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Abstract—One of the central problems in computer vision is
the detection of semantically important objects and the estima-
tion of their pose. Most of the work in object detection has been
based on single image processing, and its performance is limited
by occlusions and ambiguity in appearance and geometry. This
paper proposes an active approach to object detection in which
the point of view of a mobile depth camera is controlled. When an
initial static detection phase identifies an object of interest, several
hypotheses are made about its class and orientation. Then, a se-
quence of views, which balances the amount of energy used to move
the sensor with the chance of identifying the correct hypothesis, is
planned. We formulate an active hypothesis testing problem, which
includes sensor mobility, and solve it using a point-based approxi-
mate partially observable Markov decision process algorithm. The
validity of our approach is verified through simulation and real-
world experiments with the PR2 robot. The results suggest that
the approach outperforms the widely used greedy viewpoint se-
lection and provides a significant improvement over static object
detection.

Index Terms—Active object classification and pose estimation,
hypothesis testing, motion control, planning and control for mobile
sensors, recognition, robotics, vocabulary tree.

I. INTRODUCTION

W ITH the rapid progress of robotics research, the utility of
autonomous robots is no longer restricted to controlled

industrial environments. The focus has shifted to high-level in-
teractive tasks in complex environments. The effective execution
of such tasks requires the addition of semantic information to the
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traditional traversability representation of the environment. For
example, household robots need to identify objects of interest
and estimate their pose accurately in order to perform manip-
ulation tasks. One of the central problems in computer vision,
i.e., object classification and pose estimation, historically has
been addressed with the assumption that the sensing device is
static [1]–[3]. However, occlusions, variations in lighting, and
imperfect object models in complex environments decrease the
accuracy of single-view detectors. Active perception approaches
circumvent these issues by utilizing appropriate sensing settings
to gain more information about the scene. Research into sensor
management [4] presents a structured approach to controlling
the degrees of freedom in sensor systems in order to improve the
information acquisition process. However, most of the work ei-
ther assumes a simplified model for the detection process [5], [6]
or avoids the problem altogether and concentrates on estimating
a target’s state after its detection [7], [8].

This paper is a step toward bridging the gap between the
research in sensor management and the recent advances in
3-D object detection enabled by the advent of low-cost RGB-D
cameras and open-source point cloud libraries [9]. Rather than
placing the burden of providing perfect results on a static de-
tector, the sensor can move to increase the confidence in its
decision. We consider the following problem. A mobile sensor
has access to the models of several objects of interest. Its task
is to determine which, if any, of the objects are present in a
cluttered scene and estimate their poses. The sensor has to bal-
ance the detection accuracy with the time spent observing the
objects. The problem can be split into a static detection stage
followed by a planning stage, which selects a sequence of views
minimizing the mistakes made by the observer.

A preliminary version of this paper appeared at the 2013 IEEE
International Conference of Robotics and Automation [10]. It
included the problem formulation, theoretical development, and
an initial evaluation of our approach in simulation. This version
clarifies the theoretical development, provides extensive simu-
lation results, and demonstrates the performance in real-world
experiments using an Asus Xtion RGB-D sensor attached to the
wrist of a PR2 robot.

The rest of this paper is organized as follows. The next section
presents related approaches to active perception and summarizes
our contribution. In Section III, we set up hypotheses about the
class and orientation of an unknown object and formulate the
active recognition problem precisely. A new approach for static
detection with a depth camera is presented in Section IV. An
observation model that assigns a confidence measure to the
static detections and in turn to the class-pose hypotheses is
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discussed in Section V. Section VI describes how to choose a
sequence of views for the sensor, which tests the hypotheses and
balances sensing time with decision accuracy. Implementation
details are in Section VII. Finally, Section VIII presents results
from simulation and real-world experiments and compares the
performance of our active approach with those of static detection
and the widely used greedy view selection.

II. RELATED WORK

Some of the earliest work in active perception is by Bajscy
et al. [11], [12]. It is focused on improving the estimates of ob-
jects’ 3-D positions by controlling the intrinsic parameters of a
stereo camera. Similarly, Pito’s paper [13] addresses the problem
of selecting the resolution of a camera to improve surface re-
construction by maximizing information gain. Since then, many
active vision works have utilized information-theoretic criteria
for viewpoint and sensor parameter selection. The approaches
in sensor management [4], [14] can be classified, according
to sensor type, into mobile (sensors have dynamic states) and
stationary (sensors have fixed states). The objective may be to
identify a target and estimate its state or simply to improve
the state estimate of a detected target. The targets might be
mobile or stationary as well. The process of choosing sensor
configurations may be myopic (quantifies the utility of the next
configuration only) or nonmyopic (optimizes over a sequence of
future configurations).

A large body of work assumes fixed sensor positions and
focuses on choosing effective sensor parameters. For exam-
ple, Sommerlade and Reid [8] control a pan-zoom-tilt camera
with a fixed position to track mobile targets based on myopic
minimization of conditional entropy. This simplifies the prob-
lem considerably because the tradeoff between minimizing the
sensor movement energy and maximizing viewpoint informa-
tiveness is avoided. Methods that deal with active selection of
views for realistic sensor models typically resort to myopic plan-
ning [15]–[17]. Denzler and Brown [18] select the focal length,
pan and tilt angles, and the viewpoint of a camera on a hemi-
sphere around an object of interest via greedy maximization
of entropy. Borotschnig et al. [16] represent object appearance
via parametric eigenspaces and use probability distributions in
the eigenspace to greedily select discriminative views. Greedy
approaches for active object recognition have been used in se-
mantic mapping and localization too [19].

