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Abstract

Traditional approaches for simultaneous localiza-
tion and mapping (SLAM) rely on geometric fea-
tures such as points, lines, and planes to infer the
environment structure. They make hard decisions
about the (data) association between observed fea-
tures and mapped landmarks to update the envi-
ronment model. This paper makes two contribu-
tions to the state of the art in SLAM. First, it gen-
eralizes the purely geometric model by introduc-
ing semantically meaningful objects, represented as
structured models of mid-level part features. Sec-
ond, instead of making hard, potentially wrong as-
sociations between semantic features and objects, it
shows that SLAM inference can be performed effi-
ciently with probabilistic data association. The ap-
proach not only allows building meaningful maps
(containing doors, chairs, cars, etc.) but also offers
significant advantages in ambiguous environments.

1 Introduction
This paper bridges the gap between the advances in SLAM,
relying on purely geometric information, and those in vi-
sual recognition, relying on purely semantic information. We
present an abridged version of [Bowman et al., 2017] but
also state key results leading to a unified view of geome-
try, semantics, and data association in SLAM. SLAM is the
problem of estimating the motion of a sensor system, while
simultaneously building a map of the environment, using a
dense occupancy representation or a sparse set of landmarks
(e.g., corner, edge, or plane features). A comprehensive
survey can be found in [Cadena et al., 2016]. The prob-
lem is closely related to structure from motion (SfM) [Ma
et al., 2012] with a moot distinction that SfM is typically
an offline process relying on camera measurements, while
SLAM is an online operation using heterogeneous sensors
found on mobile robots, including inertial measurement unit
(IMU), camera, and LIDAR. The problem is also related to
visual-inertial odometry (VIO) [Mourikis and Roumeliotis,
2006], which uses geometric features to infer the sensor’s

∗Supported by ARL DCIST CRA W911NF-17-2-0181.

Figure 1: This paper proposes a SLAM approach that uses inertial,
geometric, and semantic measurements (top left) to reconstruct the
sensor trajectory (blue), detect objects of interest (cars), and estimate
the positions of their parts (green points, e.g., doors, wheels).

motion but does not construct a global map. SLAM ap-
proaches went through several transformations, starting with
particle and Kalman filtering [Thrun et al., 2005] and con-
verging to iterative nonlinear optimization over the whole
sensor trajectory [Strasdat et al., 2010]. Current approaches
model the problem as a (factor) graph of sensor and land-
mark states connected via edges capturing measurement con-
straints [Kümmerle et al., 2011; Kaess et al., 2012]. They
can track visual-inertial systems over long trajectories in
real time [Bloesch et al., 2015; Forster et al., 2016; Qin et
al., 2017], while recovering the sparse [Engel et al., 2014;
Mur-Artal and Tardós, 2017] or dense [Whelan et al., 2016;
Hornung et al., 2013] environment structure. Surprisingly,
most methods rely only on geometry and occurred in isola-
tion from the impressive results in object recognition based on
structured models [Felzenszwalb et al., 2010] and deep neu-
ral networks [Krizhevsky et al., 2012; Girshick et al., 2014;
Simonyan and Zisserman, 2014; He et al., 2016]. Our goal
is to provide a meaningful and efficient environment repre-
sentation in SLAM by taking advantage of object recognition
methods. A recent survey on semantic mapping can be found
in [Kostavelis and Gasteratos, 2015]. The works closest to
ours [Bao and Savarese, 2011; Salas-Moreno et al., 2013;
Gálvez-López et al., 2016; Murthy et al., 2017] overlook the
data association problem (matching observations to correct
landmarks in the map) which is critical for reconstructing
a global object map with accurate loop closures (recogniz-
ing already visited locations). Data association is challenging
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Figure 2: Geometric (ORB) fea-
tures (green points) and seman-
tic (car) features (red points).

Figure 3: Structured object model with prior shape
constraints (purple lines) and online camera con-
straints (red lines).

