralized planning. In a future work, we use
our multi-robot mapping algorithm alongside a distributed
planning method in order to achieve multi-robot exploration.
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