
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2025 1

PKF: Probabilistic Data Association Kalman Filter
for Multi-Object Tracking
Hanwen Cao1, George J. Pappas2, Nikolay Atanasov1

Abstract—In this paper, we derive a new Kalman filter (KF) with
probabilistic data association between measurements and states.
We formulate a variational inference problem to approximate the
posterior density of the state conditioned on the measurement
data. We view the unknown data association as a latent variable
and apply Expectation Maximization (EM) to obtain a filter
with the update step in the same form as the Kalman filter
but with an expanded measurement vector of all potential
associations. We show that the association probabilities can be
computed as permanents of matrices with measurement likelihood
entries. We name our probabilistic data association Kalman filter
the PKF with P emphasizing both the probabilistic nature of
the data association and the matrix permanent computation
of the association weights. We compare PKF with the well-
established Probabilistic Multi-Hypothesis Tracking (PMHT) and
Joint Probabilistic Data Association Filter (JPDAF) in both theory
and simulated experiments. The experiments show that we can
achieve lower tracking errors than both. We also demonstrate
the effectiveness of our filter in multi-object tracking (MOT)
on multiple real-world datasets, including MOT17, MOT20, and
DanceTrack. We can achieve comparable tracking results with
previous KF-based methods without using velocities or doing
multi-stage data association and remain real-time. We further
show that our PKF can serve as a backbone for other KF-based
trackers by applying it to a method that uses varieties of features
for association, and improving its results.

Index Terms—Visual Tracking, Probability and Statistical
Methods, Computer Vision for Automation

I. INTRODUCTION

IN estimation tasks where ambiguity exists between measure-
ments and variables of interest, probabilistic data association

can prevent catastrophic estimation failures. For example, in
multi-object tracking (MOT), there can be a lot of occlusions,
causing high ambiguity in data association. An illustration of
how probabilistic data association improves MOT is shown in
Figure 1. Methods utilizing the Kalman filter (KF) [1], [2], [3],
[4] have achieved outstanding performance in MOT but have
not considered the impact of probabilistic data association on
the tracking process.
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Fig. 1: Example scene with high ambiguity in DanceTrack [11] with
green box detections and orange box tracks. Applying our probabilistic
data association Kalman filter on this sequence significantly increases
the association quality according to IDF1 [12], and the combined
HOTA metric [13].

We derive a new form of Kalman filter with probabilistic data
association. Previous works [5], [6] show that Kalman filter can
be derived using variational inference (VI) by maximizing the
evidence lower bound (ELBO) of the input and measurement
likelihood. To deal with ambiguous associations, we approach
the VI problem using Expectation-Maximization (EM) with the
data association as the latent variable. In the E-step, we show
that association weights can be computed as permanents of
matrices with measurement likelihood entries using accelerated
algorithms [7], [8]. We also show that the weight computation
can be extended to cases with missing or false detections. In
the M-step, optimizing the EM objective leads to a Kalman
filter with the usual prediction and update steps but with an
extended measurement vector and noise covariance matrix
capturing all possible data associations. Our formulation is
related to Probabilistic Multi-Hypothesis Tracking (PMHT) [9]
and the Joint Probabilistic Data Association Filter (JPDAF)
[10]. PMHT assumes independence of measurements and tracks
in both E-step and M-step, which can easily be violated in
some problems. The JPDAF computes a posterior given each
associated measurement, i.e., maximizes the ELBO of each
measurement, and then computes the weighted average of the
posteriors. Our filter, instead, directly optimizes the overall
ELBO weighted by the data association weights. We show that
our algorithm achieves lower tracking errors than both PMHT
and JPDAF, while running at comparable speeds to JPDAF.

We also apply our filter to MOT and test our algo-
rithm on multiple real-world datasets, including MOT17 [14],
MOT20 [15], and DanceTrack [11]. Without using tech-
niques like multi-stage data association, KF re-updates, object
recovery, or considering velocities during association, our
method achieves comparable performance to previous KF-
based methods [2], [3] while maintaining almost the same
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inference speed. We further show the compatibility of our PKF
to varieties of features for data association by applying it to
Hybrid-SORT [4], which uses the techniques from [2], [3]
in addition to using detection scores and neural features. By
replacing the KF in [4] with our PKF, we can further improve
its results. Our contributions are summarized as follows.

• We formulate state estimation with ambiguous measure-
ments as a VI problem and use EM to derive the PKF, a
new Kalman filter with probabilistic data association.

