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Abstract—Utilizing the capabilities of configurable sensing
systems requires addressing difficult information gathering prob-
lems. Near-optimal approaches exist for sensing systems without
internal states. However, when it comes to optimizing the tra-
jectories of mobile sensors the solutions are often greedy and
rarely provide performance guarantees. Notably, under linear
Gaussian assumptions, the problem becomes deterministic and
can be solved off-line. Approaches based on submodularity have
been applied by ignoring the sensor dynamics and greedily
selecting informative locations in the environment. This paper
presents a non-greedy algorithm with suboptimality guarantees,
which relies on concavity instead of submodularity and takes
the sensor dynamics into account. Coupled with linearization
and model predictive control, the algorithm can be used to
generate adaptive policies for mobile sensors with non-linear
sensing models. Applications in gas concentration mapping and
target tracking are presented.

I. INTRODUCTION

Miniaturization, wireless communication, and sensor tech-
nology have advanced remarkably in recent years. Au-
tonomous vehicles instrumented with various sensors and
interconnected by a network are deployed in large numbers,
leading to configurable networked sensing systems. In order to
utilize their capabilities, some important information gathering
problems such as environmental monitoring [1], [2], surveil-
lance and reconnaissance [3], [4], search and rescue [5], active
perception and active SLAM [6], [7], [8] need to be addressed.

Sensor management [9] offers a formal methodology to
control the degrees of freedom of sensing systems in order to
improve the information acquisition process. Much research in
the field has been focused on sensors without internal states
by studying the problem of sensor scheduling. Efficient non-
myopic approaches have been proposed [10], [11], [12]. How-
ever, when it comes to mobile sensors, which posses internal
states, the results are limited. The main complication is that the
evolution of the states depends on the management decisions
and affects the measurements in the long run. Concretely,
whereas in radar management a sensor can switch instanta-
neously between targets [13], a feasible and informative path
needs to be designed for a sensing robot [14]. Due to this
complication, most approaches for mobile sensor management
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are myopic [15], [16] or use short planning horizons [17], [18].
However, it is precisely the presence of an internal state that
makes multi-step optimization important. The behavior of the
observed phenomenon needs to be predicted at an early stage
to facilitate effective control of the mobile sensor.

A key insight is that under linear Gaussian assumptions the
problem can be formulated as deterministic optimal control
[19]. As a result, informative sensing paths can be planned
off-line. Some of the successful approaches rely on a submod-
ular function to quantify the informativeness of the sensor
paths [14], [20]. The sensing locations are partitioned into
independent clusters. Submodularity is used to greedily select
informative locations within clusters. An orienteering problem
is solved to choose the sequence of clusters to visit. The
drawback is that within clusters the movement of the sensor is
restricted to a graph, essentially ignoring the sensor dynamics.
As a result, the cluster sizes cannot be increased much without
affecting the quality of the solution. We address this limitation
by considering the sensor dynamics and planning non-greedily.

The contribution of this paper is an approach for discrete-
time dynamic sensors with linear Gaussian sensing models
to track a target with linear dynamics. An approximate non-
myopic algorithm is developed to decrease the complexity of
obtaining an optimal policy while providing strong perfor-
mance guarantees. The key idea is to discard any sensing paths
which are close in space and dominated in informativeness by
other paths in the planning space. Coupled with linearization
and model predictive control, the generated policy can be used
with non-linear sensing models and performs provably better
than a greedy approach. Our work can be considered a search-
based method for planning in information space. Related
work in this area includes [21], [19]. Sampling-based methods
have been proposed as well [22], [23]. Just as in traditional
planning, they are able to find feasible solutions quickly but
provide no finite-time guarantees on optimality. Approaches
which do not make linear Gaussian assumptions and use non-
linear filters exist as well [24], [25], [26]. They can handle
general sensing and target models but are computationally
demanding and have no performance guarantees.

The rest of the paper is organized as follows. The infor-
mation acquisition problem is formulated precisely in Sec. II.
A separation principle, which allows computing the optimal
sensor path off-line, is proved in Sec. III. The approximate
algorithm with suboptimality guarantees is developed in Sec.
IV to reduce the exponential complexity. Applications in gas
concentration mapping and target tracking are presented in
Sec. V. All proofs are provided in the Appendix.



II. PROBLEM FORMULATION

Consider a sensor mounted on a robot or vehicle, whose
dynamics are governed by the following sensor motion model:

xt+1 = f(xt, ut), (1)

where x ∈ X ∼= Rnx is the sensor state, X is an nx-
dimensional state space with metric dX , u ∈ U is the control
input, and U is a finite space of admissible controls. The task
of the sensor is to track the evolution of the state of a target,
whose dynamics are governed by a linear target motion model:

yt+1 = Ayt + wt, wt ∼ N (0,W ), (2)

where y ∈ Rny is the target state, A ∈ Rny×ny , and wt is a
white Gaussian noise with covariance EwtwTτ = Wδ(t − τ).
The minimum eigenvalue of W is denoted by λW .

