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Abstract—Most approaches to robot localization rely on low-
level geometric features such as points, lines, and planes. In this
paper, we use object recognition to obtain semantic information
from the robot’s sensors and consider the task of localizing the
robot within a prior map of landmarks, which are annotated with
semantic labels. As object recognition algorithms miss detections
and produce false alarms, correct data association between the
detections and the landmarks on the map is central to the
semantic localization problem. Instead of the traditional vector-
based representations, we use random finite sets to represent the
object detections. This allows us to explicitly incorporate missed
detections, false alarms, and data association in the sensor model.
Our second contribution is to reduce the problem of computing
the likelihood of a set-valued observation to the problem of
computing a matrix permanent. It is this crucial transformation
that enables us to solve the semantic localization problem with
a polynomial-time approximation to the set-based Bayes filter.
The performance of our approach is demonstrated in simulation
and in a real environment using a deformable-part-model-based
object detector. Comparisons are made with the traditional lidar-
based geometric Monte-Carlo localization.

I. INTRODUCTION

Localization, the problem of estimating the pose of a mobile
robot from sensor data given a prior map, is fundamental in
the field of robotics. Reliable navigation, object manipulation,
mapping, and many other tasks require accurate knowledge of
the robot’s pose. Most existing approaches to localization and
the related simultaneous localization and mapping (SLAM)
rely on low-level geometric features such as points, lines, and
planes and on precise metric maps, which store the geometric
information. In contrast, we propose to use the recent advances
in object recognition to obtain semantic information from the
robot’s sensors and localize the robot within a prior map of
landmarks, which are annotated with semantic labels. This has
several benefits. Localizing against semantically meaningful
landmarks is less ambiguous and helps with global localization
and loop-closure. Also, high-precision sensors such as laser
range finders and 3-D lidars are not crucial for accurate
localization and can be replaced by regular cameras. Finally,
there is an abundance of maps for GPS-denied environments
which are semantically annotated, perhaps even sketched by
hand, and could be used for the task. Maps can also be con-
structed via the semantic mapping approaches which received
significant attention in recent years [18, 12, 32, 29, 7].

Monte-Carlo localization based on geometric features was
introduced by Dellaert et al. [10]. The knowledge about the
robot’s pose is represented by a weighted set of samples
(particles) and is updated over time as the robot moves and

senses the environment. This and other traditional localization
methods use vectors to represent the map and the sensor
measurements. Bayesian filtering in the resulting vector space
relies on the assumption that the data association, i.e., the
correspondence between the sensor observations and the fea-
tures on the map, is known. While this might not be an issue
for scan matching in occupancy-grid maps, the assumption is
violated for landmark-based maps. Existing landmark-based
localization (and SLAM) techniques require external solutions
to the problems of data association and clutter rejection [3, 25].

There is a line of work addressing visual localization,
which matches observed image features to a database, whose
images correspond to the nodes of a topological map, e.g.
[40, 35, 2, 39, 24, 17]. Wang et al. [39] represent each location
in a topological map by a set of interest points that can be
reliably detected in images. A nearest neighbor search is used
to match observed SIFT features to the database. Košecká
and Li [17] also characterize scale-invariant key points by the
SIFT descriptor and find nodes in the topological map, whose
features match the observed ones the best. The drawback
of maximum likelihood data association is that when it is
wrong it quickly causes the localization filter to diverge. Hesch
et al. [13] study the effects of unobservable directions on
the estimator consistency in vision-aided inertial navigation
systems. As object recognition algorithms miss detections and
produce false alarms, correct data association is crucial for
semantic localization and semantic world modeling too [41].

Instead of the traditional vector-based representations, we
use random finite sets (RFS) to represent the semantic infor-
mation obtained from performing object recognition on the
robot’s observations. This allows us to explicitly incorporate
missed detections, false alarms, and data association in the sen-
sor model. In recent years, RFS-based solutions to SLAM have
gained popularity due to their unified treatment of filtering and
data association. Mahler [23] derived the Bayesian recursion
with RFS-valued observations and proposed a first-moment ap-
proximation, called the probability hypothesis density (PHD)
filter. The PHD filter has been successfully applied to SLAM
by Kalyan et al. [15], Lee et al. [20], and Mullane et al. [27].
In these works, the vehicle trajectory is tracked by a particle
filter and the first moment of a trajectory-conditioned map
for each particle is propagated via a Gaussian-mixture PHD
filter. Bishop and Jensfelt [6] address geometric localization
by formulating hypotheses about the robot’s state and tracking
them with the PHD filter. Zhang et al. [43] propose an
approach for visual odometry using a PHD filter to track SIFT



features extracted from observed images. None of these RFS-
based approaches have been applied in a semantic setting and
all rely on a first-moment approximation via the PHD filter.
In addition to modeling semantic information, we carry out
filtering with the full RFS observation model. Very few works
deal with the full model [9, 22, 36] and none have applied it to
semantic localization or studied its computational complexity.