• We show that association probabilities can be computed
using matrix permanents, which can accelerate the associ-
ation weight computation.

• We demonstrate the effectiveness of the PKF in com-
parison to PMHT and JPDAF on simulated data. On
multiple real-world MOT datasets, PKF achieves compa-
rable results with previous state-of-the-art algorithms by
associating only bounding boxes, and can improve the
results by replacing the KF part, and runs at 250+ fps on
a single laptop CPU, given offline detections1.

II. RELATED WORK

A. Probabilistic data association
Data association is a key challenge in estimation problems

where measurements need to be related to estimated variables.
The most straightforward association approach is by a nearest
neighbor rule based on some distance metric, such as Euclidean
or Mahalonobis [16]. However, nearest-neighbor associations
are prone to mistakes. The joint compatibility branch and bound
(JCBB) algorithm [17] computes a joint Mahalonobis distance
and performs a joint χ2 test for the association event to obtain
robust associations. To deal with ambiguity, Bar-Shalom and
Tse developed the probabilistic data association filter (PDAF)
[18] for tracking single objects in the presence of clutter
measurements. In the Kalman filter update step, the innovation
terms are computed for each of the possible associations and
are averaged weighted by the association probabilities. The
performance of PDAF can degrade in the multi-object case
because its separate association process can cause multiple
tracks to latch onto the same object. The JPDAF [10] extends
the PDAF by associating all measurements and tracks jointly. In
each association event, a measurement can be associated with
at most one track, and vice versa. Musicki et al. [19] develop an
integrated probabilistic data association (IPDA) method using
a Markov chain modeling probabilistic data association, track
initialization, and termination. JIPDA [20] extends IPDA [19]
to the multi-object case by performing data association jointly.
There are also improvements on the original JPDAF [10] like
avoiding coalescence [21] and speeding up the inference [22],
[23]. Meyer et al. [24] approach probabilistic data association
using a factor graph where the variables (including objects
and association events) and functions (motion, observation,
et al.) are nodes and the edges model their relationships.
The association probabilities can be computed efficiently by
message passing in the graph. A survey of data association
techniques can be found in [25]. Besides MOT, probabilistic
data association is also applied in other estimation tasks like

1Code is at https://github.com/hwcao17/pkf.

biological data processing [26] and simultaneous localization
and mapping [27], [28].

B. Multi-object tracking
State-of-the-art MOT algorithms are dominated by the

tracking-by-detection approach, which consists of two steps:
object detection [29], [30] and data association. SORT [1] uses
the Hungarian algorithm [31] to associate bounding-box object
detections and updates the object tracks using the Kalman
filter to achieve real-time online tracking. DeepSORT [32]
extends SORT [1] by introducing deep visual features for
data association. ByteTrack [2] makes an observation that the
detectors can make imperfect predictions in complex scenes
and proposes a second round of data association for low-
confidence detections. OC-SORT [3] analyzes the limitations
of SORT [3], namely sensitivity to state noise and temporal
error magnification, and proposes an observation-centric re-
update step and object momentum for data association.

A second class of algorithms for MOT performs tracking-
by-regression. Feichtenhofer et al. [33] use a correlation
function between the feature maps of two frames to predict
the transformation of bounding boxes in different frames.
Bergmann et al. [34] uses the regression head of Faster-
RCNN [29] to predict bounding-box offsets from the previous
image to the current image. CenterTrack [35] adopts the
same network architecture as CenterNet [36] but takes two
consecutive images to predict object offsets between frames.
Braso and Leal-Taixe [37] approach MOT with a graph neural
network, which stores object features in the nodes and predicts
whether two bounding boxes in different frames are the same
object by edge features.

A third set of methods performs tracking-by-attention
[38] using transformer models [39] for joint detection and
tracking based on new object queries and tracked object
queries, which solves the creation and association of objects
implicitly. Although these methods utilize different techniques
for data association, either explicit or implicit, they all consider
deterministic data association.

III. PROBLEM FORMULATION

Consider N time-varying variables that need to be estimated,
denoted as xt,j ∈ Rn, j = 1, . . . , N . We refer to their
concatenation into a single vector at time t:

xt =
[
x⊤
t,1 · · · x⊤

t,N

]⊤ ∈ RnN (1)

as the state of a dynamical system. Suppose that xt evolves
according to a discrete-time linear motion model:

xt+1 = Fxt +Gut +wt, wt ∼ N (0,W ), (2)

where ut ∈ Rl is the known input and wt is zero-mean
Gaussian noise with covariance W . At each time t, we receive
Mt measurements

zt =
[
z⊤t,1 · · · z⊤t,Mt

]⊤ ∈ RmMt . (3)

The data association between zt and xt is defined as follows.