Golovin and Krause [20] showed that myopic planning for
an adaptively submodular objective function is worse than the
optimal strategy by a constant factor. Mutual information is
submodular but not adaptively submodular, and as a result, the
performance guarantees for greedy policies hold in the non-
adaptive setting only, i.e., if the sequence of sensor views were
selected offline and applied regardless of the observations re-
ceived online. Such open-loop planning performs well only with
linear Gaussian sensor models [21]. Instead of mutual informa-
tion, we use a criterion that quantifies the tradeoff between the
sensor movement energy expenditure and the expected cost of
an incorrect object classification. The cost function is called
the value of information [22, ch. 15] or the expected Bayesian

risk [23]. Unfortunately, Krause [22, Prop. 15.1] shows that it
is not adaptively submodular. Even with a fixed sensor state, a
myopic strategy can perform arbitrarily worse than the optimal
one in an adaptive setting [24]. In light of these observations,
the goal of this paper is to devise a nonmyopic view planning
(NVP) strategy and compare its performance with the myopic
information-theoretic approaches. We represent the active ob-
ject classification and pose estimation problem as a partially
observable Markov decision process (POMDP) and use a point-
based approximate algorithm [25], [26] to solve it.

The work that is closest to ours [27] uses a mobile sensor to
classify stationary objects and estimate their poses. Static de-
tection is performed using SIFT matching, and the object pose
distributions are represented with Gaussian mixtures. Similar
to our approach, the problem is encoded by a POMDP, but in-
stead of an approximate nonmyopic policy, the authors resort
to a myopic approach to reduce the differential entropy in the
pose and class distributions. Karasev et al. [23] plan the path of
a mobile sensor for visual search of an object in an otherwise
known and static scene. The authors hypothesize about the ob-
ject’s pose and apply greedy maximization of the conditional
entropy of the next measurement. Paletta and Pinz [28] describe
a reinforcement learning approach for obtaining a sequence of
views that maximally discriminate objects of various classes at
different orientations. An approximate policy that maps a se-
quence of received measurements to a discriminative viewpoint
is obtained offline.

Velez et al. [29] consider detecting doorways along the path of
a mobile sensor traveling toward a fixed goal. The unknown state
of a candidate detection is binary: “present” or “not present.”
Deformable part models [30] are used for static detection; stereo
disparity and plane fitting are used for pose estimation. The pose
estimates are not optimized during the planning stage. An en-
tropy field is computed empirically offline for all viewpoints
in the workspace and is used to nonmyopically select locations
with high information gain. The planning is open loop because
the object state distributions change online, but only the pre-
computed entropy field is used. We use a depth sensor, which
validates the assumption that position estimates need not be
optimized. However, the orientation estimates can be improved
through active planning. Inspired by the work on hypothesis test-
ing [24], [31], we introduce a rough discretization of the space
of orientations so that the hidden object state takes on several
values: one for “object not present” and the rest for “object
present” with a specific orientation. Using several hypotheses
necessitates closed-loop planning because the ranking of the
viewpoints in terms of informativeness changes, depending on
which hypothesis is more likely. In the POMDP formulation, we
assume that the sensor observations are independent across dif-
ferent viewpoints, which is frequently violated in practice. An
interesting aspect in the work of Velez et al. is that the correlat-
ing influence of the environment is approximated with a convex
combination of a fully uncorrelated and a fully correlated sensor
models. In future work, we would like to incorporate this idea
in our observation model.

Another approach based on hypothesis testing is given in [32].
To disambiguate competing hypotheses, the authors myopically
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select views to maximize the dissimilarity between the distribu-
tions of the expected measurements. In recent years, the active
vision problem has received significant attention in the robotics
community as well. Hanheide et al. [33] present an approach for
object search and place categorization in large indoor environ-
ments. A novel probabilistic model is used to encode structural
relations among objects and places (e.g., cereal boxes are often
located in kitchens). An object search task is then represented by
pairing the probabilistic conceptual map with the visual appear-
ance of the object of interest. A sequence of views is planned
using a POMDP abstraction with conditional entropy as the re-
ward function [34]. Other recent work that does active visual
search in a similar spirit is given in [35]. Probabilistic spatial
relations and static properties of rooms are used to pose the
problem as a fully observable Markov decision process (MDP).
A greedy next-best-view approach is used to determine if an ob-
ject is present or not at a specific location, while the MDP is used
to synthesize a sequence of good locations to search. Sridharan
et al. [36] plan visual sensing actions for scene understanding
and disambiguation. Similar to our approach, a POMDP cap-
tures the tradeoff between plan reliability and execution time
and enables a robot to simultaneously decide which region in
the scene to focus on and what processing to perform.

Contributions: We introduce a new 3-D object detector, i.e.,
the viewpoint-pose tree (VP-Tree), which uses point cloud data
from a depth sensor. The VP-Tree provides a pose estimate in
addition to detecting an object’s class. This is achieved via par-
tial view matching and helps in cases when the object is partially
occluded or in contact with another object. Second, we propose
an NVP approach to improve the static detection and pose es-
timation by moving the sensor to more informative viewpoints.
Our optimization criterion captures the tradeoff between gain-
ing more certainty about the correct object class and pose and
the cost of moving the sensor. This encodes the requirements
of an object recognition task more precisely than the mutual
information criterion.

III. PROBLEM FORMULATION

A. Sensing

Consider a mobile depth sensor, which observes a static scene,
containing unknown objects. The sensor has access to a finite
database D of object models (see Fig. 1), and a subset I of them
is designated as objects of interest. We assume that an object
class has a single model associated with it and use the words
model and class interchangeably. This is necessary because our
static detector, i.e., the VP-Tree, works with instances. However,
the view planning approach is independent of the static detector
and can be used with class-based detectors.

The task of the sensor is to detect all objects from I, which
are present in the scene and to estimate their poses. Note that the
detection is against not only known objects from the database
but also clutter and background. At each time step, the sensor
obtains a point cloud from the scene, splits it into separate
surfaces (segmentation), and associates them with either new
or previously seen objects (data association). These procedures
are not the focus of this paper, but we mention how we perform

them in Section VII-A. We assume that they estimate the object
positions accurately.