The operation of the sensor is governed by the following
sensor observation model:

zt = H(xt)yt + vt(xt), vt(xt) ∼ N (0, V (xt)), (3)

where zt ∈ Rnz is the measurement signal, H(xt) ∈ Rnz×ny ,
and vt(xt) is a sensor-state-dependent Gaussian noise, whose
values at any pair of times are independent. The measurement
noise is independent of the target noise wt as well. Note
that the observation model is linear in the target state but
might depend nonlinearly on the sensor state. The information
available to the sensor at time t to compute the control ut is:

I0 := z0 It := (z0:t, u0:(t−1)) ∈
(
Rnz

)t+1 × U t, t > 0.

Problem (Active Information Acquisition). Given an initial
sensor pose x0 ∈ X , a prior distribution of the target state y1,
and a planning horizon T , the task of the sensor is to choose a
sequence of functions µ0 : Rnz → U , µt : R(t+1)nz ×U t → U
for t = 1, . . . , T − 1, which maximize the mutual information
between the final target state yT+1 and the measurement set
z1:T :

max
µ0,...,µT−1

I(yT+1; z1:T | x1:T ) (4)

s.t. xt+1 = f(xt, µt(It)), t = 0, . . . , T − 1,

yt+1 = Ayt + wt, t = 1, . . . , T,

zt = H(xt)yt + vt(xt), t = 1, . . . , T.

Remark: To simplify notation, we work with autonomous
models but all results hold for time-varying ft, At, Wt, Ht,
and Vt with λW > 0 such that λW Iny �Wt for all t ∈ [1, T ].

Problem (4) subsumes the static case where sensors do not
have internal states. In particular, if f(x, u) := u and we think
of the control u as choosing a subset of sensors to be activated,
then (4) becomes a sensor scheduling problem. Similarly, if the
space of sensor configurations, X , is restricted to a graph and
revisiting is not allowed, we get the problem in [14]. Numerous
information gathering tasks can be cast in the form of (4). For
example, environmental monitoring [19], active target tracking
(Sec. V, [24]), and active mapping with gas (Sec. V), stereo
[27], laser, or any other sensor, whose operation is captured
reasonably by a linearized model.

To motivate the discussion consider the methane emission
monitoring problem, which was addressed by the Best Service
Robotics paper [2] at ICRA 2013. The task is to estimate
the gas concentration in a landfill using a remote methane
leak detector (RMLD) based on tunable diode laser absorption
spectroscopy. The RMLD sensor is mounted on a robotic
platform, Gasbot, which follows an exploration path pre-
specified by hand. In this paper, we would like to automatically
generate the most informative path for the Gasbot.

In detail, suppose that state of the Gasbot consists of its 2D
position (x1, x2) ∈ R2 and the orientation of the RMLD sen-
sor θ ∈ SO(2) so that x := (x1, x2, θ)T . At each time period,
the Gasbot can move on a grid and choose the orientation of
the sensor in 30◦ increments: Θ := {−π,−5π/6, . . . , 5π/6},

U :=

{
(u1, u2, u3)T

∣∣∣∣ (u1u2
)
∈ {0,±e1,±e2}, u3 ∈ Θ

}
,

where e1 and e2 are the standard basis vectors in R2. With
ut ∈ U , the sensor motion model is:

xt+1 = f(xt, ut) := (x1t + u1t , x
2
t + u2t , u

3
t )
T .

Given a time horizon T , we would like to choose a control pol-
icy for the Gasbot in order to obtain a good map yT+1 ∈ Rny
of the gas concentration in the landfill. The ith component,
yiT+1, represents the estimate of the concentration in parts per
million (ppm) in the ith cell of the map. We assume a static
methane field so that A = Iny ,W = 0. It was experimentally
verified in [2] that a good sensor observation model is:

zt = H(xt)yt + vt =

ny∑
i=1

li(xt)y
i
t + vt, vt ∼ N (0, V ),

where the ith component of H(xt) ∈ R1×ny is the distance
li(xt) traveled by sensor laser beam in cell yit for the given
sensor pose xt. Solving problem (4) will provide an automatic
way to control the Gasbot in order to obtain an accurate map
of the methane concentration.

Notation: The sets of n×n symmetric positive definite and
semidefinite matrices are denoted Sn++ and Sn+ respectively.
Given a control sequence σ = ut, . . . , uT−1 ∈ UT−t at time t,
the corresponding sensor trajectory is π(σ) := xt+1, . . . , xT ∈
X T−t. Also, let σi := ut+i, πi+1 := xt+i+1, and π(i+ 1) :=
xt+i+1, . . . , xT ∈ X T−t−i for i = 0, . . . , (T − t− 1).

III. A SEPARATION PRINCIPLE

Active Information Acquisition (4) is a stochastic optimal
control problem and in general for such problems adaptive
(closed-loop) control policies have a significant advantage over
non-adaptive (open-loop) ones. However, due to the linearity
of the observation model (3) in the target state and the
Gaussian-noise assumptions, it can be shown that (4) reduces
to a deterministic optimal control problem, for which open-
loop policies are optimal.

Theorem 1. If the prior distribution of y1 is Gaussian with
covariance Σ0 ∈ S

ny
+ , there exists an open-loop control

sequence σ = u0, . . . , uT−1 ∈ UT, which is optimal in (4).