There are several related semantic localization approaches
which do not rely on an RFS model and do not explicitly
handle data association problems. Anati et al. [1] match
histogram of gradient energies and quantized colors features
to expected features from the prior semantic map. Yi et al.
[42, 16] use semantic descriptions of distance and bearing
in a contextual map for active semantic localization. Bao
and Savarese [4] propose a maximum likelihood estimation
formulation for Semantic Structure from Motion. In addition
to recovering the camera parameters (motion) and the 3-D
location of image features (structure), the authors recover the
3-D locations, orientations, and categories of objects in the
scene. A Markov Chain Monte Carlo algorithm is used to
solve a batch estimation problem by sampling from the data
likelihood of the observed measurements.

Summary of contributions:
• We represent the semantic information obtained from

object recognition with random finite sets. This allows
us to incorporate missed detections and data association
with the landmarks on the map in the sensor model.

• We prove that obtaining the likelihood of a RFS-valued
observation is equivalent to a matrix permanent com-
putation. It is this crucial transformation that enables
an efficient polynomial-time approximation to Bayesian
filtering with set-valued observations.

Connections between the matrix permanent and data asso-
ciation have been identified in the target tracking community
[30, 8, 31, 26], [21, Ch.11] but this is the first connection with
the random-finite-set observation model.

Paper Organization: In Sec. II we formulate the semantic
localization problem precisely. In Sec. III we provide a proba-
bilistic model, which quantifies the likelihood of a random
finite set of object detections and captures false positives,
missed detections, and unknown data association. The key
relationship between filtering with the RFS observation model
and the matrix permanent is derived in Sec. IV. Finally, in
Sec. V, we present results from simulations and real-world
experiments and discuss the performance of our approach.

II. PROBLEM FORMULATION

Consider a mobile robot, whose dynamics are governed
by the motion model xt+1 = f(xt, ut, wt), where xt :=
(xpt , x

r
t , x

a
t ) is the robot state, containing its position xpt ,

orientation xrt , and other variables xat such as velocity and
acceleration, ut is the control input, and wt is the motion noise.
Alternatively, the model can be specified by the probability
density function (pdf) of xt+1 conditioned on xt and ut:

pf (· | xt, ut). (1)

The robot has access to a semantic map of the environment
containing n objects with known poses and classes. Let the set
Y = {y1, . . . , yn} represent the map, where yi := (ypi , y

r
i , y

c
i )

consists of the position ypi , orientation yri , and class yci of the
i-th object. Depending on the application, the object state yi
may capture other observable properties of interest.

At each time t, the robot receives data from its sensors
and runs an object recognition algorithm, capable of detecting
instances from the set of object classes C present in Y . If
some object y ∈ Y is visible and detected from the current
robot pose xt, then the algorithm returns a detection zt. In
the remainder, we assume that a detection, zt := (ct, st, bt),
consists of a detected class ct ∈ C, a detection score st ∈ S,
and an estimate bt ∈ B of the bearing from the sensor to
the detected object, where S is the range of possible scores
and B is the range of bearings, usually specified by the
sensor’s field of view (e.g. a camera with B = [−47◦, 47◦]
was used in our experiments). Depending on the sensors and
the visual processing, zt could also contain a bounding box,
range, color, or other information about the detected object.
Detections might also be generated by clutter, which includes
the background and any objects not captured on the map Y .
Due to false alarms and misses, a randomly-sized collection
of detections is returned by the object recognition algorithm
at time t and is best represented by a random finite set Zt. For
any t, denote the pdf of robot state xt conditioned on the map
Y , the past detections Z0:t, and the control history u0:t−1 by
pt|t and that of xt | Y,Z0:t, u0:t by pt+1|t.

Problem (Semantic Localization). Suppose that the control ut
is applied to the robot at time t ≥ 0 and, after moving, the
robot obtains a random finite set Zt+1 of detections. Given a
prior pdf pt|t and the semantic map Y , compute the posterior
pdf pt+1|t+1 which takes Zt+1 and ut into account.

It is natural to approach the semantic localization problem
using recursive Bayesian estimation. This, however, requires
a probabilistic model of the semantic observations, which
quantifies the likelihood of the random set Zt+1 of detections
conditioned on the set of objects Y and the robot state xt+1.

III. SEMANTIC OBSERVATION MODEL

A. Observation Model for a Single Object Detection

We begin by constructing a probabilistic model of the
semantic observations obtained from a single object in the
environment. It consists of two ingredients: a detection model
and an observation model. The detection model quantifies the
probability of detecting an object y ∈ Y from a given robot
state x. Let β(x, y) be the true bearing from the robot’s sensor
to the object y in the sensor frame1. Let the field of view of
the sensor2 be described by the set FoV (x). Objects outside

1For example, in 2-D, assuming the robot and the sensor frames coincide,
β(x, y) := | tan−1((xp(2) − yp(2))/(xp(1) − yp(1)))− xr|.