Hypotheses are formulated about the class and orientation of
an unknown object by choosing a small finite set of discrete
orientations R(c) ⊂ SO(3)1 for each object class c ∈ I. To de-
note the possibility that an object is not of interest, we introduce
a dummy class c∅ and a dummy orientation R(c∅) = {r∅}. The
sensor needs to decide among the following hypotheses:

H(c∅, r∅): the object does not belong to I
H(c, r): the objects class is c ∈I with orientation r ∈R(c).

To measure the correctness of the sensor’s decisions, we intro-
duce a cost for choosing H(ĉ, r̂) when H(c, r) is correct:

JD (ĉ, r̂, c, r) :=

⎧
⎨

⎩

K(r̂, r), ĉ = c
K+ , ĉ ∈ I, c /∈ I
K−, ĉ �= c, c ∈ I

where K+ and K− are costs for making false positive and false
negative mistakes, respectively, and K(·, ·) is a cost for an in-
correct orientation estimate when the class is correct.

Example: Suppose that the task is to look for chairs (c1)
and tables (c2), regardless of orientation (K(r̂, r) := 0). The
decision cost can be represented by the matrix

In static detection, it is customary to run a chair detector first
to distinguish between c∅ and c1 and then a table detector to dis-
tinguish between c∅ and c2 . Our framework requires moving the
sensor around the object to distinguish among the hypotheses,
and it is necessary to process them concurrently.

B. Mobility

We are interested in choosing a sequence of views for the
sensor, which has an optimal tradeoff between the energy used
to move and the expected cost of incorrect decisions. Doing
this with respect to all objects in the scene simultaneously re-
sults in a complex joint optimization problem. Instead, we treat
the objects independently and process them sequentially, which
simplifies the task to choosing a sequence of sensor poses to
observe a single object. Further, we restrict the motion of the
sensor to a sphere of radius ρ, centered at the location of the
object. The sensor’s orientation is fixed so that it points at the
centroid of the object. We denote this space of sensor poses by
V (ρ) and refer to it as a viewsphere. A sensor pose x ∈ V (ρ)
is called a viewpoint. See Fig. 2 for an example. At a high-
level planning stage, we assume that we can work with a fully
actuated model of the sensor dynamics. The viewsphere is dis-
cretized into a set of viewpoints X (ρ), described by the nodes
of a graph. The edges connect nodes that are reachable within a

1SO(3) denotes the 3-D rotation Lie group.
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Fig. 1. (Left) Database of object models constructed using kinect fusion [9]. (Right) Example of a scene used to evaluate our framework in simulation.

Fig. 2. Sensor position is restricted to a set of points on a sphere centered at the
location of the object. Its orientation is fixed so that it points at the centroid of
the object. A point cloud is obtained at each viewpoint, key points are selected,
and local features are extracted (top right). The features are used to construct a
VP-Tree (bottom right).

single time step from the current location based on the kinematic
restrictions of the sensor. Since the motion graph is known a pri-
ori, the Floyd–Warshall algorithm can be used to precompute
the all-pair movement cost between viewpoints:

g(x, x′) = gM (x, x′) + g0 = cost of moving from x to x′ on

the viewsphere X (ρ) and taking another observation

where g0 > 0 is a fixed measurement cost, which prevents the
sensor from obtaining an infinite number of measurements with-
out moving. As a result, a motion plan of length T for the sensor
consists of a sequence of viewpoints x1 , . . . , xT ∈ X (ρ) on the
graph, and its cost is

JM (T ) :=
T∑

t=2

g(xt−1 , xt).

C. Active Object Classification and Pose Estimation

Problem: Let x1 ∈ X (ρ) be the initial pose of the mobile
sensor. Given an object with unknown class c and orientation r,
choose a stopping time τ , a sequence of viewpoints x2 , . . . , xτ ∈
X (ρ), and a hypothesis H(ĉ, r̂), which minimize the total cost:

E{JM (τ) + λJD (ĉ, r̂, c, r)} (1)

where λ ≥ 0 determines the relative importance of a correct
decision versus cost of movement. The expectation is over the
correct hypothesis and the observations collected by the sensor.

Our approach to solving the active object classification and
pose estimation problem consists of two stages. First, we use
the VP-Tree to perform static detection in 3-D, as described
in the next section. Since the detection scores are affected by
noise and occlusions, they are not used directly. Instead, the
hypotheses about the detection outcome are maintained in a
probabilistic framework. In the second stage, we use nonmyopic
planning to select better views for the static detector and update
the probabilities of the hypotheses.

IV. STATIC OBJECT DETECTION

In this section, we introduce a novel 3-D object detector,
the VP-Tree, which provides coarse pose estimates in addi-
tion to recognizing an object’s class. The VP-Tree is built on
the principles of the vocabulary tree, introduced by Nistér and
Stewénius [37]. A vocabulary tree is primarily used for large-
scale image retrieval where the number of semantic classes is in
the order of a few thousand. The VP-Tree extends the utility of
the vocabulary tree to joint recognition and pose estimation in
3-D by using point cloud templates extracted from views on a
sphere around the models in the databaseD. The templates serve
to discretize the orientation of an object and make it implicit in
the detection. Given a query point cloud, the best matching tem-
plate carries information about both the class and the pose of
the object relative to the sensor.

A simulated depth sensor is used to extract templates from a
model by observing it from a discrete set {v1(ρ), . . . , vG (ρ)} ⊂
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V (ρ) of viewpoints (see Fig. 2), which need not be the same
as the set of planning viewpoints X (ρ). Here, G stands for
the number of viewpoints (48 were used in the experiments).
The obtained point clouds are collected in a training set T :=
{Pg ,l | g = 1, . . . , G, l = 1, . . . , |D|}. Features, which describe
the local surface curvature, are extracted for each template, as
described below, and are used to train the VP-Tree. Given a
query point cloud at test time, features are extracted, and the
VP-Tree is used to find the template from T , whose features
match those of the query the closest.