Moreover, (4) is equivalent to the following deterministic
optimal control problem:

min
σ∈UT

log det(ΣT ) (5)

s.t. xt+1 = f(xt, σt), t = 0, . . . , T − 1,

Σt+1 = ρxt+1
(Σt), t = 0, . . . , T − 1,

where ρx(·) := ρp(ρex(·)) is the Kalman filter Riccati map:

Update: ρex(Σ) := (Σ−1 +M(x))−1 = Cx(Σ)Σ

M(x) := H(x)TV (x)−1H(x) (6)

Cx(Σ) := I −Kx(Σ)H(x) = (I + ΣMx)−1

Kx(Σ) := ΣH(x)TR−1x (Σ)

Rx(Σ) := H(x)ΣH(x)T + V (x)

Predict: ρp(Σ) := AΣAT +W

and M(·) ∈ Rny×ny is called the sensor information matrix.

Remark: Our solution to (5) is applicable to any monotone
concave cost function but for clarity we use log det(·).

Separation principles like Thm. 1 have been exploited since
the early work on sensor management [28], [29]. The result is
significant because the state space of a deterministic control
problem is smaller than the stochastic version and an open-
loop policy can be computed off-line. As discussed by Le Ny
and Pappas [19], the main bottleneck for computations is the
large dimension of the state (xt,Σt) and it is beneficial to use
forward value iteration (FVI, Alg. 1). The advantage is that
the set of reachable target covariances is built progressively
starting from the initial state rather than discretizing the high-
dimensional space of all possible covariances as required by
the more commonly used backward value iteration.

Algorithm 1 Forward Value Iteration
1: S0 ← {(x0,Σ0)}, St ← ∅ for t = 1, . . . , T
2: for t = 1 : T do
3: for all (x,Σ) ∈ St−1 do
4: for all u ∈ U do
5: xt ← f(x, u)
6: St ← St ∪ {(xt, ρxt (Σ))}
7: return min {log det(Σ) | (x,Σ) ∈ ST }

Alg. 1 is constructing a search tree, Tt, with nodes at
stage t ∈ [0, T ] corresponding to the reachable states (xt,Σt).
Starting from node (xt,Σt), there is an edge for each control in
U leading to a node (xt+1,Σt+1) obtained from the dynamics
in (5). FVI is guaranteed to find the optimal control sequence
σ∗ and provides a significant computational advantage over
the backward version but still the number of nodes in Tt
corresponds to the number of sensor trajectories of length t
and grows exponentially, O(|U |T ). The other extreme is the
greedy approach, which discards all but the best (lowest cost)
node at level t of the tree Tt. The greedy policy σg is

σgt ∈ arg min
u∈U

(
log det

(
ρf(xt,u)(Σt)

))
, t ∈ [0, T − 1] (7)

and is computationally very efficient, O(|U|T ), but no guar-
antees exist for its performance.

IV. REDUCED VALUE ITERATION

A. Optimality-preserving reductions

The goal of this paper is to provide an algorithm, with
complexity lower than that of FVI and performance better
than that of the greedy policy (7). This can be achieved by
discarding some but not all of the nodes at level t of Tt.
Intuitively, if two sensor trajectories cross, i.e. there are two
nodes at level t of Tt with the same vehicle configuration x but
different target covariances, and one is clearly less informative,
i.e. its uncertainty about the target is “larger” than that of the
other one, then it is not necessary to keep it. In the same vein,
the covariance of a sensor path at time t may be dominated by
a combination of the covariances of several other paths. The
following definition makes this notion precise.

Definition 1 (Algebraic redundancy [10]). Let {Σi}Ki=1 ⊂ Sn+
be a finite set. A matrix Σ ∈ Sn+ is algebraically redundant
with respect to {Σi}, if there exist nonnegative constants
{αi}Ki=1 such that:∑K

i=1 αi = 1 and Σ �
∑K
i=1 αiΣi.

The next theorem shows that when several sensor paths
cross at time t, i.e. there are several nodes at level t of Tt
with the same vehicle state, algebraically redundant ones can
be discarded without removing the optimal one.

Theorem 2 (Optimal reduction). For t ∈ [1, T ], let (x,Σ) ∈
St be a node in level t of the search tree Tt. If there exist a
set {xi,Σi} ⊆ St \ {(x,Σ)} such that x = xi, ∀i and Σ is
algebraically redundant with respect to {Σi}, then (x,Σ) can
be removed from St without eliminating the optimal trajectory.

B. ε-Suboptimal reductions

At the expense of losing optimality, we can discard even
more of the crossing trajectories by using a relaxed notion of
algebraic redundancy.

Definition 2 (ε-Algebraic redundancy [10]). Let ε ≥ 0 and
let {Σi}Ki=1 ⊂ Sn+ be a finite set. A matrix Σ ∈ Sn+ is ε-
algebraically redundant with respect to {Σi}, if there exist
nonnegative constants {αi}Ki=1 such that:∑K

i=1 αi = 1 and Σ + εIn �
∑K
i=1 αiΣi.