Definition 1. The data association of zt to xt is a function
δt : {1, . . . ,Mt} → {0, 1, . . . , N} that either associates an
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element zt,k to an element xt,δt(k) or indicates via δt(k) = 0
that there is no matching element in xt.

Given association δt(k) = j, the measurement model is

zt,k = Hxt,j + vt, vt ∼ N (0, V ), (4)

where vt is zero-mean Gaussian noise with covariance V .

Problem 1. Given an estimate of the state xt at time t, an
input ut, and measurements zt+1, obtain an estimate of xt+1

with unknown association between the measurements zt+1,k

and the variables xt+1,j .

IV. METHODOLOGY

We formulate a Kalman filter with probabilistic data associ-
ation to solve the estimation problem defined in Sec. III.

A. Data association
Following Definition 1, δt is the data association at time t

indicating that measurement zt,k is assigned to variable xt,δt(k).
We denote the set of all possible association functions at time
t as Dt = {δt : {1, ...,Mt} → {1, ..., N}} and the set of data
associations across all times as D = ∪T

t=1Dt.
We consider a probabilistic setting, in which we are given

a prior probability density p(xt) of the state xt, and aim
to compute the posterior density p(xt+1|zt+1,ut) of xt+1

conditioned on the input ut and the measurements zt+1. At
each time t, we treat the data association δt as a random variable
with a uniform prior p(δt) independent of xt. Using Bayes’
rule and assuming the measurements are mutually independent
conditioned on the variables that generated them, the density
of δt conditioned on zt satisfies:

p(δt|zt)=
p(zt|δt)p(δt)

p(zt)
∝p(zt|δt)=

Mt∏
k=1

p (zt,k|δt(k)) . (5)

Let pN (·;µ,Σ) denote the density of a Gaussian distribution
with mean µ and covariance Σ. Assuming Gaussian prior
p(xt,δt(k)) = pN (xt,δt(k);µt,δt(k),Σt,δt(k)) and measurement
p(zt,k|xt,δt(k)) = pN (zt,k;Hxt,δt(k), V ), we have:

p(zt,k|δt(k)) = pN (zt,k;Hµt,δt(k), HΣt,δt(k)H
⊤ + V ).

Consider the likelihood that a specific measurement zt,k is
generated by xt,j , denoted by wt

k,j . Using (5), we have:

wt
k,j =

∑
δt∈Dt(k,j)

p(δt|zt) =
∑

δt∈Dt(k,j)

Mt∏
r=1

p (zt,r|δt(r)) , (6)

where Dt(k, j) is the set of data association functions that
assign measurement zt,k to variable xt,j . We show that wt

k,j

can be computed using the permanent of a matrix Q containing
the measurement likelihood p(zt,k|xt,j) as its entries Q(k, j).

Definition 2. The permanent of a matrix Q = [Q(k, j)] ∈
RM×N with M ≤ N is:

per(Q) :=
∑
δ∈D

M∏
k=1

Q(k, δ(k)), (7)

where D is the set of injective functions δ : {1, . . . ,M} →
{1, . . . , N}.

Given this definition, we have the following proposition to
compute the data association weights.

Proposition 1. Let Qt ∈ RMt×N be a matrix with elements
Qt(k, j) = p(zt,k|δt(k) = j) = p(zt,k|xt,j). The data
association weight wt

k,j in can be computed as:

wt
k,j ∝ Qt(k, j) per

(
Qt

−kj

)
,

where Qt
−kj is the matrix Qt with the k-th row and j-th column

removed.

Proof. See Supplementary Material Section VII.

Proposition 1 allows us to compute data association weights.
Next, we derive our PKF.