A. Feature Extraction

It is necessary to identify a set of keypoints KP for each tem-
plate P ∈ T at which to compute local surface features. Most 3-
D features are some variations of surface normal estimation and
are very sensitive to noise. Using a unique keypoint estimator
would be prone to errors. Instead, the keypoints are obtained by
sampling the point cloud uniformly (see Fig. 2), which accounts
for global appearance and reduces noise sensitivity. Neighbor-
ing points within a fixed radius of every keypoint are used to
compute Fast Point Feature Histograms [38]. The features are
filtered using a pass-through filter and are assembled in the set
{f}kp associated with kp ∈ KP .

B. Training the Viewpoint-Pose Tree

The features
⋃

P∈T
⋃

kp∈KP
{f}kp obtained from the training

set are quantized hierarchically into visual words, which are de-
fined by k-means clustering (see [37] for more details). Instead
of performing unsupervised clustering, the initial cluster centers
are associated with one feature from each of the models in D.
The training set T is partitioned into |D| groups, each consisting
of the features closest to a particular cluster center. The same
process is applied to each group of features, recursively defining
quantization cells by splitting each cell into |D| new parts. The
tree is determined level by level, up to a prespecified maximum
number of levels.

Given a query point cloud Q at test time, we determine its
similarity to a template P by comparing the paths of their fea-
tures down the VP-Tree. The relevance of a feature at node i is
determined by a weight wi := ln

(
|T |/ηi

)
, where ηi is the num-

ber of templates from T with at least one feature path through
node i. The weights are used to define a query descriptor q and
a template descriptor dP , with ith components qi := niwi and
di := miwi, respectively, where ni and mi are the number of
features of the query and the template with a path through node
i. The templates from T are ranked according to a relevance
score:

s(q, dP) :=
∥
∥
∥
∥

dP
‖dP‖1

− q

‖q‖1

∥
∥
∥
∥

1
.

The template with the lowest relevance score is the best matching
one to Q.

C. Performance of the Viewpoint-Pose Tree

The performance of the static detector was evaluated by using
the templates from T as queries to construct a confusion matrix

Fig. 3. Confusion matrix for all classes in the VP-Tree. A class is formed from
all views associated with an object.

Fig. 4. Effect of signal noise on the classification accuracy of the VP-Tree.

(see Fig. 3). If the retrieved template matched the class of the
query, it was considered correct regardless of the viewpoint.
To analyze the noise sensitivity of the VP-Tree, we gradually
increased the noise added to the test set. Gaussian noise with
standard deviation varying from 0.05 to 5 cm on a log scale was
added along the direction of the ray cast from the observer’s
viewpoint. The resulting class retrieval accuracy is shown in
Fig. 4. As expected, the performance starts to degrade as the
amount of noise is increased, but the detector behaves well at
the typical depth camera noise levels.

V. OBSERVATION MODEL

Statistics about the operation of the VP-Tree detector for dif-
ferent viewpoints and object classes are needed to maintain a
probability distribution over the object hypotheses. Using the
VP-Tree output as the sensor observation reduces the observa-
tion space from all possible point clouds to the space of VP-Tree
outputs and includes the operation of the vision algorithm in the
statistics. Given a query point cloud, suppose that the VP-Tree
returns template Pg ,l as the top match. Assume that the tem-
plates in T are indexed so that those obtained from models in
I have a lower l index than the rest. We take the linear index
of Pg ,l as the observation if the match is an object of inter-
est. Otherwise, we record only the model index l, ignoring the
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viewpoint g:

Z =

{
(l − 1)G + g, if l ≤ |I|
G|I| + (l − |I|), if l > |I|.

This makes the observation space 1-D.
In order to compute the likelihood of an observation offline,

we introduce an occlusion state ψ for a point cloud. Suppose
that the z-axis in the sensor frame measures depth and the xy
plane is the image plane. Given parameters ε and E , we say
that a point cloud is occluded from left if it has less than E
points in the image plane to the left of the line x = −ε. If it has
less than E points in the image plane above the line y = ε, it is
occluded from top. Similarly, we define occluded from bottom,
occluded from right, and combinations of them (left-right, left-
top, etc.). Let Ψ denote the set of occlusion states, including
the nonoccluded (ψ∅) and the fully occluded cases. Then, the
likelihood of a VP-Tree observation z for a given sensor pose
x ∈ X (ρ), hypothesis H(c, r), and occlusion ψ ∈ Ψ is

hz (x, c, r, ψ) := P (Z = z | x,H(c, r), ψ).

The function h is called the observation model of the static de-
tector. It can be obtained offline because, for a given occlusion
state, it only depends on the characteristics of the sensor and the
vision algorithm. Since all variables are discrete, h can be rep-
resented with a histogram, which we compute from the training
set T . Note, however, that the observation model depends on
the choice of planning viewpoints and hypotheses, which means
that it needs to be recomputed if they change. Ideally, it should
be computed once for a given training set and then be able to
handle scenarios with different sets of hypotheses and planning
viewpoints.

To make the computation of the observation model inde-
pendent of the choice of hypotheses and planning views, we
discretize the viewsphere V (ρ) very finely into a new set of
viewpoints V o(ρ) with coordinates in the object frame. A nom-
inal observation model

ho
z (v, c, ψ) := P (Z = z | v, c, ψ), v ∈ V o(ρ), c ∈ D, ψ ∈ Ψ

is computed and used to obtain hz (x, c, r, ψ) as follows.
1) Determine the sensor’s pose w(x, r) in the object frame.
2) Find the closest viewpoint v ∈ V o(ρ) to w(x, r) (the fine

discretization avoids a large error).
3) Rotate the lines associated with ψ to the object frame of

c to get the new occlusion region. Obtain a point cloud
from v, remove the points within the occlusion region,
and determine the occlusion state ψo in the object frame.