2The field of view of a camera in 2-D, assuming its frame coincides with the
robot’s, can be represented by {w ∈ R2 | ‖xp−w‖2 ≤ rd, β(x,w) ≤ αd},
where αd is the angle of view and rd is the maximum range at which an
object can be detected.



the field of view cannot be detected. For the ones within, we
use a distance-decaying probability of detection:

pd(y | x) =

{
pd,0e

−‖yp−xp‖2/σ2
d if yp ∈ FoV (x),

0 else,
(2)

where pd,0 and σ2
d are constants specifying the dependence of

the detection probability on distance and are typically learned
from training data. The constants might depend on the object’s
class yc but this is not explicit to simplify notation. A more
complex model which depends on the relative orientation
between x and y is also possible.

Supposing that an object y ∈ Y is detected, the observation
model quantifies the likelihood of the resulting detection
z = (c, s, b) conditioned on the true object state y and the
robot state x. Assuming that conditioned on y, the bearing
measurement b is independent of the detected class c and the
detection score s, it is appropriate to model its conditional
pdf pβ(· | y, x) as that of a Gaussian distribution with
mean β(x, y) and covariance Σβ . The covariance can be
learned from training data and can be class dependent. Since
object recognition algorithms aim to be scale- and orientation-
invariant, we can also assume that the detected class and score
are independent of the robot state x. Then, the observation
model of the semantic measurement z can be decomposed as:

pz(z | y, x) = pc(c | yc)ps(s | c, yc)pβ(b | y, x), (3)

where pc(c | yc) is the confusion matrix of the object detector
and ps(s | c, yc) is the detection score likelihood. The latter
can be learned for example by recording the detection scores
from the detected positive examples in a training set and using
kernel density estimation (see Fig. 7). Finally, a model of the
pdf, κ(z), of a false positive detection generated by clutter is
needed. While it can also be learned from data, it is realistic
to assume that clutter detections are uniformly distributed and
independent of the robot’s state:

κ(z) =
1

|C|
1

|S|
1

|B|
. (4)

B. Observation Model for a Random Number of Detections

In this section we use Mahler’s finite set statistics [23] to
model the pdf of a random finite set Z = {z1, . . . , zm} of
object detections. The following assumptions are necessary:

(A1) No detection is generated by more than one object
(A2) An object y ∈ Y generates either a single detection

with probability pd(y | x) or a missed detection with
probability 1− pd(y | x)

(A3) The clutter process is Poisson-distributed in time with
expected value λ and distributed in space according to
the pdf κ(z) in (4)

(A4) The clutter process and the object-detection process are
statistically independent and all detections are condition-
ally independent given the object states

(A5) Any two detections in Z are independent conditioned on
the map Y and the robot state x

Let Yd(x) := {y ∈ Y | pd(y | x) > 0} be the set of detectable
objects given a robot state x. We specify the pdf of Z for a
series of increasingly more complex cases.

1) All measurements are clutter: If there are no objects in
proximity to the sensor, i.e., Yd(x) = ∅, then any generated
detections would be from clutter. The correct observation
model in this case is due to the Poisson clutter process:

p(Z | ∅, x) = e−λ
(∏
z∈Z

λκ(z)

)
. (5)

This integrates to 1 if the set integral definition in [23,
Ch.11.3.3] is used.

2) No missed detections and no clutter: This is the case
of “perfect vision”, when every detectable object generates a
detection, i.e. pd(y | x) ≡ 1 for any y ∈ FoV (x), and no
detections arise in any other way, i.e. λ = 0. If the number of
detections m is not equal to the cardinality |Yd(x)| of the set
of detectable objects, then p(Z | Yd(x), x) = 0 and otherwise:

p(Z | Yd(x), x) =
∑
π

m∏
i=1

pz(zπ(i) | yi, x), (6)

where the sum is over all permutations π of the set {1, . . . ,m}
and {y1, . . . , ym} is an enumeration of Yd(x). For a derivation
see [23, Ch.12.3]. In general, it is not clear which of the de-
tectable objects on the map produced which of the detections.
A permutation π specifies a particular correspondence between
the m detectable objects and the m received detections. Intu-
itively, all associations are plausible and we can think of (6) as
quantifying the likelihood of Z by averaging the likelihoods
of the individual detections over all data associations.

3) No clutter but missed detections are possible: If m >
|Yd(x)|, then p(Z | Yd(x), x) = 0. If m = 0, then:

p(∅ | Yd(x), x) =

|Yd(x)|∏
i=1

(1− pd(yi | x)) (7)

and if m ∈ {1, . . . , |Yd(x)|}, then

p(Z | Yd(x), x) =

p(∅ | Yd(x), x)
∑
π

∏
i|π(i)>0

pd(yi | x)pz(zπ(i) | yi, x)

(1− pd(yi | x))
,

where the sum is over all functions π : {1, . . . , |Yd(x)|} →
{0, 1, . . . ,m} with the property: π(i) = π(i′) > 0 ⇒ i = i′,
which ensures that (A1) is satisfied. The index ‘0’ in the range
of π represents the case when a detectable object was missed.
For example, it allows for the possibility that all detectable
objects are missed (associated with ‘0’) and all m detections
are due to clutter.