Figure 4: Factor graph (right) of two sensor states xt,
xt+1 constrained by IMU measurement it+1 and se-
mantic observations St, St+1 (green) of landmarks li.

when many areas look alike (perceptual aliasing) and a single
wrong choice can drastically affect the estimation accuracy.
We make the following contributions.
• We generalize the geometric environment model of

SLAM by introducing structured object models of mid-
level semantic landmarks (Fig. 1).
• Instead of making hard, potentially wrong associa-

tions among observations and landmarks, we show that
SLAM inference can be done efficiently using a proba-
bility distribution over all possible associations, leading
to significant advantages in ambiguous environments.

2 Metric-Semantic SLAM
2.1 Representation
Consider a sensor system consisting of an IMU and monoc-
ular camera that are time synchronized. Choose a subset of
the camera images as keyframes (e.g., by selecting every nth
frame) and let xt be the system state (6-D pose, velocity, and
IMU biases) corresponding to the tth keyframe. Let X :=
{xt}Tt=0 be the sensor state trajectory and let the environment
be represented as a collection of landmarks L := {lm}Mm=1
with positions lm ∈ R3. We distinguish between geomet-
ric landmarks λj estimated from geometric features Yt (e.g.,
Harris corners, SIFT, ORB, etc.) and semantic landmarks
lm estimated from semantic features St (parts of detected ob-
jects) extracted from each keyframe image as shown in Fig. 2.
Geometric Structure. The IMU provides a set It+1 of
linear acceleration and rotational velocity measurements be-
tween keyframes t and t + 1. These measurements are inte-
grated using the approach of [Forster et al., 2015] to obtain
a single constraint that relates xt and xt+1 via an IMU mea-
surement model f with noise covariance U :

it+1 = f(xt+1, xt) + ut, ut ∼ N (0, U). (1)
The model in (1) relates two system states and specifies a
Gaussian density function p(it+1|xt, xt+1) for the IMU mea-
surement it+1. Similarly, each geometric feature ytk ∈ Yt for
k = 1, . . . ,Kt extracted at time t relates the position λj ∈ R3

of a corresponding geometric landmark to the system state xt
via a camera projection model g [Ma et al., 2012, Ch.3]:

ytk = g(xt, λj) + vt, vt ∼ N (0, V ) (2)

To recover the landmark positions {λj}Jj=1, it is necessary
to know the data association πt(k) = j of each feature ytk

to the correct landmark λj . Estimating πt : {1, . . . ,Kt} →
{1, . . . , J} can done by tracking the features ytk in consec-
utive keyframes. For example, we extract ORB features and
track them by minimizing the ORB descriptor distance be-
tween consecutive frames [Rublee et al., 2011]. As discussed
in Sec. 2.2, this visual odometry allows us to infer the sensor
trajectory X locally but is not sufficient for loop closure and
estimation of the global landmark positions {λj}.
Semantic Structure. Instead of using geometric landmarks
to model the environment, our first innovation is to extract
semantic features (object parts) and represent the environ-
ment as a set of objects, with inferred positions, orientations,
and classes (Fig. 1). We assume a known list of object classes
(with prior training data) and detect bounding boxes in each
keyframe via a real-time detector such as DPM [Dubout and
Fleuret, 2013], RCNN [Ren et al., 2015], or YOLO [Redmon
and Farhadi, 2016]. Within each bounding box, we extract
semantic features specific to the object class via the stacked
hourglass convolutional network of [Pavlakos et al., 2017].
Let St be the set of all |St| = Nt semantic features extracted
from the tth keyframe. Similar to the geometric case, each se-
mantic feature stn ∈ St is related to the position lm ∈ R3 of
a semantic landmark via the camera perspective projection:

stn = g(xt, lm) + wt, wt ∼ N (0,W ) (3)

and an unknown function dt : {1, . . . , Nt} → {1, . . . ,M}
stipulating the data associations among St and L. Unlike
in the geometric case, we cannot simply track the semantic
features because we are interested in recovering their global
positions L, which requires loop closure (recognizing previ-
ously observed landmarks instead of instantiating new ones).
We focus on mapping semantic landmarks because they are
fewer (leading to efficient performance) and yet more robust
to viewpoint changes than geometric ones. This allows us
to perform accurate visual-inertial odometry relying on both
geometric and semantic features locally and efficient global
loop closure over the map of semantic landmarks (Fig. 1).