4) Copy the values from the nominal observation model:

hz (x, c, r, ψ) = ho
z (v, c, ψo).

As a result, it is necessary to compute only the nominal ob-
servation model ho

z (v, c, ψo). The histogram representing ho

was obtained in simulation. A viewsphere with radius ρ = 1 m
was discretized uniformly into 128 viewpoints [the set V o(ρ)].
A simulated depth sensor was used to obtain 20 independent
scores from the VP-Tree for every viewpoint v ∈ V o(ρ), every
model c ∈ D, and every occlusion state ψ ∈ Ψ. Fig. 5 shows

Fig. 5. Observation model obtained with seven hypotheses for the Handlebot-
tle model and the planning viewpoints used in the simulation experiments (see
Section VIII-A). Given a new VP-Tree observation zt+1 from the viewpoint
xt+1 , the observation model is used to determine the data likelihood of the
observation and to update the hypotheses’ prior by applying Bayes rule.

an example of the final observation model obtained from the
nominal one with the planning viewpoints and hypotheses used
in some of our experiments.

VI. ACTIVE HYPOTHESIS TESTING

In this section, we provide a dynamic programming formu-
lation for the single object optimization problem in (1). Let
Ī := I ∪ {c∅} denote the set of all hypothesized classes and
M :=

∑
c∈Ī |R(c)| the total number of hypotheses. The state

of the problem at time t consists of the sensor pose xt ∈ X (ρ)
and the information state pt ∈ [0, 1]M , containing the probabil-
ities for each hypothesis H(c, r):

pt(c, r) := P (H(c, r) | x1:t , z1:t , ψ1:t) ∈ [0, 1]

conditioned on the past sensor trajectory, x1:t ; the past VP-
Tree observations, z1:t ; and the occlusion states of the observed
point clouds, ψ1:t . Suppose that the sensor decides to continue
observing by moving to a new viewpoint xt+1 ∈ X (ρ). The
newly observed point cloud is used to determine the VP-Tree
score zt+1 and the occlusion state ψt+1 . Then, the probabilities
in pt are updated according to Bayes’ rule:

pt+1(c, r) = P (H(c, r) | x1:(t+1) , z1:(t+1) , ψ1:(t+1))

=
P (Zt+1 = zt+1 | xt+1 ,H(c, r), ψt+1)pt(c, r)

P (Zt+1 = zt+1 | xt+1 , ψt+1)

=
hzt + 1 (xt+1 , c, r, ψt+1)pt(c, r)

∑
c ′∈Ī

∑
r ′∈R(c) hzt + 1 (xt+1 , c′, r′, ψt+1)pt(c′, r′)

using the observation model obtained in Section V and the
assumption of independent successive observations. Fig. 5 il-
lustrates the update. Let T (pt , xt+1 , zt+1 , ψt+1) denote the
Bayesian operator above, which maps pt to pt+1 given a view
xt+1 , a VP-Tree score zt+1 , and an occlusion state ψt+1 .

The future sequence of views is planned with the assumption
that there are no occlusions, i.e., ψs = ψ∅ for s > t + 1. This
choice makes the planned sequence independent of the observed
scene and allows it to be computed offline. Supposing for a
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moment that the stopping time, τ , is known, the sensor is not
allowed to move and has to make a decision at time τ . After the
last observation zτ has been incorporated in the posterior pτ the
terminal cost of the problem is

Vτ (xτ , pτ ) = min
ĉ∈Ī,r̂∈R(ĉ)

Ec,r{λJD (ĉ, r̂, c, r)}

= min
ĉ∈Ī,r̂∈R(ĉ)

∑

c∈Ī

∑

r∈R(c)

λJD (ĉ, r̂, c, r)pτ (c, r).

The intermediate stage costs for t = (τ − 1), . . . , 0 are

Vt(xt, pt) = min
v∈X (ρ)

{g(xt, v)

+ EZt + 1 Vt+1(v, T (pt , v, Zt+1 , ψ∅))}.

Letting τ be random again and t go to infinity, we get the
following infinite-horizon dynamic programming equation:

V (x, p) = min
{

min
ĉ∈Ī,r̂∈R(ĉ)

∑

c∈Ī

∑

r∈R(c)

λJD (ĉ, r̂, c, r)pτ (c, r),

min
v∈X (ρ)

g(x, v) + EZ {V (v, T (p, v, Z, ψ∅))}
}

(2)

which is well posed by [39, Prop. 9.8 and 9.10]. Equa-
tion (2) gives an intuition about the relationship between
the cost functions g(·, ·), JD , and the stopping time τ . If
at time t the expected cost of making a mistake, given by
minĉ∈Ī,r̂∈R(ĉ)

∑
c∈Ī

∑
r∈R(c) λJD (ĉ, r̂, c, r)pt(c, r), is smaller

than the cost of taking one more measurement, then the sen-
sor stops and chooses the minimizing hypothesis; otherwise, it
continues observing the scene.

To determine the value function V (x, p), we resort to nu-
merical approximation techniques, which work well when the
state space of the problem is sufficiently small. Define the
set A := {(c, r) | c ∈ I, r ∈ R(c)} ∪ {(c∅, r∅)} of all hypoth-
esized class-orientation pairs. Then, for s1 , s2 ∈ X (ρ) ∪ A, re-
define the cost of movement and the state transition function:

g′(s1 , p, s2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

g(s1 , s2), s1 , s2 ∈ X (ρ)
∑

c∈Ī

∑

r∈R(c)

λJD (c′, r′, c, r)p(c, r),

s1 ∈ X (ρ), s2 = (c′, r′) ∈ A
0, s1 = s2 ∈ A
∞, otherwise

T ′(p, s, z, ψ∅) =
{

T (p, s, z, ψ∅), s ∈ X (ρ)
p, s ∈ A.