4) No missed detections but clutter is possible: If m <
|Yd(x)|, then p(Z | Yd(x), x) = 0; otherwise

p(Z | Yd(x), x) = p(Z | ∅, x)
∑
π

|Yd(x)|∏
i=1

pz(zπ(i) | yi, x)

λκ(zπ(i))
,

where the summation is over all one-to-one functions π :
{1, . . . , |Yd(x)|} → {1, . . . ,m}.



5) Both missed detections and clutter are possible: This
is the most general model and captures all artifacts of object
recognition: missed detections, false positives, and unknown
data association. If |Yd(x)| = 0, then the pdf is given by (5).
If m = 0, then the pdf is given by (7). Otherwise:

p(Z | Yd(x), x) = p(Z | ∅, x)p(∅ | Yd(x), x) (8)

×
∑
π

∏
i|π(i)>0

pd(yi | x)pz(zπ(i) | yi, x)

(1− pd(yi | x))λκ(zπ(i))
,

where the sum is over all functions π : {1, . . . , |Yd(x)|} →
{0, 1, . . . ,m} with the property: π(i) = π(i′) > 0⇒ i = i′.

Having derived a general observation model for a random
number of object detections, we can now state the Bayesian
filtering equations needed for semantic localization.

Proposition 1. The Bayesian recursion which solves the
Semantic Localization problem is:

Predict: pt+1|t(x) =

∫
pf (x | x′, ut)pt|t(x′)dx′ (9)

Update: pt+1|t+1(x) = ηt+1p(Zt+1 | Yd(x), x)pt+1|t(x),

where p(Zt+1 | Yd(x), x) is the random finite set observation
model in (8) and ηt+1 is a normalization constant.

IV. APPROXIMATING THE SET-BASED BAYES FILTER

While the Bayesian recursion with set-valued observations
in Prop. 1 is theoretically appealing, like its vector-based
counterpart it is intractable. An accurate and efficient approx-
imation to the set-based Bayes filter is therefore the subject of
this section. The particle filter [37, Ch.4] is an approximation
to the Bayes filter with vector-valued observations, which has
been very successful for geometric localization. Since the
robot state is still vector-valued, we represent its pdf pt|t at
time t with a set of particles {wkt|t, x

k
t|t}

N
k=1:

pt|t(x) ≈
N∑
k=1

wkt|tδ(x− x
k
t|t),

where δ(·) is a Dirac delta function. The particle filter im-
plementation of (9) with the motion model pf as a proposal
distribution, is summarized in Alg. 1. It appears standard with
the exception that, instead of the conventional vector-based
measurement update, line 6 requires computing the likelihood
of the random set Zt+1 according to (8). In particular, it is
not apparent how to efficiently compute the sum over all
associations π. To gain intuition we begin with the simpler
case of “perfect vision” in (6).

Fix a robot state x and consider the non-trivial case when the
received measurements Z and the detectable landmarks Yd(x)
are of the same cardinality m. Represent the sets Yd(x) and
Z by the vertices of a complete (balanced) bipartite graph.
In detail, let V1 := Yd(x) and V2 := Z be the vertices
and E be the complete set of edges. Associate the weight
we := pz(z | y, x) with every edge e := (z, y) ∈ E and
consider the weighted bipartite graph G := (V1, V2, E, w).
The permutations π in (6) correspond to different associations

Algorithm 1 Set-based Particle Filter

1: Input: Particle set {wk
t|t, x

k
t|t}

N
k=1, motion model pdf pf , observation

model pdf p, semantic map Y , control input ut, detection set Zt+1

2: Output: Particle set {wk
t+1|t+1

, xk
t+1|t+1

}Nk=1
3: for k = 1, . . . , N do
4: Predict: Draw xk

t+1|t from pdf pf (· | xkt|t, ut)
5: wk

t+1|t ← wk
t|t

6: Update: wk
t+1|t+1

← p
(
Zt+1 | Yd(xkt+1|t), x

k
t+1|t

)
wk

t+1|t
7: xk

t+1|t+1
← xk

t+1|t

8: Normalize the weights {wk
t+1|t+1

}Nk=1 and re-sample if necessary

between the objects V1 and the measurements V2 or in other
words to perfect matchings3 in G. Given a perfect matching π,
its associated product term inside the sum in (6) corresponds
to its weight. Then, the sum over all π corresponds to the sum
of the weights of all perfect matchings in G, which notably is
equivalent to the permanent of the adjacency matrix of G.

Definition 1 (Permanent). The permanent of an n×m matrix
A = [A(i, j)] with n ≤ m is defined as:

per(A) :=
∑
π

n∏
i=1

A(i, π(i)),

where the sum is over all one-to-one functions π : {1, . . . , n}
→ {1, . . . ,m}. If n > m, then per(A) := per(AT ).

It is now clear that the detection likelihood in the case of
no false positives and no missed detections can be obtained
by computing the permanent of a matrix.

Proposition 2. The likelihood in (6) of a random finite set of
detections Z = {z1, . . . , zm}, in the case of no false positives
and no missed detections, with |Yd(x)| = m satisfies:

p(Z | Yd(x), x) = per(P ),

where P is a m×m matrix with P (i, j) := pz(zj | yi, x).