Let π∗ = x∗1, . . . , x
∗
T ∈ X T be the optimal sensor

trajectory in TT with covariance sequence Σ∗1, . . . ,Σ
∗
T and

cost J∗T := log det(Σ∗T ). Denote the search tree at time t
with all ε-algebraically redundant nodes removed by T εt . Let
πε = xε1, . . . , x

ε
T ∈ X T be the trajectory obtained by forward

value iteration on the reduced tree T εT with a corresponding
covariance sequence Σε1, . . . ,Σ

ε
T and cost JεT := log det(ΣεT ).

The following theorem provides an upper bound on the gap,
(JεT − J∗T ), between the performances of πε and π∗.

Theorem 3 (ε-Suboptimal reduction). Let β∗ < ∞ be the
peak estimation error of the optimal policy, Σ∗t � β∗Iny , for
t ∈ [1, T ]. Then,

0 ≤ JεT − J∗T ≤ ε∆T , (8)



where

∆T :=
ny
λW

(
1 +

β2
∗

λ2W

(
1− ηT−1∗

))
, η∗ :=

β∗
β∗ + λW

< 1.

Remark: If the peak estimation error β∗ remains bounded
as T → ∞, i.e. the sensor performs well when using the

optimal policy, then ∆T → ny
λW

(
1 +

β2
∗

λ2
W

)
. In other words,

the suboptimality gap of πε is bounded regardless of the length
T of the planning horizon and grows linearly in ε!

C. (ε, δ)-Suboptimal reductions

If the motion of the sensor is restricted to a graph many of
the planned trajectories will be crossing and the results from
Thm. 3 are very satisfactory. However, if the space of sensor
configurations, X , is continuous, depending on the sensor
motion model (e.g. differential drive), it is possible that no
two sensor states reachable at time t are exactly equal. Then,
the reductions from Thm. 3 cannot be applied. To avoid this
case, we can relax the notion of trajectory crossing at time t.

Definition 3 (Trajectory δ-Crossing). Trajectories π1, π2 ∈
X T δ-cross at time t ∈ [1, T ] if dX (π1

t , π
2
t ) ≤ δ for δ ≥ 0.

Instead of discarding ε-algebraically redundant trajectories
which cross, we can discard those which δ-cross. Let T ε,δt be
the reduced tree at time t, with all ε-algebraically redundant
δ-crossing nodes removed. Some continuity assumptions are
necessary in order to provide suboptimality guarantees for
searching within T ε,δt .

Assumption 1 (Motion Model Continuity). The sensor mo-
tion model is Lipschitz continuous in x with Lipschitz constant
Lf ≥ 0 for every fixed u ∈ U:

dX (f(x1, u), f(x2, u)) ≤ LfdX (x1, x2), ∀x1, x2 ∈ X .

Assumption 2 (Observation Model Continuity). There exists
a real constant Lm ≥ 0 such that:

M(x1) �
(
1 + LmdX (x1, x2)

)
M(x2)

M(x2) �
(
1 + LmdX (x1, x2)

)
M(x1)

, ∀x1, x2 ∈ X ,

where M(·) is the sensor information matrix (6).

Assumption 1 says that when two sensor configurations are
close and the same sequence of controls is applied, then the
resulting trajectories will remain close. Assumption 2 says that
sensing from similar configurations results in similar informa-
tion gain. This gives the intuition that when two trajectories
δ-cross their future informativeness will be similar. We make
this intuition precise in the next theorem. Let πε,δ ∈ X T be the
sensor trajectory obtained by searching the reduced tree T ε,δT

with corresponding cost Jε,δT . The gap, (Jε,δT − J∗T ), between
the performances of πε,δ and π∗ is bounded as follows.

Theorem 4 ((ε, δ)-Suboptimal reduction). Let β∗ <∞ be the
peak estimation error of the optimal policy, Σ∗t � β∗Iny , for
t ∈ [1, T ]. Then,

0 ≤ Jε,δT − J
∗
T ≤ (ζT − 1)

[
J∗T − log det(W )

]
+ ε∆T , (9)

where ζt :=

t−1∏
τ=1

(
1 +

τ∑
s=1

LsfLmδ

)
≥ 1,

∆T :=
ny
λW

(
1 +

β∗
λW

T−1∑
τ=1

ζT
ζτ
ηT−τ∗

)
, η∗ :=

β∗
β∗ + λW

< 1.

Notice that Thm. 3 is a special case of Thm. 4 because
if δ = 0, then ζt = 1,∀t ∈ [1, T ] and (9) reduces to (8).
Then, the suboptimality gap remains bounded regardless of
the time horizon and grows linearly with ε. If δ > 0, then
limT→∞ ζT =∞ and the suboptimality gap grows with T and
δ. The bound is loose, however, because it uses a worst-case
analysis. The worst case happens when a trajectory, which was
discarded from T ε,δT , persistently obtains more information
than a trajectory, which remains very close in space and is still
in the search tree. Even then, if the optimal policy performs
well, the term J∗T − log det(W ) gets smaller as ζT increases
and the suboptimality gap remains small.

D. (ε, δ)-Reduced value iteration

The approaches for reducing the search tree, developed in
the previous subsections, can be used to significantly decrease
the complexity of the FVI algorithm (Alg. 1), while providing
suboptimality guarantees (Thm. 4). The (ε, δ)-Reduced Value
Iteration (RVI) is summarized in Alg. 2.