Using the new definitions, we can rewrite (2) into the usual
Bellman optimality equation for a POMDP:

V (s, p) = min
s ′∈X (ρ)∪A

{g′(s, p, s′) + EZ {V (s′, T ′(p, s′, Z, ψ∅)}}.

The state space of the POMDP is the discrete space of sensor
poses X (ρ) and the continuous space B := [0, 1]M of distri-
butions over the M hypotheses. Since the viewpoints are cho-
sen locally around the object, the space X (ρ) is very small
in practice (only 42 views were used in our experiments).

The main computational challenge comes from the exponen-
tial growth of the size of B with the number of hypothe-
ses M . To alleviate this difficulty, we apply a point-based
POMDP algorithm [25], [26], which uses samples to compute
successive approximations to the optimally reachable part of
B. The algorithm computes an approximate stationary policy
μ̂ : (X (ρ) ∪ A) × B → X (ρ) ∪ A, which maps the current sen-
sor viewpoint xt and the hypotheses’ probabilities pt to a fu-
ture viewpoint or a guess of the correct hypothesis. In practice,
there is some control over the size of M . In most applica-
tions, the number of objects of interest is small, and we show in
Section VIII-B that a very sparse discretization of the orientation
space is sufficient to obtain accurate orientation estimates.

VII. IMPLEMENTATION DETAILS

A. Segmentation and Data Association

Our experiments were carried out in a tabletop setting, which
simplifies the problems of segmentation and data association.
Point clouds obtained from the scene were clustered according to
Euclidean distance by a Kd-tree. An occupancy grid represent-
ing the 2-D table surface was maintained in order to associate
the clustered surfaces with new or previously seen objects. Each
cell of the grid could be unoccupied or associated with the ID
of an existing object. The centroid of a newly obtained object
surface was projected to the table and compared with the occu-
pied cells (if any). If the cell corresponding to the new centroid
was close enough to a cell associated with an existing object,
the new surface was associated with that object and its cell was
indexed by the existing object’s ID. Otherwise, a new object
with a unique ID was instantiated. Since segmentation was not
the focus of this paper, we did not explicitly address the case
when objects were touching. In such situations, the detection
outcome would be inconsistent and dependent on the chosen
viewpoints.

B. Coupling Among Objects

The optimization in problem (1) is with respect to a single
object, but while executing it, the sensor obtains surfaces from
other objects within its field of view. To utilize these observa-
tions, we have the sensor turn toward the centroid of every visible
object and update the probabilities of the hypotheses associated
with the object. The turning is required because the observation
model was trained only for a sensor facing the centroid of the
object. Removing this assumption requires more training data
and complicates the observation model computation. The energy
used for these turns is not included in the optimization in (1).

The scores obtained from the VP-Tree are not affected sig-
nificantly by scaling. This allows us to vary the radius ρ of the
viewsphere in order to ease the sensor movement and to update
hypotheses for other objects within the field of view. The radius
is set to 1 m by default, but if the next viewpoint is not reachable,
it can be adapted to accommodate for obstacles and the sensor
dynamics. Algorithm 1 summarizes the complete view planning
framework.
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VIII. PERFORMANCE EVALUATION

The VP-Tree was trained on templates extracted using a sim-
ulated depth sensor from 48 viewpoints, uniformly distributed
on a viewsphere of radius ρ = 1 m (see Fig. 2). The observa-
tion model was trained as described in the last paragraph of
Section V. Since the VP-Tree scores are not significantly af-
fected by scaling, the score likelihoods remain similar as the
viewsphere radius varies. We simplify the training process by
using a fixed viewsphere radius, which limits the number of
sensor poses at which we train the observation model. The rea-
son for using a simulated sensor is also simply pragmatic. A lot
of point clouds, each accompanied with a ground truth sensor
pose, are needed for every model in the database in order to train
the observation model. This extensive training is simpler to do
in simulation but affects the recognition results in real scenes
adversely.

We used |X (ρ)| = 42 planning viewpoints in the upper hemi-
sphere of the viewsphere to avoid placing the sensor under the
table. The following costs were used in all experiments:

λ = 75, JD (ĉ, r̂, c, r) =
{

0, ĉ = c and r̂ = r
1, otherwise

g(x, x′) = gcd(x, x′) + g0 (3)

where gcd(·, ·) is the great-circle distance between two view-
points x, x′ ∈ X (ρ), and g0 = 1 is the measurement cost. The
parameter λ was set high (heuristically) in order to favor correct
decisions over speed and to emphasize the advantage of active
view planning over static detection. If necessary, a more prin-
cipled approach to choosing λ, such as cross validation, can be
used.

A. Performance Evaluation in Simulation

A single object of interest (Handlebottle) was used: I =
{cH }. Keeping the pitch and roll zero, the space of object yaws
was discretized into six bins to formulate the hypotheses fol-
lowing:

H(∅) := H(c∅, r∅) = The object is not a Handlebottle

H(r) := H(cH , r) = The object is a Handlebottle with yaw

r ∈ {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}.
Seventy synthetic scenes were generated with ten true positives
for each of the seven hypotheses. The true positive object was
placed in the middle of the table, while the rest of the objects
served as occluders. Fig. 1 shows an example of the scenes used
in the simulation.

Four approaches for selecting sequences of views from X (ρ)
were compared. The static approach takes a single measurement
from the starting viewpoint and makes a decision based on the
output from the VP-Tree. This is the traditional approach in
machine perception. The second approach is our NVP. Note
that the NVP policy is computed offline and used as a lookup
table, which makes the planning decisions online instantaneous.