B. Probabilistic data association Kalman filter
To derive a filter, we consider two time steps, namely t and

t+ 1, and define a lifted form of the state:

x̄ =
[
x⊤
t x⊤

t+1

]⊤
. (8)

Given the prior density p(xt), the input ut, and the measure-
ment zt+1, we aim to find an estimate q(x̄) of the joint posterior
p(x̄|zt+1,ut). To determine q(x̄), we use variational inference
[40, Ch. 10], which maximizes the lower bound of the evidence
log p(zt+1,ut) with respect to q(x̄). To save space, we denote
q(x̄) by q. The evidence can be decomposed as [40, Ch. 10]:

log p(zt+1,ut) = KL(q||p(x̄|zt+1,ut)) + L(q), (9)

L(q) = Eq

[
log

p(x̄, zt+1,ut)

q(x̄)

]
, (10)

where L(q) is the ELBO (evidence lower bound) since the
Kullback–Leibler divergence KL(q||p) ≥ 0. Following standard
practice [40, Ch. 10], we optimize the ELBO

q∗∈argmax
q

L(q)=argmax
q

Eq

[
log

p(x̄, zt+1,ut)

q(x̄)

]
. (11)

To account for probabilistic data association, we formulate the
optimization by the EM algorithm [40, Ch. 9]. EM determines
the maximum likelihood (ML) or maximum a posteriori (MAP)
in the presence of unobserved variables. It contains an E-step
that computes the expectation w.r.t. the unobserved variables
and an M-step that maximizes the log-likelihood. Letting the
data association δt+1 be the unobserved variable, we consider
the following problem:

q(i+1) ∈ argmax
q

f (i)(q), (12)

= argmax
q

Eδt+1
Ex̄(i)

[
L(q, δt+1) | x̄(i), zt+1

]
= argmax

q
Eδt+1

Ex̄(i)

[
Eq

[
log

p(x̄, zt+1,ut, δt+1)

q(x̄)

]
|x̄(i), zt+1

]
= argmax

q

Mt∑
k=1

N∑
j=1

ωt+1
kj log p(zt+1,k|xt+1,j),

where the expectation Ex̄(i) is with respect to x̄(i) ∼ q(i)(x̄).
EM splits the optimization in (12) in two steps. The E-step
requires computing the data association likelihood p(δt+1|zt+1).
This can be obtained from (5) and Proposition 1. Given the data
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association weights wt
k,j , the M-step performs the optimization

in (12) to determine q(i+1).
We show that performing the E and M steps for one iteration,

with initialization x̄(i) given by the prior state and the predicted
state in (2), is equivalent to a Kalman filter with probabilistic
data association. We first define an expanded observation model
that captures all possible ways of generating the measurements
at each time t:

z̄t = H̄txt + v̄t, v̄t ∼ N (0, V̄t), (13)

where z̄t = (IMt
⊗1N ⊗ Im)zt ∈ RmMtN , H̄t = 1Mt

⊗ IN ⊗
H ∈ RmMtN×nN , 1N ∈ RN is a vector with elements equal
to one, IN ∈ RN×N is the identity matrix, ⊗ is the Kronecker
product, and v̄t is zero-mean Gaussian noise with covariance:

V̄t=

V̄t,1

. . .
V̄t,Mt

, V̄t,k=

V/w
t
k,1

. . .
V/wt

k,N

, (14)

where wt
k,j are the data association weights in (6). Using the

expanded measurement model in (13), we obtain a Kalman
filter with probabilistic data association.

Proposition 2. Given prior xt ∼ N (µt,Σt) and input ut,
the predicted Gaussian distribution N (µ+

t+1,Σ
+
t+1) of xt+1

computed by the Kalman filter with motion model in (2) has
parameters:

µ+
t+1 = Fµt +Gut,

Σ+
t+1 = FΣtF

⊤ +W.
(15)

Given measurements zt+1, the updated Gaussian distribution
N (µt+1,Σt+1) of xt+1 conditioned on zt+1 computed by the
Kalman filter with probabilistic data association is obtained
from the expanded measurement model in (13) as:

µt+1 = µ+
t+1 + K̄t+1(z̄t+1 − H̄t+1µ

+
t+1),

Σt+1 = (I − K̄t+1H̄t+1)Σ
+
t+1,

(16)

where the Kalman gain is:

K̄t+1 = Σ+
t+1H̄

⊤
t+1

(
H̄t+1Σ

+
t+1H̄

⊤
t+1 + V̄t+1

)−1
. (17)

Proof. See Supplementary Material Section VIII.