To obtain the poses of the objects associated with the se-
mantic landmarks, we use a representation similar to the de-
formable parts model [Felzenszwalb et al., 2010]. We in-
troduce structure constraints among an object’s landmarks,
given by a root location and displacements of the object parts
with respect to it (Fig. 3). For example, the front-left wheel of
a car should not deviate significantly from an expected posi-
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tion relative to its front-left door. The structure constraint cij
between the positions li, lj of two semantic parts belonging to
the same object class are captured by a function h, while the
part displacement costs are captured by a Gaussian model:

cij = h(li, lj) + η, η ∼ N (0, E). (4)
Given its semantic part positions, an object’s orientation can
be recovered via the Kabsch algorithm [Kabsch, 1978].

Problem. Determine the sensor trajectory X̂ and seman-
tic landmark positions L̂ that maximize the likelihood of
the inertial, geometric, and semantic measurements Z :=
{(It, Yt, St)}Tt=0under the nonlinear Gaussian models (1)-(4)

X̂ , L̂ = arg max
X ,L

log p(Z | X ,L) (5)

2.2 Inference
A factor graph is a probabilistic graphical model [Koller
and Friedman, 2009] that allows representing an optimization
problem such as (5) as a graph of random variables (nodes)
with constraints among them (factors). In our case, the nodes
are Gaussian variables corresponding to X and L. The fac-
tors are constraints imposed by the inertial It, geometric Yt,
and semantic St measurements via the models (1)-(4). Fig. 4
shows an example graph of two sensor states related by in-
ertial and semantic measurements. Inference over the graph
can be formulated as a maximization (5) of the likelihood of
all measurements with respect to the latent variables X , L:

X̂ , L̂ = arg max
X ,L

log
T∏
t=0

p(It, Yt, St | X ,L)

= arg min
X ,L

T∑
t=1

‖it − f(xt, xt−1)‖2U

+
T∑
t=0

Kt∑
k=1

J∑
j=1

1{πt(k)=j}‖ytk − g(xt, λj)‖2V

+
T∑
t=0

Nt∑
n=1

M∑
m=1

1{dt(n)=m}‖stn − g(xt, lm)‖2W

(6)

where we have skipped prior and structure constraints (4) to
save and have used ‖e‖2Σ := eTΣ−1e. The second equality
utilizes that the models (1)-(4) are Gaussian; e.g., p(it+1 |
xt+1, xt) ∝ exp

{
− 1

2‖it+1 − f(xt+1, xt)‖2U
}

. We also em-
phasized the dependence on the unknown data associations
πt, dt via the indicator functions. Assuming for now that πt,
dt are known, (6) is a nonlinear least-squares problem, which
can be solved efficiently via incremental linearization (e.g.,
Gauss-Newton algorithm). Given initial estimates X 0, L0,
e.g., obtained from IMU integration and feature triangulation,
the functions f and g are linearized to obtain the Jacobians
F x, F y and Gx, Gy with respect to each input, leading to:

min
δX ,δL

T∑
t=1

‖it − f(x0
t , x

0
t−1)− F xt,t−1δxt − F

y
t,t−1δxt−1‖2U+

T∑
t=0

Kt∑
k=1

J∑
j=1

1{πt(k)=j}‖ytk − g(x0
t , λ

0
j )−Gxt,jδxt −G

y
t,jδλj‖

2
V

T∑
t=0

Nt∑
n=1

M∑
m=1

1{dt(n)=m}‖stn − g(x0
t , l

0
m)−Gxt,mδxt −G

y
t,mδlm‖2W

To avoid estimating the geometric landmark positions {λj},
a key idea used in structureless VIO approaches [Mourikis
and Roumeliotis, 2006] is to multiply the second term above
by a unitary matrix whose columns form the the basis of
the left nullspace of Gyt,j , making the term Gyt,jδλj disap-
pear. Collecting the Jacobians into one large but sparse ma-
trix A and the error vectors it−f(x0