The third approach (random) is a random walk on the
viewsphere, which avoids revisiting viewpoints. It ranks the
viewpoints, which have yet to be visited, according to the
great-circle distance from the current viewpoint. Then, it se-
lects a viewpoint at random among the closest ones. The ob-
servation model is used to update the hypotheses’ probabilities
over time. The experiment is terminated when the probability
of one hypothesis is above 60%, i.e., τ = inf{t ≥ 0 | ∃(c, r) ∈
A such that pt(c, r) ≥ 0.6}, and that hypothesis is chosen as the
sensor’s decision. This stopping rule was chosen empirically so
that the random approach makes about the same number of mea-
surements as NVP with the costs given in (3). This allows us to
compare the informativeness of the chosen sensor views.

The widely used greedy mutual information (GMI) approach
is last. Specialized to our setting, the GMI policy takes the
following form:

μGMI(x, p)

= arg max
x ′∈NV

I(H(c, r);Z)
g(x, x′)

= arg min
x ′∈NV

H(H(c, r) | Z)
g(x, x′)

= arg min
x ′∈NV

1
g(x, x′)

∑

z∈Z

∑

c∈Ī

∑

r∈R(c)

p(c, r)hz (x′, c, r, ψ∅)

× log2

(∑
c ′∈Ī

∑
r ′∈R(c ′) p(c′, r′)hz (x′, c′, r′, ψ∅)

p(c, r)hz (x′, c, r, ψ∅)

)

where NV := {x ∈ X (ρ) | x has not been visited}, H(c, r) is
the true hypothesis, I(·; ·) is mutual information, H(· | ·) is con-
ditional entropy, and Z is the space of observations as defined in
Section V. The same stopping rule as for the random approach
was used so that the number of measurements made by GMI is
roughly the same as those for random and NVP.



1086 IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014

TABLE I
SIMULATION RESULTS FOR A BOTTLE DETECTION EXPERIMENT

Fifty repetitions with different starting sensor poses were car-
ried out on every scene. For each hypothesis, the measurement
cost

∑τ
t=1 g0 , the movement cost

∑τ
t=2 gcd(xt, xt−1), and the

decision cost JD were averaged over all repetitions. The accu-
racy of each approach and the average costs are presented in
Table I. The following conclusions can be made.

1) The active approaches for object classification and pose
estimation significantly outperform the traditional single-
view approach in terms of accuracy. In most cases, by
making one to two extra measurements, they are able
to choose the correct hypothesis more than 20% more
frequently.

2) There is a steady improvement in performance when going
from random viewpoint selection to greedy view planning
and, finally, to NVP. Compared with the random and the
GMI approaches, our NVP method needs less movement
and less measurements on average and, as demonstrated
by its lower average decision cost, is able to select more
informative views.

3) The performance gain of NVP over GMI is not significant.
In some scenarios, it might not justify the complicated
offline training. For example, it is much easier to include
additional constraints, such as occlusion avoidance, with
greedy planning.

4) The most notable advantage of NVP comes from the adap-
tive stopping criterion. This is especially evident when the
observed object is clutter (H(∅) is correct). In this case,
the scores provided by the VP-Tree are not consistent and
cause the probabilities of various hypotheses to increase
and decrease frequently. As a result, the GMI and ran-
dom approaches need many measurements to reach their

prespecified stopping time. In contrast, NVP employs a
longer planning horizon and recognizes that if the clutter
class is likely, it is better to stop sooner than to attempt
to increase the confidence as many (costly) measurements
would be needed. The main advantage of NVP over GMI
is not that it selects much more informative views but that
it optimizes its stopping criterion.

B. Accuracy of the Orientation Estimates

Since the object orientations in a real scene are not discrete,
a refinement step is needed if the algorithm detects an object
of interest, i.e., decides on ĉ �= c∅. The surfaces observed from
an object are accumulated over time. After a decision, these
surfaces are aligned using an iterative closest point (IPC) al-
gorithm with the surface of the database model, corresponding
to H(ĉ, r̂). Thus, the final decision includes both a class and a
continuous pose estimate.

Simulations were carried out to evaluate the accuracy of
the continuous orientation estimates with respect to the ground
truth. The following distance metric on SO(3) was used to mea-
sure the error between two orientations represented by quater-
nions q1 and q2 :

d(q1 , q2) = cos−1(2〈q1 , q2〉2 − 1
)

where 〈a1 + b1 i + c1j + d1k, a2 + b2 i + c2j + d2k〉 = a1a2
+ b1b2 + c1c2 + d1d2 denotes the quaternion inner product.

A single object of interest (Watercan) was used: I = {cW }.
The ground truth yaw (α) and roll (γ) of the Watercan were
varied from 0◦ to 360◦ at 7.5◦ increments. The pitch (β) was kept
at zero. Synthetic scenes were generated for each orientation.
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Fig. 6. Twenty-five hypotheses (red dotted lines) were used to decide on
the orientation of a Watercan. The top plot shows the error in the orientation
estimates as the ground truth orientation varies. The error averaged over the
ground truth roll, the hypotheses over the object’s yaw (blue dots), and the
overall average error (red line) are shown in the bottom plot.

Hypotheses were formulated by discretizing the yaw space into
six bins and the roll space into four bins:

H(c∅, r∅) = The object is not a Watercan

H(cW , r) = The object is a Watercan with orientation

r = (α, β, γ) ∈ {(iy60◦, 0, ir90◦) | iy = 0, . . . , 5

ir = 0, . . . , 3}.