The general case in (8), where both false positives and
missed detections are possible can be analyzed using the same
graph matching intuition. The following is our main result and
its proof appears in the Appendix.

Theorem 1. Given a robot state x and set of detectable objects
Yd(x) with |Yd(x)| > 0, the likelihood of a random finite set
Z = {z1, . . . , zm} of detections, with m > 0, when both
clutter and missed detections are possible satisfies:

p(Z | Yd(x), x) = e−λ
(∏
z∈Z

λκ(z)

) ∏
y∈Yd(x)

(1− pd(y | x))

× 1

m!
per

([
Q I|Yd(x)|

1m,m 1m,|Yd(x)|

])
, (10)

where λ is the expected number of clutter detections, κ(·) is
the spatial pdf of the clutter, pd(y | x) is the probability of

3A matching in graph G is a subgraph of G in which no two edges share
a common vertex. The weight of a matching is the product of all its edge
weights. A matching is perfect if it contains all of G’s vertices.



detecting object y ∈ Yd(x), 1n,m is a n × m matrix of all
ones, and Q is a matrix with elements:

Q(i, j) :=
pd(yi | x)pz(zj | yi, x)

(1− pd(yi | x))λκ(zj)
,

i = 1, . . . , |Yd(x)|,
j = 1, . . . ,m,

where without loss of generality it is assumed that |Yd(x)| ≤
m; otherwise re-label the sets Z and Yd.

Theorem 1 maps the problem of determining the pdf of Z in
the general case in (8) to the problem of finding the permanent
of a (m+|Yd(x)|)×(m+|Yd(x)|) square matrix. The problem
is still computationally challenging because computing the
permanent of a matrix is #P-complete4 [38]. However, the
main advantage of Theorem 1 is that it allows us to lever-
age the extensive literature on approximation algorithms for
computing the matrix permanent.

An exact method for computing the permanent of a n× n
matrix, proposed by Ryser [34] and later improved by Nijen-
huis and Wilf [28, Ch.23], is summarized in Alg. 2. Its time
complexity is Θ(n2n−1). The dimension of the matrix in (10)
is equal to the number of detections returned by the vision
algorithm plus the number of detectable objects within the
sensor field of view, which in practice is often small enough to
enable a real-time implementation of Alg. 2. Otherwise, there
are a number of polynomial-time arbitrarily-close approxima-
tions to the permanent computation. For example, Jerrum et al.
[14] show that for any ε ∈ (0, 1] and δ > 0, there exists
a randomized algorithm whose output comes within a factor
(1 ± ε) of per(A) with probability at least 1 − δ with a
random running time T such that E(T ) = O(n10(log n)3).
The running time was later improved by Bezáková et al. [5]
to O(n7(log n)4). Also, when A ∈ [0, 1]n×n is a matrix such
that all row and column sums are at least γn for γ ∈ (0.6, 1],
Law [19, Ch.2.2] provides an algorithm with expected running
time O(n4(log n+ ε−2 log δ−1)).

Proposition 3. Given m object detections and a semantic map
with n objects, the time complexity of Alg. 1 for semantic
localization with N particles is O(N(m + n)2(m+n)) if the
measurement update is computed exactly with Alg. 2 and
O(N(n+m)7(log(m+n))4) if computed approximately with
the method of Bezáková et al. [5].

A final note on the computation of (10) is that the scaling
of the numbers can be improved by using that for a matrix
A ∈ Rn×m and a constant γ, per(γA) = γmin(n,m) per(A).
In particular, some of the terms p(Z | ∅, x), p(∅ | Yd(x), x),
or 1/m! can be included within the permanent calculation.

V. PERFORMANCE EVALUATION

A. Robot Platform

We carried out simulations and real-world experiments in an
indoor environment using a differential drive robot equipped
with an inertial measurement unit (IMU), magnetic wheel

4A #P-complete problem is equivalent to computing the number of ac-
cepting paths of a polynomial-time nondeterministic Turing machine and #P
contains NP.

Algorithm 2 Permanent (Nijenhuis and Wilf [28, Ch.23])
1: Input: n× n matrix A Output: per(A)
2: for i = 1, . . . , n do
3: x(i)← A(i, n)− 1

2

∑n
j=1 A(i, j)

4: s← −1, g ← false(n, 1), p← s
∏n

i=1 x(i)
5: for k = 2, . . . , 2n−1 do
6: if k is even then j ← 1 . Obtain next gray code subset
7: else { j ← 2
8: while gj−1 is false do
9: j ← j + 1 }

10: s← −s, z ← 1− 2gj , gj ← not gj
11: for i = 1, . . . , n do
12: x(i)← x(i) + zA(i, j)

13: p← p+ s
∏n

i=1 x(i)

14: return 2(−1)np

encoders, a Kinect RGB-D camera with Nyko Zoom wide-
angle lens, and a Hokuyo UTM-30LX 2D laser range finder.
The IMU and the encoders were integrated using a differential
drive model and Gaussian noise was added to obtain the mo-
tion model in (1). In all experiments, the semantic localization
was achieved using Alg. 1 with measurement updates obtained
with the exact permanent algorithm (Alg. 2). Only the RGB
images were used for the semantic measurement updates. The
depth was not used, while the lidar was used to provide
ground truth poses in the real-world experiments via geometric
Monte-Carlo localization. The performance of our approach
is demonstrated for global localization, which means that the
robot has absolutely no information about its starting pose.