t , x
0
t−1), ytk−g(x0

t , λ
0
j ),

and stn − g(x0
t , l

0
m) into one vector b, leads to a standard

least-squares problem minθ ‖Aθ− b‖2 where θ := (δX , δL).
Even though we are estimating the whole history X of sen-
sor states, since the models (1)-(4) depend only on pairs of
sensor-landmark states, A remains sparse and the problem
can be solved efficiently via QR factorization. The optimiza-
tion can be performed incrementally as new measurements
arrive by updating (rather than recomputing) the QR factor-
ization [Kaess et al., 2008; 2012].

2.3 Data Association
We return to the data association problem. Since we do not
aim to recover {λj}, it is sufficient to obtain the geometric
associations πt via feature tracking as mentioned in Sec. 2.1.
It is, however, necessary to estimate the semantic associations
D := {dt}Tt=0, if we are to perform loop closure and recon-
struct the semantic landmark positions L. We revisit the max
likelihood estimation in (5), emphasizing that the semantic
associations D are unknown and should also be inferred:

X̂ , L̂, D̂ = arg max
X ,L,D

log p(Z | X ,L,D) (7)

Existing work decomposes this joint SLAM and data associ-
ation problem into two subproblems. First, given prior esti-
mates X 0,L0, the max likelihood estimate D̂ of the associ-
ations is computed, e.g., via JCBB [Neira and Tardós, 2001]
or the Hungarian algorithm [Munkres, 1957]. Then, given
D̂, the most likely landmark and sensor states are estimated.
This is a special case of coordinate descent:

D̂i+1 = arg max
D

p(D | X i,Li,Z)

X i+1,Li+1 = arg max
X ,L

log p(Z | X ,L,Di+1)
(8)

which allows revisiting association decisions once state es-
timates improve but does little to resolve the problem with
ambiguous measurements since a hard decision on data asso-
ciations is required and may have a highly detrimental effect
on the estimation performance. Rather than simply selecting
D as the mode of p(D | X ,L,Z), our second innovation
is to consider the entire distribution of D when estimating
X and L. Since D is a latent variable whose realization we
are not interested in inferring but is needed to estimate X
and L, probability theory suggests that we should marginal-
izeD. Our main result is that expectation maximization (EM)
allows us to maximize the expected (w.r.t. D) measurement
likelihood, utilizing the whole distribution of D:

X i+1,Li+1 = arg max
X ,L

∑
D∈D

p(D | X i,Li,Z) log p(Z | X ,L,D) (9)

To compare this with coordinate descent (8), we drop the in-
ertial and geometric terms in (6) since their data associations
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Figure 5: Estimated sensor trajectory and
poses of swivel and four-legged chairs in
first office experiment.
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Figure 6: Norm of the position error be-
tween the estimated and ground truth ve-
hicle trajectories on KITTI sequence 05.

KITTI Sequence 05
Method Trans. err [%] Rot. err [deg/m]

Ours 1.31 0.0038
VISO2 4.08 0.0050

ORBSLAM2 Mono 5.39 0.0019
ORBSLAM2 Stereo 0.63 0.0017

KITTI Sequence 06
Method Trans. err [%] Rot. err [deg/m]

Ours 0.77 0.0037
VISO2 1.81 0.0036

ORBSLAM2 Mono 6.71 0.0015
ORBSLAM2 Stereo 0.29 0.0013

Figure 7: Mean translational and rotational error
over subpath lengths (100, 200, . . . , 800) meters
on the KITTI odometry dataset.

are known or estimated via feature tracking and re-write (9):

max
X ,L

T∑
t=0

Nt∑
n=1

M+Nt∑
m=1

∑
dt∈Dt(n,m)

p(dt | X i,Li, St)︸ ︷︷ ︸
=:wt,i

n,m

log p(stn | xt, lm) (10)

Above Dt(n,m) := {dt | dt(n) = m} is the set of possible
data associations at time t that assign semantic feature stn to
landmark lm and wt,in,m quantifies the probability that stn was
produced by landmark lm via (3). Note that (6) and (8) have
a similar form to (10), except that for each n there is exactly
one m such that wt,in,m = 1 and wt,in,m′ = 0 for all m′ 6= m.
The EM formulation has the advantage that no hard decisions
are required since it “averages” over all possible data associa-
tions. The following proposition shows that, besides general-
izing coordinate descent, EM can be performed efficiently via
a connection between the data association distribution wt,in,m
and the permanent1 of a suitable matrix.