Algorithm 2 (ε, δ)-Reduced Value Iteration
1: S0 ← {(x0,Σ0)}, St ← ∅ for t = 1, . . . , T
2: for t = 1 : T do
3: for all (x,Σ) ∈ St−1 do
4: for all u ∈ U do
5: xt ← f(x, u)
6: St ← St ∪ {(xt, ρxt (Σ))}
7: Sort St in ascending order according to log det(·)
8: S′t ← St[1] % State with lowest cost
9: for all (x,Σ) ∈ St \ St[1] do

10: % Find all nodes in S′t, which δ-cross x:
11: Q← {Σ′ | (x′,Σ′) ∈ S′t, dX (x, x′) ≤ δ}
12: if isempty(Q) or not( Σ is ε-alg. redundant wrt Q ) then
13: S′t ← S′t ∪ (x,Σ)

14: St ← S′t
15: return min {log det(Σ) | (x,Σ) ∈ ST }

The most computationally demanding operation is checking
ε-algebraic redundancy (Line 12). It is a feasibility problem
for a linear matrix inequality (LMI) and off-the-shelf solvers
exist [30]. An appealing property of Alg. 2 is that at stage t at
least the node with currently lowest cost is retained (Line 8).
This guarantees that the control sequence obtained from RVI
performs at least as well as the greedy policy (7).

V. APPLICATIONS

A. Gas distribution mapping and leak localization

In this subsection, we apply the (ε, δ)-RVI to the methane
monitoring problem introduced in Sec. II. Since the movement
of the Gasbot is restricted to a grid, the planned sensor paths
will be crossing frequently and we can use δ = 0. The dimen-
sion ny of the target is the number of cells in the gas con-
centration map and would typically be very large. Checking



algebraic redundancy requires solving an ny-dimensional LMI
feasibility problem, which is computationally very demanding.
To avoid this, we let ε = ∞. This means that when several
paths cross at time t, only the most informative one is kept in
T ε,δt . Thus, the number of nodes in T ε,δt remains bounded by
the number of reachable sensor states. Trajectories of length
T = 40 were planned using RVI and the greedy algorithm
(GREEDY). The results (Fig. 1) reveal an important drawback
of GREEDY. It remains trapped in a local region of relatively
high variance and fails to see that there are more interesting
regions which should be explored during the limited available
time. Fig. 1 also shows that the growth of the search tree is
much slower for RVI compared to FVI, while the quality of
the RVI solution is better than the greedy one.

B. Target localization and tracking

In a lot of applications, the linear assumptions (2), (3) are
reasonable for the target motion model but very limiting for
the sensor observation model. A lot more problems can fit in
a framework with the following non-linear observation model:

zt = h(xt, yt)+v(xt, yt), v(xt, yt) ∼ N (0, V (xt, yt)). (10)

In this subsection, we show that our method can be coupled
with linearization and model predictive control to generate an
adaptive policy for a mobile sensor with the model in (10).

To motivate the discussion we consider a target tracking
application, in which both the sensor motion and observation
models are highly non-linear. Suppose that the sensor is
mounted on a vehicle with differential-drive dynamics, which
are discretized using a sampling period τ as follows:

x1t+1

x2t+1

θt+1

 =

x1tx2t
θt

+



τν cos(θt + τω/2)

τν sin(θt + τω/2)

τω

 , |τω| < 0.001


ν
ω (sin(θt + τω)− sin θt)
ν
ω (cos θt − cos(θt + τω))

τω

 , else.

The vehicle is controlled using the motion primitives U =
{(ν, ω) | ν ∈ {0, 1, 2, 3} m/s, ω ∈ {0,±π/2,±π} rad/s}.
The task of the sensor is to track the position (y1, y2) ∈ R2

and velocity (ẏ1, ẏ2) ∈ R2 of another vehicle with discretized
double integrator dynamics driven by Gaussian noise:

yt+1 =

[
I2 τI2
0 I2

]
yt+wt, wt∼N

(
0, q

[
τ3/3I2 τ2/2I2
τ2/2I2 τI2

])
,

where y = [y1, y2, ẏ1, ẏ2]T is the target state and q is a scalar
diffusion strength measured in ( m

sec2 )2 1
Hz . The sensor takes

noisy range and bearing measurments of the target’s position:

h(x, y)=

[
r(x, y)
α(x, y)

]
:=

[ √
(y1 − x1)2 + (y2 − x2)2

tan−1
(
(y2−x2)/(y1−x1)

)
−θ

]
(11)

The target needs to be tracked during a period Tmax in a
wooded area (Fig. 2), which affects the covariance of the
measurement noise. The noise in the range measurement grows
linearly with the distance between the sensor and the target

but trees along the way make the growth faster. The bearing
measurement noise increases linearly with the speed of the
sensor. The sensor has a maximum range of 15 meters, after
which the noise covariance is infinite.

To employ RVI, the observation model (11) needs to be
linearized about a predicted target trajectory during planning.
Linearized about an arbitrary target state y 6= x, the model is:

∇yh(x, y) =
1

r(x, y)

[
(y1 − x1) (y2 − x2) 01×2
− sinα(x, y) cosα(x, y) 01×2

]
.