B. Observation Model

The state-of-the-art performance in single-image object
detection is obtained by star-structured models such as de-
formable part models (DPM) [11]. Deformable part models
were constructed for two object classes: C := {door, chair}
(Fig. 2). A DPM-based detector was used to process the RGB
images obtained by the robot as follows. Given an input image,
an image pyramid is obtained via repeated smoothing and
subsampling. Histograms of oriented gradients are computed
on a dense grid at each level of the pyramid. Detectors for the
different classes in C are applied sequentially to the image,
in a sliding-window fashion, and output detection scores at
each pixel and scale of the pyramid. Detection scores above
a certain threshold are returned along with bounding box and
bearing information. The collection of all such detections at
time t forms the random finite set Zt. The detection model
pd(y | x) and the observation model pz(z | y, x) were
obtained from training data as discussed in Sec. III-A. The
angle of view of the wide-angle lens was 94◦, the detection
range - 10 meters, and the following constants were learned:
pd,0 = 0.92, σd = 4.53,Σβ = 4◦. The confusion matrix was:

pc(c | yc) =

[
0.94 0.08
0.06 0.92

]
while the detection score likelihood is shown in Fig. 7.

C. Simulation Results

The performance of the semantic localization algorithm was
evaluated in a simulated environment of size 25 × 25 m2,
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Fig. 2: A component of the deformable
part model of a chair
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Fig. 4: A simulated environment with 45 objects from two classes (yellow squares, blue circles). The plots show the evolution of the particles
(red dots), the ground truth trajectory (green), and the estimated trajectory (red). The expected number of clutter detections was set to λ = 2.
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Fig. 5: A simulated environment with 150 objects from 5 classes (circles, squares, triangles, crosses, and diamonds) in a 25× 25 m2 area.
The plots show the particles (red dots), the ground truth trajectory (green), and the estimated trajectory (red) for clutter rate λ = 4.
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Fig. 6: Root mean squared error (RMSE) in
the pose estimates obtained from the semantic
localization algorithm after 50 simulated runs
of the scenario in Fig. 4
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via kernel density estimation
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Fig. 8: Root mean squared error (RMSE) be-
tween the pose estimates from semantic local-
ization and from lidar-based geometric local-
ization obtained from four real experiments
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Fig. 9: A simulated example of semantic localization in the presence of severe perceptual aliasing. The ground truth trajectory (blue) and
the evolution of the particle positions (red points) and orientations (red lines, top left) are shown.

populated by objects with randomly-chosen positions and
classes (see Fig. 4). The error in the estimates averaged over
50 repetitions with different randomly-generated scenes is
presented in Fig. 6. Since the localization starts with a uniform
prior over the whole environment the error is large in the
initial iterations. Multiple hypotheses are present until the
robot obtains enough detections to uniquely localize itself. The
performance in a challenging scenario with a lot of ambiguity
is presented in Fig. 9. The reason for using only two classes is
to increase the ambiguity in the data association. Our approach
can certainly handle more classes and a higher object density.
While the complexity in Prop. 3 is in terms of the total number
of objects in the environment, the filter update times actually
scale with the density of the detectable objects. Fig. 5 shows
a simulation with clutter rate λ = 4 and 150 objects from 5
classes in a 25× 25 m2 area. Scenarios with such high object
density necessitate the use of an approximate, rather than the
exact, permanent algorithm for real-time operation.

D. Experimental Results

In the real experiments, the robot was driven through a
long hallway containing doors and chairs. Four data sets were
collected from the IMU (at 100 Hz), the encoders (at 40
Hz), the lidar (at 40 Hz), and the RGB camera (at 1 Hz).
Lidar-based geometric localization was performed via the amcl
package in ROS [33] and the results were used as the ground
truth. The lidar and semantic estimates of the robot trajectory
are shown in Fig. 1. The error between the two, averaged over
the 4 runs, is presented in Fig. 8. The error is large initially
because, unlike the lidar-based localization, our method was
started with an uninformative prior. Nevertheless, after the
initial global localization stage, the robot is able achieve
average errors in the position and orientation estimates of less
than 35 cm and 10◦, respectively. The particle filter evolution
is illustrated in Fig. 3 along with some object detections.

In our experiments, it was sufficient to capture only class
and position information in the object state because the ori-
entation and appearance variations were handled well by the
DPM. We emphasize that our model can incorporate richer
object representations by extending the state y and training
an appropriate observation model. This is likely to make the
data association more unimodal. As permanent approximation
methods rely on Monte-Carlo sampling from the data asso-
ciations, fewer samples can be used in this case to speed up
the computations. Our reduction to the permanent incorporates
this naturally and leverages state of the art algorithms.