C. Comparison with PMHT and JPDAF
We discuss the relationship of PKF to PMHT [9] and JPDAF

[10] and compare them in simulated experiments.
1) Comparison with PMHT: The difference between our

PKF and PMHT [9] is that PMHT assumes independence
in both the E-step (association) and M-step (update), while
the PKF does not. During association, PMHT computes
the probability of each measurement and object individually
without considering if the measurement is already assigned to
another object. In contrast, PKF does the association in a joint
manner by evaluating probabilities of the injective association
functions, where a measurement can not be assigned to another
object after being assigned to one. During the update step,
PMHT updates each object individually, while PKF updates
objects jointly, i.e., there are cross-correlation blocks is the
object covariances.

2) Comparison with JPDAF: The major difference is in the
update step, we first show the update scheme difference, then
show that the association weights in JPDAF can be computed
using Proposition 1.
Update scheme Both JPDAF [10] and PKF can be decomposed
into two stages. The JPDAF first computes a posterior mean
as the normal Kalman filter with each associated measurement,
and then averages the posterior means with the association
weights and computes the covariance correspondingly. Instead,
our PKF first constructs an expanded measurement model and
then performs a single update in the same form as the normal
Kalman filter but with an expanded measurement vector. The
JPDAF maximizes the ELBO with regard to each associated
measurement and then averages those estimates, while our PKF
maximizes the total weight-averaged ELBO, which does not
necessarily maximize each measurement’s individual ELBO but
may lead to a higher total ELBO. This difference is underscored
by the lower tracking errors in the simulations in Sec. IV-C3.

Both algorithms can be performed in a coupling or decou-
pling way. In the coupling way, all the objects are stored in one
filter and updated jointly. In the decoupling way, each object is
stored and updated separately, i.e., setting the cross-correlation
blocks of Σt in Proposition 2 to 0. In the experiments, we do
decoupling updates just like JPDAF. Regarding the complexity,
the Kalman gain in JPDAF is the same as the normal Kalman
filter but JPDAF needs all the measurement residuals to update
the mean and covariance. In PKF, the complexity of the Kalman
gain computation increases due to the expanded measurement
model. The original Kalman filter has complexity O(m2.4+n2)
[41] in terms of the measurement dimension m and state
dimension n. Given the number of associated measurements
Mt, the complexity of PKF is O

(
(Mtm)2.4 +Mtn

2
)
.

Weight computation Following JPDAF [10], we make the
assumption that 1) the number of established objects is known
and 2) there can be missing or false measurements (clutter).
Using our notation, the probability of an association event δt
in [10, Eq. 47] can be written as

p(δt|zt)∝
∏
k

(
1

λ
p(zt,k|xt,δt(k))

)τk∏
j

(ptD)σj(1− ptD)1−σj

where λ is the spatial density of the false measurements Poisson
pmf, ptD is the detection probability, τk is an indicator of
whether zt,k is associated in the event, i.e. zt,k is not treated
as clutter, and σj is an indicator of whether the object xt,j

is associated. Suppose that the number of clutter points in δt
is Φt, the number of measurements is Mt, and the number
of objects is N . Since the number of established objects is
assumed known, we have Mt − Φt ≤ N . With the number of
clutter points fixed, p(δt|zt) can be simplified as

p(δt|zt) ∝ cΦt
t

∏
k

p(zt,k|xt,δt(k)), δt ∈ DΦt
t ,

cΦt
t = λ−Φt(ptD)Mt−Φt(1− ptD)Nt−Mt+Φt ,

(18)

where DΦt
t is the set of association events that have Φt false

measurements. The probability of measurement zt,k being
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Fig. 2: Object tracking simulation showing ground-truth object
trajectories (dashed lines), object measurements (green dots), and
clutter (false) measurements (yellow crosses).

assigned to object xt,j is computed in [10, Eq. 51] as

wt
k,j ≜

∑
δt∈Dt(k,j)

p(δt|zt) =
∑
Φt

∑
δt∈DΦt

t (k,j)

p(δt|zt) (19)

∝
∑
Φt

∑
δt∈DΦt

t (k,j)

cΦt
t

∏
k

p(zt,k|xt,j),

where DΦt
t (k, j) is the set of associations having Φt false

measurements and assigning zt,k to xt,j . Selecting a series
of sets of false measurements of size Φt = max{0,Mt −
N} · · · Mt, for each fixed Φt, the second sum on the last
line of (19) can be computed via Proposition 1.