The linearization depends on the predicted target trajectory,
which in turn depends on the measurements obtained on-line.
As a result, it is necessary to re-plan the sensor path on-line
after every new measurement. In general, re-planning would
be feasible only for a short horizon T < Tmax before the plan
is needed. Alg. 3 shows how to use the (ε, δ)-RVI and model
predictive control to generate an adaptive policy.

Algorithm 3 Model predictive control via the (ε, δ)-RVI
1: Input: Tmax, x0, ŷ0, Σ̂0, f,U , H, V,A,W, T, ε, δ
2: for t = 0 : Tmax do
3: Predict a target trajectory of length T : ŷt, . . . , ŷt+T
4: Linearized observation model: Hτ (·)←∇yh(·, ŷt+τ ), τ = 0, .., T
5: % Plan a sensor trajectory of length T
6: σ ← (ε, δ)-RVI(xt, ŷt, Σ̂t, {Hτ}Tτ=0, V, f,U , A,W, T )
7: Move the sensor: xt+1 ← f(xt, σ1)
8: Get a new observation: zt+1 ← h(xt+1, yt+1) + vt+1(xt+1)
9: Update the target estimate: (ŷt+1, Σ̂t+1)← Filter(ŷt, Σ̂T , zt+1)

We emphasize that the linearized sensing models are utilized
merely for determining the next configuration (Line 6), while
the target state inference (Line 9) can still be performed with
any non-linear filter. Alg. 3 was implemented with Tmax =
100, T = 7, ε = 0.1, δ = 1, τ = 0.5, q = 0.2 and 100 Monte-
Carlo simulations were carried out. The tracking performance
is compared to the greedy solution in Fig. 2. We can see that
the greedy policy goes in straight line to keep the speed low,
i.e. the bearing noise small, but cannot predict in advance that
the range noise will increase as the target goes further away.

VI. CONCLUSION

Under linear Gaussian assumptions, information acquisition
with mobile sensors can be planned off-line. Most previous ap-
proaches are greedy or neglect the sensor dynamics and rarely
provide performance guarantees. In this paper, we developed a
non-greedy algorithm (RVI), which takes the sensor dynamics
into account and has suboptimality guarantees. It provides pa-
rameters (ε, δ) to control the trade-off between complexity and
optimality. Coupled with linearization and model predictive
control, RVI can generate an adaptive policy for a non-linear
mobile sensor. Our method can also be applied to a multi-
sensor problem by stacking all motion and observation models
into single centralized versions. Unfortunately, the complexity
of this solution is exponential in the number of sensors. Future
work will focus on a decentralized method for the multi-
sensor, multi-target active information acquisition. In detail,
we would like to address cooperative control, distributed target
estimation, and noisy self-localization.
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APPENDIX A: PROOF OF THEOREM 1
Lemma 1. Let X ∼ N (µ,Σ) be n-dimensional. Then, its
differential entropy is h(X) =

(
n log(2πe) + log det(Σ)

)
/2.

Proof of Thm 1: By definition of mutual information:

I(yT+1; z1:T | x1:T ) = h(yT+1 | x1:T )−h(yT+1 | z1:T , x1:T ).

Since yT+1 is independent of the sensor path the first term
is constant with respect to the optimization in (4). Due to
linearity of the observation model (3) in the target state, the
distribution of yt+1 given z1:t and x1:t remains Gaussian for
t>1. Its covariance Σt can be obtained from the Bayes filter,
which due to the linear Gaussian assumptions is equivalent to
the Kalman filter. Thus, Σt+1 = ρxt(Σt) for t = 0, . . . , T −1,
which is independent of the measurements z1:t. By Lemma 1:

h(yT+1 |z1:T , x1:T )=Eẑ1:Th(yT+1 | z1:T = ẑ1:T , x1:T ) (12)

=
1

2
Eẑ1:T

(
log(2πe)ny+log |ΣT |

)
=

1

2

(
log(2πe)ny+log |ΣT |

)
.

Let µ∗={µ∗0, .., µ∗T−1} be optimal in (4) with cost J∗. Fix a
realization ẑ1:T of the measurements and let σ be the open-
loop policy induced by µ∗ given ẑ1:T with cost Jσ . From (12),
J∗ is independent of ẑ1:T , hence J∗ = Jσ for any ẑ1:T .

APPENDIX B: PROOF OF THEOREM 2
Definition 4 (t-step Riccati map). For π ∈ X T , Σ ∈ Sn+ let

φ0π(Σ) := Σ, φtπ(Σ) := ρπt ◦ . . . ◦ ρπ1
(Σ), t ∈ [1, T ].

Lemma 2 ([10]). For any t ∈ [0, T ], the t-step Riccati map
is operator monotone and operator concave.

Proof of Thm 2: Let σ ∈ UT−t be any admissible control
sequence. Starting at (x,Σ), by Lemma 2 and Definition 1,
there exist nonnegative constants {αi}Ki=1 such that

φT−tπ(σ)(Σ) � φT−tπ(σ)

( K∑
i=1

αiΣ
i

)
�

K∑
i=1

αiφ
T−t
π(σ)

(
Σi
)
.