TABLE I: Comparison of maximum likelihood data association
(MLD) and our random finite set approach (RFS) on the 4 real
datasets (Fig. 1) and the simulations in Fig. 4 and Fig. 9. Two
types of initializations were used: local (L), for which the initial
particle set had errors of up to 1 m and 30◦, and global (G), for
which the initial particle set was uniformly distributed over the whole
environment. Number of particles (NP) in thousands, position error
(PE), orientation error (OE), and filter update time5(UT), averaged
over time, are presented. The first MLD(G) column uses the same
number of particles as RFS(G), while the second uses a large number
in an attempt to improve the performance.

Fig. 1 MLD(L) MLD(G) MLD(G) RFS(L) RFS(G)
NP [K] 0.50 3.00 40.0 0.50 3.00
PE [m] 0.26 22.9 0.31 0.26 0.26

OE [deg] 2.54 107 2.75 2.67 2.69
UT [sec] 0.023 0.060 0.600 0.065 0.320

Fig. 4
NP [K] 0.50 5.00 100 0.50 5.00
PE [m] 15.3 24.9 17.3 0.32 0.72

OE [deg] 67.0 68.8 72.8 4.58 9.17
UT [sec] 0.012 0.062 1.100 0.042 0.400

Fig. 9
NP [K] 0.50 24.0 100 0.50 24.0
PE [m] 0.27 48.8 26.9 0.11 2.35

OE [deg] 3.68 112 74.9 2.08 4.05
UT [sec] 0.027 0.760 3.340 0.062 2.620

E. Comparison with Maximum Likelihood Data Association

We compared our random finite set (RFS) approach to
the more traditional maximum likelihood data association
(MLD) approach used in FastSLAM [25]. MLD is based
on Alg. 1 but the set of detections on line 6 is processed
sequentially. For each individual detection z, each particle x
with weight w determines the most likely data association:
q := maxy∈Yd(x) pz(z | y, x) and updates its weight: w′ = qw.
The performance is presented in Table I for two types of
initializations: local (L), for which the initial particle set had
errors of up to 1 m and 30◦, and global (G), for which it was
uniformly distributed over the environment. MLD(L) performs
as well as RFS(L) in the real experiments and in Fig. 9. In Fig.
4, the data association is highly multimodal and MLD(L) does
not converge even with 15K particles. This is reinforced in the
global initialization cases. While RFS(G) performs well with
3K particles, MLD(G) needs 40K to converge consistently on
the real datasets and is slower at the same level of robustness.
In Fig. 4 and Fig. 9, MLD(G) does not converge even with
100K particles. We conclude that once the particles have
converged correctly MLD performs as well as RFS. However,
with global initialization or ambiguous data association MLD

5The reported times are from a MATLAB implementation on a PC with i7
CPU@2.3GHz and 16GB RAM



makes mistakes and can never recover while RFS is robust
with a small number of particles.

VI. CONCLUSION

Modeling the semantic information obtained from object
detection with random finite sets enabled a unified treatment
of filtering, data association, missed detections, and false
positives. The efficient implementation of the set-based Bayes
filter depends critically on the connection between the matrix
permanent and the RFS observation model. Simulations of
our approach showed precise and robust localization from
semantic information in various scenarios and over many rep-
etitions. Compared to maximum likelihood data association,
our solution offers superior performance in cases of global
localization, loop closure, and perceptual aliasing. The real
experiments demonstrated that the accuracy of the semantic
localization method is comparable with the laser-based geo-
metric approaches. Future work will focus on extensions to
semantic SLAM and active semantic localization.
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PROOF OF THEOREM 1

Let V1 := Yd(x) and V2 := Z be the vertices of a
weighted complete bipartite graph G := (V1, V2, E, w), where
the weight we associated with e := (i, j) ∈ E is Q(i, j). The
functions π in (8) specify different associations between the
objects V1 and the detections V2. The introduction of missed
detections (‘0’ in the range of π) means that some detectable
objects need not to be assigned to a detection in Z. As
any object could be missed, the associations π correspond to
matchings in the graph G. Given a matching π, the associated
product term inside the sum in (8) corresponds to the weight
of π. Then, the sum over all π corresponds to the sum of
the weights of all matchings in G. The sum of the weights
of all matchings with k edges can be computed via the k-th
subpermanent sum of the adjacency matrix Q of G.

Definition 2 (Subpermanent Sum). Let A be an n×m non-
negative matrix with n ≤ m and let Qk,n be the set of all
subsets of cardinality k of 1, . . . , n. For α ∈ Qk,n and β ∈
Qk,m let A[α, β] := [A(αi, βj)]

k
i,j=1 be the corresponding

k-by-k submatrix of A. Define per0(A) := 1 and

perk(A) :=
∑

α∈Qk,n,β∈Qk,m

per(A[α, β]), k = 1, . . . , n

The sum in (8) is then equal to the sum over all k-matchings:

∑
π

∏
i|π(i)>0

pd(yi | x)pz(zπ(i) | yi, x)

(1− pd(yi | x))λκ(zπ(i))
=

|Yd(x)|∑
k=0

perk(Q), (11)

where the assumption that |Yd(x)| ≤ m is used. The follow-
ing two lemmas describe a reduction from the problem of
summing all subpermanent sums of a rectangular matrix (or
matchings in an unbalanced bipartite graph) to the problem of
the permanent of a rectangular matrix (or perfect matchings
in an unbalanced bipartite graph) and then to the problem of
the permanent of a square matrix (or perfect matchings in a
balanced bipartite graph).