Proposition. Optimization (10) can be performed by iterating:
• E step: given X i,Li compute the associations distribution:

ωt,in,m ∝ Qtnmper Qt−nm

whereQt is a matrix of data association probabilities2 with
elements Qtnm and Qt−nm is the matrix with the nth row
and mth column removed.

• M step: given the data association distribution ωt,in,m, up-
date the sensor and landmark state estimates:

X i+1,Li+1 = arg max
X ,L

T∑
t=0

Nt∑
n=1

M+Nt∑
m=1

wt,in,m log p(stn | xt, lm)

This result allows us to take advantage of matrix perma-
nent approximation algorithms [Jerrum et al., 2004] to effi-
ciently summarize the combinatorial data association space

1The permanent of an n×mmatrixA = [A(i, j)] with n ≤ m is
defined as per(A) :=

∑
d

∏n
i=1A(i, d(i)), where the sum is over

all one-to-one functions d : {1, . . . , n} → {1, . . . ,m}.
2Qt := [Gt Ht], whereGt ∈ RNt×M is a matrix of scaled like-

lihoodsGtnm = ptm
λ(1−ptn)

p(stn | xt, lm), ptm is the probability that
lm is detected from xt according to a Poisson process with mean
λ, and Ht = diag ([pnew(st1) · · · pnew(stNt)]) ∈ RNt×Nt is
a matrix of probabilities that new landmarks should be created.
See [Atanasov et al., 2015] for details.

in polynomial time. Instead of max likelihood data associa-
tion as in (8), we estimate a data association distribution via
the weights wt,inm (“E” step) and then maximize the expected
measurement log likelihood over it (“M” step).

3 Evaluation
Our algorithm uses GTSAM and its iSAM2 implementa-
tion [Kaess et al., 2012] to perform the M step. Our front-
end selects every 15th camera frame as a keyframe and tracks
geometric ORB features. Outlier tracks that do not fit the es-
sential matrix constraint between consecutive views are elim-
inated via RANSAC. The essential matrix is estimated using
relative orientation from gyro measurements and two-point
correspondences. Objects are detected via the deformable
parts model [Dubout and Fleuret, 2013] and semantic fea-
tures are extracted via a stacked hourglass convolutional net-
work [Pavlakos et al., 2017]. Experiments were performed
indoors, building a map of doors, swivel chairs and four-
legged chairs, and outdoors, building a map of cars on the
KITTI odometry dataset [Geiger et al., 2012]. The indoor
experiments included loops around a room equipped with
motion tracking, a medium trajectory (175 m) spanning one
floor, and a long trajectory (625 m) spanning two floors. The
estimated sensor trajectory and chair poses in the medium se-
quence are shown in Fig. 5. The performance is compared
qualitatively to ROVIO [Bloesch et al., 2015] and ORB-
SLAM2 [Mur-Artal and Tardós, 2017]. Since ORB-SLAM2
uses only geometric features and no inertial information, it
loses tracking for long durations in feature-deprived areas
but is able to recover when entering previously mapped re-
gions. In the long indoor sequence due to the repetitive na-
ture of the hallways, the bag-of-words loop-closure approach
of ORB-SLAM2 also makes incorrect associations leading to
unsuccessful tracking. The outdoor experiments used visual
odometry from VISO2 [Geiger et al., 2011] instead of iner-
tial odometry. The translation and rotation errors of our algo-
rithm, VISO2, and ORB-SLAM2 with respect to the ground
truth vehicle trajectory are compared in Fig. 6 and Fig. 7.
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