Fifty repetitions with different starting sensor poses were car-
ried out on every test scene. The errors in the orientation esti-
mates were averaged, and the results are presented in Fig. 6. As
expected, the orientation estimates get worse for ground truth
orientations that are further away from the hypothesized orien-
tations. On the bottom plot, it can be seen that the hypothesized
yaws correspond to local minima in the orientation error. This
suggests that the number of hypotheses needs to be increased if
a better orientation estimate is desired. Large errors result when
the guessed hypothesis is not correct. Even when it is correct, if
the real (continuous) pose of the object is far from the hypoth-
esized one, the IPC algorithm might not perform well because
it is very sensitive to the initialization. Still, a rather sparse set
of hypothesized orientations was sufficient to obtain an aver-
age error of 39◦. For these experiments, the average number of
measurements was 2.85, and the average movement cost was
2.61.

C. Performance Evaluation in Real-World Experiments

In this section, we demonstrate that the real-world perfor-
mance of NVP is similar to the simulation. We expect the same
to be true for the rest of the view planning methods and did not
carry out additional real experiments. It is unlikely that their
behavior differs from the trends observed in Section VIII-A.

An Asus Xtion RGB-D camera attached to the right wrist
of a PR2 robot was used as the mobile sensor. As before, the
sensor’s task was to detect if any Handlebottles (I = {cH })
are present on a cluttered table and estimate their poses. Fig. 7
shows the experimental setup. Twelve table setups were used,
each containing two instances of the object of interest and eight
to ten other objects. Ten repetitions were carried out for each
setup, which in total corresponded to 40 true positive cases for
every hypothesis. The results are summarized in Table II.

The performance obtained in the real experiments is compa-
rable with the simulation results. On average, more movements
and more measurements were required to make a decision in
practice than in simulation, which can be attributed to the fact
that the VP-Tree and the observation model were trained in sim-
ulation but were used to process real observations. The VP-Tree
scores were inconsistent sometimes, which caused the hypothe-
ses’ probabilities to fluctuate and the sensor took longer to make
decisions. Still, the results from the experiments are very satis-
factory with an average accuracy of 76% for true positives and
98% for true negatives. To demonstrate that our approach can
handle more complicated scenarios, several experiments were
performed with two objects of interest (Handlebottle and Water-
can): I = {cH , cW }, and 53 hypotheses associated with likely
poses for the two objects. See the video from Fig. 7 for more
details.

The detection process demonstrated in the video takes a long
time. One reason is that the cost of an incorrect decision was set
very high compared with the cost of moving in order to minimize
the mistakes made by the observer. As a result, the sensor takes
many measurements but changing this behavior simply requires
adjusting λ. There are several other aspects of our framework
that slow down the processing and need improvement, however.
First, the occlusion model should be used in the planning stage
to avoid visiting viewpoints with limited visibility. Second, as
an artifact of the way we trained the observation model, the sen-
sor has to turn toward the centroid of every object in its field of
view. This is slow and undesirable. The observation model can
be modified, at the expense of a more demanding training stage,
to include sensor poses that do not face the object’s centroid.
Finally, an unavoidable computational cost is due to the feature
extraction from the observed surfaces and the point cloud regis-
tration needed to localize the sensor in the global frame as our
method assumes that the sensor has accurate self-localization.

IX. CONCLUSION

This study has addressed the problem of classification and
pose estimation of semantically important objects by actively
controlling the viewpoint of a mobile depth sensor. A novel
static detector, i.e., the VP-Tree, which combines detection
and pose estimation in 3-D, was introduced. To alleviate the
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Fig. 7. Example of the experimental setup (left), which contains two instances of the object of interest (Handlebottle). A PR2 robot with an Asus Xtion RGB-D
camera attached to the right wrist (middle) employs the NVP approach for active object classification and pose estimation. In the robot’s understanding of the
scene (right), the object which is currently under evaluation is colored yellow. Once the system makes a decision about an object, it is colored green if it is
of interest, i.e., in I, and red otherwise. Hypothesis H (0◦) (Handlebottle with yaw 0◦) was chosen correctly for the green object. See the attached video or
http://www.seas.upenn.edu/∼atanasov/vid/Atanasov_ActiveObjectDetection_TRO14.mp4 for more details.

TABLE II
RESULTS FOR A REAL-WORLD BOTTLE DETECTION EXPERIMENT

difficulties associated with single-view recognition, we formu-
lated hypotheses about the class and orientation of an unknown
object and proposed a soft detection strategy, in which the sen-
sor moves to increase its confidence in the correct hypothesis.
Nonmyopic planning was used to select views that balance the
amount of energy spent for sensor motion with the benefit of
decreasing the probability of an incorrect decision.

The validity of our approach was verified both in simula-
tion and in real-world experiments with an RGB-D camera at-
tached to the wrist of a PR2 robot. The performance of the NVP
approach was compared with greedy view selection and with
the traditional static detection. The results show that the active
approaches provide a significant improvement over static de-
tection, while the nonmyopic approach outperforms the greedy
method but not significantly. The main advantage of nonmyopic
planning over the greedy approach is the adaptive stopping cri-
terion, which depends on the observations received online. Our
framework has several other advantages over existing work. The
idea of quantifying the likelihood of the sensor observations us-
ing a probabilistic observation model (see Section V) is general
and applicable to real sensors. The proposed planning frame-
work is independent of the static object detector and can be used
with various existing algorithms in machine perception. Finally,
instead of using an information-theoretic cost, the probability
of an incorrect decision is minimized directly. The drawback of
our approach is that it requires an accurate estimate of the sensor
pose and contains no explicit mechanism to handle occlusions

during the planning stage. Moreover, the sequence of views is
selected with respect to a single object instead of all objects
within the field of view.

Future work will focus on improving the occlusion model
and using it during the planning stage. This will necessitate
replanning as the motion policy will no longer be computable
offline. The effect of introducing sensor dynamics in the active
hypothesis testing problem is of great interest as well.
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