3) Tracking error: We compare our PKF to PMHT [9] and
JPDAF [10] with 2D simulated data, where each object is a
point and moves along an 8-shape trajectory. The detection
probability of each object is ptD = 0.9, the measurement noise
is a zero-mean Gaussian with covariance diag(0.75, 0.75), and
clutter is sampled uniformly in the range of [−10, 10]2 around
each ground-truth point. We use λ = 0.125 for the spatial
density of the Poisson pmf. A visualization of 3 simulated
objects can be found in Figure 2.

The errors of tracking 3 and 5 objects in simulation are
shown in Table I. PMHT [9] works slightly better than binary
ssociation but much worse than PKF and JPDAF [10] due
to the non-exclusive data association. PKF achieves lower
tracking errors than JPDAF implemented by [42]. Our intuition
as to why PKF achieves lower errors is provided in the first
paragraph of Sec. IV-C2. We also compare PKF to JPDAF
under different levels of measurement noise with 10 objects.
In this setting, we increase the detection probability to 0.95 to
avoid frequent tracking failures. The clutter generation remains
the same, and we test with measurement noises from 0.2 to
0.75. The results can be found in Figure 3. We can see that our
filter obtains lower tracking errors in most cases. The number
of failed tracks is almost the same as JPDAF [10].

4) Update speed: We compare the update speeds of these
methods with different numbers of objects. The results can be
found in Table II. The experiments show that PKF can track
at a comparable speed with JPDAF.

V. APPLICATION TO MULTI-OBJECT TRACKING

In this section, we apply our PKF to the MOT task.

TABLE I: Comparison of tracking errors (l2 norm in meters).
Nobj Method Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Avg

3

Binary 2.16 1.36 1.80 - - 1.78
PMHT [9] 1.50 1.29 1.55 - - 1.45
JPDAF [10] 0.70 0.60 0.65 - - 0.65
PKF 0.70 0.57 0.58 - - 0.62

5

Binary 8.37 19.36 17.34 11.37 14.53 14.20
PMHT [9] 12.41 12.34 12.43 12.10 11.21 12.10
JPDAF [10] 0.68 0.73 0.62 0.63 0.66 0.66
PKF 0.60 0.68 0.58 0.61 0.61 0.62

TABLE II: Update time (ms) per frame given association weights.

Number of objects 3 5 10 20 Avg
Vanilla Kalman filter 0.08 0.12 0.20 0.36 0.19
PMHT [9] 0.11 0.16 0.28 0.55 0.28
JPDAF [10] 0.28 0.39 0.78 1.47 0.73
PKF 0.31 0.46 0.93 1.76 0.87

Fig. 3: Ablation study with 10 objects in the simulation under different
noise scales. Left: tracking errors in meters. Right: number of failed
tracks, i.e., those with tracking errors larger than 5.

A. Algorithm design

To make the filter work efficiently in practice, we introduce
an ambiguity check to avoid outliers and unnecessary compu-
tation. Also, we force the state covariance matrix to be block
diagonal so that each track is estimated by a separate filter,
although the states are still considered jointly when evaluating
the association probabilities. Following SORT [1], we have
x = [u, v, s, r, u̇, v̇, ṡ]⊤ and z = [u, v, s, r]⊤ where u and v
are the horizontal and vertical pixel location of the center of
the object box, s and r represent the scale (area) and the aspect
ratio of the object’s box, and (̇) terms are velocities. Details
about the motion and measurement model matrices can be
found in Section IX.
Ambiguity check Gating is very important in Kalman
filtering [10]. We propose a simple yet efficient way to find
ambiguous measurements in the meantime of removing poten-
tial outliers (gating). Given measurements zt,k, k = 1, . . . ,Mt

and states xt,j , j = 1, . . . , N , we first compute a score matrix
St ∈ RMt×N with entries [St]kj equal to the intersection over
union (IoU) for each measurement-object bounding-box pair.
Then, we perform an ambiguity check. For each row k of St

(corresponding to measurement zt,k), we sort the scores from
high to low. Supposing the rank is xt,j1 xt,j2 · · ·xt,jN , if object
xt,j2 has a score over a threshold τambig , e.g., 90% the score
of object xt,j1 , then xt,j1 and xt,j2 are ambiguous objects, and
the measurement zt,k is an ambiguous measurement. Then, we
compare xt,j2 and xt,j3 and so on. We repeat this for all objects
and measurements to obtain an ambiguous set. Measurements
and objects with their matches marked as ambiguous will
also be added to the ambiguous set. Proposition 1 is only
applied to the ambiguous set of measurements and objects.
The rest of the measurements and objects are associated
with binary association [31], [48]. An illustration of how our
proposed probabilistic data association Kalman filter benefits
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TABLE III: Results on MOT17 [14] testset with private detections. Methods in blue share detections.