Then, from monotonicity and concavity of log det(·):

log det

(
φT−tπ(σ)(Σ)

)
≥ log det

( K∑
i=1

αiφ
T−t
π(σ)(Σ

i)

)

≥
K∑
i=1

αi log det

(
φT−tπ(σ)(Σ

i)

)
≥ log det

(
φT−tπ(σ)(Σ

i∗)

)
.

The last inequality holds because a convex combination of
scalars is lower bounded by the smallest one i∗.



APPENDIX C: PROOF OF THEOREM 4

Lemma 3 ([10]). For any π ∈ X T , Q ∈ Sn+, and ε ≥ 0 the
directional derivative of the t-step Riccati map is:

gtπ(Σ;Q) :=
d

dε
φtπ(Σ + εQ)

∣∣∣∣
ε=0

=

1∏
τ=t

ACπτ (φτπ(Σ))Q

t∏
τ=1

Cπτ (φτπ(Σ))TAT .

Lemma 4. For any t∈ [0, T ], π∈X T , Σ, Q1, Q2∈Sn+, a, b∈R

gtπ(Σ; aQ1 + bQ2) = agtπ(Σ;Q1) + bgtπ(Σ;Q2)

because a directional derivative is linear in the perturbation.
In addition, by operator concavity of the t-step Riccati map:

φtπ(Σ + εQ) � φtπ(Σ) + εgtπ(Σ;Q)

Lemma 5. For all t ∈ [1, T ], π ∈ X T , and Q ∈ Sn+, if there
exists a constant β <∞ such that φtπ(Σ) � βIny , then

tr
(
gtπ(Σ;Q)

)
≤ βηt tr(Σ−1Q), η := β/(β + λW ) < 1.

Proof: We follow the steps of [10, Thm. 5] but use the
tighter bound ÂtΣ̂tÂTt � (β−λ−W )In in (A.4), which leads to
L
(l)
t −L

(l)
t+1 ≥

λ−
W

β L
(l)
t . Also, since Q ∈ Sn+ we can decompose

it as Q =
∑n
l=1 λ

l
Qqlq

T
l and let ξ(l)(0) =

√
λlQql.

Lemma 6. Consider two nodes (x1,Σ) and (x2,Σ) with
dX (x1, x2) ≤ δ. Let Σ1 and Σ2 be the updated covariance
matrices after applying u ∈ U at each node. Then,

Σ1 � γΣ2 + (1− γ)W and Σ2 � γΣ1 + (1− γ)W,

where 0 < γ := (1 + LmLfδ)
−1 ≤ 1.

Proof: Let Mi := M(f(xi, u)) and ρi(·) := ρf(xi,u)(·) for
i = 1, 2. From Assumption 1, dX (f(x1, u), f(x2, u)) ≤ Lfδ
and from Assumption 2, M1 � (1 + LmLfδ)M2. Then,

ρ1(Σ) = A(Σ−1 +M1)−1AT +W

� A(Σ−1 + γ−1M2)−1AT +W

= γρ2(γ−1Σ) + (1− γ)W � γρ2(Σ) + (1− γ)W

The second result follows analogously.

Lemma 7. For t ∈ [1, T ], ε ≥ 0, δ ≥ 0, the reduced tree T ε,δt

contains a set of nodes {(xit,Σit) | i = 1, . . . ,K} such that:

dX (x∗t , x
i
t) ≤

t−1∑
τ=0

Lτfδ, ∀i, (13)

Σ∗t + ε

(
ΓtIny +

t−1∑
τ=1

Γτg
t−τ
π∗(τ+1)(Σ

∗
τ ; Iny )

)
(14)

� Γt

K∑
i=1

αiΣ
i
t +

t−1∑
τ=1

Γτ (1− γτ )φt−1−τπ∗(τ+1)(W ),

where π∗ = x∗1, . . . , x
∗
T is the optimal trajectory in 5,

0 < γt := (1 +
∑t
s=1 L

s
fLmδ)

−1 ≤ 1, and Γt :=
∏t−1
s=1 γs.

Proof of Lemma 7: We proceed by induction.
Base Case: At time 1, (13), (14) follow from Def. 2 and 3.
Hypothesis: Suppose that (13) and (14) hold for some set
{(xjt ,Σ

j
t ) | j = 1, . . . , J} of nodes in T ε,δt .

Induction: At time t+ 1, there are sets {(xjit+1,Σ
ji
t+1)}Kji=1 in

T ε,δt+1 corresponding to each node j from time t and satisfying

dX (xjt+1, x
ji
t+1) ≤ δ and Σjt+1+εIny�

∑Kj
i=1 αjiΣ

ji
t+1. (15)

From Lemma 3 for every τ = 1, . . . , t:

g1π∗(t+1)

(
Σ∗t ; g

t−τ
π∗(τ+1)(Σ

∗
τ ; Iny )

)
= gt+1−τ

π∗(τ+1)(Σ
∗
τ ; Iny ).