Lemma 1. Let An,m be an n×m matrix with n ≤ m. Then,
n∑
k=0

perk(An,m) = per(
[
An,m In

]
).

Proof : Associate A with a weighted complete bipartite graph
GA := (V1 := {1, . . . , n}, V2 := {1, . . . ,m}, E, wA), where
the weights wA corresponding with the entries of A. To
obtain the graph GB associated with B :=

[
An,m In

]
add

n dummy nodes V3 to V2 and n edges of weight 1. For
k ∈ {0, . . . , n}, fix subsets α ∈ Qk,n and β ∈ Qk,m using the
notation from Def. 2. A perfect matching in GB associated
with α and β corresponds to:
• A k-matching between α ∈ V1 and β ∈ V2 of weight

per(A[α, β])
• A (n− k)-matching between V1 \ α and V3 of weight 1

Then, per(B) is the sum of all perfect matchings in GB :

per(B) =

n∑
k=0

∑
β∈Qk,m

α∈Qk,n

per(A[α, β]) =

n∑
k=0

perk(A),

where the last equality follows directly from Def. 2. �

Lemma 2. Let An,m be an n×m matrix with n ≤ m. Then,

per(An,m) =
1

(m− n)!
per

([
An,m

1m−n,m

])
where 1m−n,m is a (m− n)×m matrix of all ones.

Proof : Associate A with a weighted complete bipartite graph
GA := (V1 := {1, . . . , n}, V2 := {1, . . . ,m}, E, wA), where
the weights wA correspond with the entries of A. To obtain
the graph GB associated with B :=

[
ATn,m 1Tm−n,m

]T
add

(m−n) dummy nodes V3 to V1 and (m−n)m edges of weight
1. Fix a subset β ∈ Qm−n,m using the notation from Def. 2.
A perfect matching in GB associated with β corresponds to:
• A n-matching between V1 and V2 \ β of weight

per(A[V1, V2 \ β])
• A (m−n)-matching between V3 and β of weight (m−n)!

Then, per(B) is the sum of all perfect matchings in GB :

per(B)=
∑

β∈Qm−n,m

(m−n)!per(A[V1, V2\β]) = (m−n)!per(A),

where the last equality follows directly from Def. 2. �
The proof is completed by combining the two reductions

above to write the sum in (11) as:
|Yd(x)|∑
k=0

perk(Q) =
1

m!
per

([
Q I|Yd(x)|

1m,m 1m,|Yd(x)|

])
.
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[17] J. Košecká and F. Li. Vision Based Topological Markov
Localization. In IEEE Int. Conf. on Robotics and Au-
tomation (ICRA), volume 2, pages 1481–1486, 2004.

[18] I. Kostavelis and A. Gasteratos. Learning Spatially Se-
mantic Representations for Cognitive Robot Navigation.
Robotics and Autonomous Systems, 61(12):1460 – 1475,
2013.

[19] W. Law. Approximately Counting Perfect and General
Matchings in Bipartite and General Graphs. PhD thesis,
Duke University, 2009.

[20] C. Lee, D. Clark, and J. Salvi. SLAM With Dynamic
Targets via Single-Cluster PHD Filtering. IEEE Journal
of Selected Topics in Signal Processing, 7(3):543–552,
2013.

[21] M. Liggins, D. Hall, and J. Llinas. Handbook of
Multisensor Data Fusion. Taylor & Francis, 2008.

[22] W.-K. Ma, B.-N. Vo, S. Singh, and A. Baddeley. Tracking
an Unknown Time-Varying Number of Speakers Using
TDOA Measurements: A Random Finite Set Approach.
IEEE Trans. on Signal Processing, 54(9):3291–3304,
2006.

[23] R. Mahler. Statistical Multisource-Multitarget Informa-
tion Fusion. Artech House, 2007.

[24] G. Mariottini and S. Roumeliotis. Active Vision-based
Robot Localization and Navigation in a Visual Memory.
In IEEE Int. Conf. on Robotics and Automation (ICRA),
2011.

[25] M. Montemerlo and S. Thrun. Simultaneous Localization
and Mapping with Unknown Data Association Using
FastSLAM. In IEEE Int. Conf. on Robotics and Au-
tomation (ICRA), volume 2, pages 1985–1991, 2003.

[26] M. Morelande. Joint Data Association Using Importance
Sampling. In Int. Conf. on Information Fusion, pages
292–299, 2009.

[27] J. Mullane, B.-N. Vo, M. Adams, and B.-T. Vo. Random
Finite Sets for Robot Mapping & SLAM. Springer Tracts
in Advanced Robotics. Springer, 2011.

[28] A. Nijenhuis and H. Wilf. Combinatorial Algorithms.
Academic Press, 1978.
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