From this and Lemma 4:

Σ∗t+1 + ε

t∑
τ=1

Γτg
t+1−τ
π∗ (Σ∗τ ; Iny )

= ρπ∗
t+1

(Σ∗t ) + εg1π∗(t+1)

(
Σ∗t ;

t∑
τ=1

Γτg
t−τ
π∗(τ+1)(Σ

∗
τ ; Iny )

)

� ρπ∗
t+1

(
Σ∗t + ε

t−1∑
τ=1

Γτg
t−τ
π∗(τ+1)(Σ

∗
τ ; Iny ) + εΓtIny

)
Note that

∑t−1
τ=1 Γτ (1 − γτ ) + Γt = 1. Thus, the terms (1 −

γ1), γ1(1− γ2), . . . ,Γt−1(1− γt−1),Γt are the coefficients of
a convex combination. Using the hypothesis and Lemma 2:

ρπ∗
t+1

(
Σ∗t + ε

t−1∑
τ=1

Γτg
t−τ
π∗(τ+1)(Σ

∗
τ ; Iny ) + εΓtIny

)

� ρπ∗
t+1

(
Γt

J∑
j=1

αjΣ
j
t +

t−1∑
τ=1

Γτ (1− γτ )φt−1−τπ∗(τ+1)(W )

)

� Γt

J∑
j=1

αjρπ∗
t+1

(Σjt ) +

t−1∑
τ=1

Γτ (1− γτ )φt−τπ∗(τ+1)(W ).

By hypothesis, dX (x∗t , x
j
t ) ≤

∑t−1
τ=0 L

τ
fδ, and from Lemma 6:

ρπ∗
t+1

(Σjt ) � γtΣ
j
t+1 + (1− γt)W.

The nodes {(xjt+1,Σ
j
t+1)} might not be in T ε,δt+1 but from (15):

ρπ∗
t+1

(Σjt ) + γtεIny � γt
Kj∑
i=1

αjiΣ
ji
t+1 + (1− γt)W.

Combining the previous results, we have:

Σ∗t+1 + ε

t∑
τ=1

Γτg
t+1−τ
π∗ (Σ∗τ ; Iny ) + εΓt+1Iny

� Γt

J∑
j=1

αj

(
ρπ∗

t+1
(Σjt )+ γtεIny

)
+

t−1∑
τ=1

Γτ (1−γτ )φt−τπ∗(τ+1)(W )︸ ︷︷ ︸
(∗)

� Γt

J∑
j=1

αj

(
γt

Kj∑
i=1

αjiΣ
ji
t+1 + (1− γt)W

)
+ (∗)

= Γt+1

J∑
j=1

Kj∑
i=1

αjαjiΣ
ji
t+1 +

t∑
τ=1

Γτ (1− γτ )φt−τπ∗(τ+1)(W ).



Thus, the set
⋃J
j=1

⋃Kj
i=1{(x

ji
t+1,Σ

ji
t+1)} satisfies (14) at time

t+ 1. It satisfies (13) at t+ 1 from (15) and Assumption 1.
Proof of Thm 4: As defined in Lemma 7 ΓT = ζ−1T . Define

J(·) := log det(·) and G := ΓT Iny+

T−1∑
τ=1

Γτg
T−τ
π∗(τ+1)(Σ

∗
τ ; Iny ).

By monotonicity of J(·) and the result in Lemma 7:

J(Σ∗T+εG) ≥ J
(

ΓT

K∑
i=1

αiΣ
i
T+

T−1∑
τ=1

Γτ (1−γτ )φT−1−τπ∗(τ+1)(W )

)
for some set of nodes {(xiT ,ΣiT ) | i = 1, . . . ,K} in the
reduced tree T ε,δT . By definition, φtπ(W ) � W for any t, π

and
∑T−1
τ=1 Γτ (1− γτ ) = 1− ΓT . By concavity of J(·):

J(Σ∗T + εG) ≥ ΓT

K∑
i=1

αiJ(ΣiT ) + (1− ΓT )J(W ) (16)

≥ ΓTJ(Σi
∗

T ) + (1− ΓT )J(W ) ≥ ΓTJ
ε,δ
T + (1− ΓT )J(W ).

The second inequality holds because a convex combination
of scalars is lower bounded by the smallest one i∗. The last
inequality holds because πε,δ is the optimal path in the reduced
tree. Next, by concavity of log det(·):

J(Σ∗T + εG) ≤ J(Σ∗T ) + ε
d

dε
J

(
Σ∗T + εG

)∣∣∣∣
ε=0

= J∗T + ε tr

(
(Σ∗T )−1G

)
≤ J∗T + ε

1

λW
tr(G). (17)

From Lemma 5 and since tr((Σ∗T )−1) ≤ ny/λW :

tr(G) = ΓT tr(Iny ) +

T=1∑
τ=1

Γτ tr

(
gT−τπ∗(τ+1)(Σ

∗
τ ; Iny )

)

≤ nyΓT +

T=1∑
τ=1

Γτβ∗η
T−τ
∗ tr((Σ∗T )−1) ≤ ΓT∆T (18)

Finally, by combining (16), (17), and (18) we get:

ΓTJ
ε,δ
T + (1− ΓT )J(W ) ≤ J∗T + εΓT∆T

0 ≤ ΓT (Jε,δT − J
∗
T ) ≤ (1− ΓT )(J∗T − J(W )) + εΓT∆T .

Multiplying by ζT = Γ−1T gives the result in (9).
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