Tracker HOTA ↑ MOTA ↑ IDF1 ↑ FP(104) ↓ FN(104) ↓ IDs ↓ Frag ↓ AssA ↑ AssR ↑

FairMOT [43] 59.3 73.7 72.3 2.75 11.7 3303 8073 58.0 63.6
QDTrack [44] 53.9 68.7 66.3 2.66 14.7 3378 8091 52.7 57.2
MOTR [45] 57.2 71.9 68.4 2.11 13.6 2115 3897 55.8 59.2
TransMOT [46] 61.7 76.7 75.1 3.62 9.32 2346 7719 59.9 66.5
MeMOT [47] 56.9 72.5 69.0 2.72 11.5 2724 - 55.2 -
ByteTrack [2] 63.1 80.3 77.3 2.55 8.37 2196 2277 62.0 68.2
OC-SORT [3] 63.2 78.0 77.5 1.51 10.8 1950 2040 63.2 67.5
PKF 63.3 78.3 77.7 1.56 10.5 2130 2754 63.4 67.4

TABLE IV: Results on MOT20 [15] testset with private detections. Methods in blue share detections.

Tracker HOTA ↑ MOTA ↑ IDF1 ↑ FP(104) ↓ FN(104) ↓ IDs ↓ Frag ↓ AssA ↑ AssR ↑

FairMOT [43] 54.6 61.8 67.3 10.3 8.89 5243 7874 54.7 60.7
TransMOT [46] 61.9 77.5 75.2 3.42 8.08 1615 2421 60.1 66.3
MeMOT [47] 54.1 63.7 66.1 4.79 13.8 1938 - 55.0 -
ByteTrack [2] 61.3 77.8 75.2 2.62 8.76 1223 1460 59.6 66.2
OC-SORT [3] 62.1 75.5 75.9 1.80 10.8 913 1198 62.0 67.5
PKF 62.3 75.4 76.3 1.73 10.9 980 1584 62.7 67.6

Fig. 4: Illustration of our data association. The detections and tracks
are shown in green and orange. The first row shows the result of
binary association via [48]. The second row is our proposed data
association. In the first image, the detections highly overlap, and our
ambiguity check recognizes these as ambiguous (dashed red boxes).
The binary association causes an ID switch, but our method can track
the objects correctly, as shown in the third image.

the ambiguous case is shown in Figure 4, where binary
association causes a wrong ID switch while our proposed
association can obtain a correct ID.

We create a filter for each new object (equivalent to enforcing
a block-diagonal covariance matrix). This avoids a large state
covariance and observation Jacobian H̄t+1 in (17), which
speeds up the tracking especially when the number of objects
is large. We still compute the association weight matrix W
jointly, each column vector wj corresponds to a tracked object
with measurement association weights. Measurements with a
weight larger than a threshold τweight are used to update the
tracker by Proposition 2, which helps exclude potential outliers
and achieve stable computation.

B. Evaluation
Datasets We evaluate PKF on multiple datasets, including
MOT17 [14], MOT20 [15], and DanceTrack [11]. MOT17 and

MOT20 focus on crowded pedestrian tracking in public places.
DanceTrack is a dancing-scene dataset, where the objects have
similar appearances, move fast, highly non-linearly, and cross
over each other frequently, thus imposing a higher requirement
on data association.
Metrics We use higher order tracking accuracy (HOTA) [13] as
our main metric because it balances between detection accuracy
and association accuracy. We also report the AssA [13] and
IDF1 [12] metrics, which emphasize data association accuracy
and the MOTA [49] metric, which emphasizes the detection
accuracy.
Implementation In performing the data association ambiguity
check, we compute the IoU between detections and tracked
bounding boxes. To construct the matrix Q in Proposition 1,
we treat UoI := 1/IoU as a distance (not an actual distance
function mathematically) and compute the conditional probabil-
ity as p(zt,k|xt,j) ∝ exp(−αUoI), where α is a scaling factor.
We found α = 2 to work well in practice. On MOT17 [14]
and DanceTrack [11], the ambiguity check threshold was set
to τambig = 0.9. On MOT20, we set τambig = 0.95 since the
pedestrians are more crowded. The weight threshold was set
at τweight = 0.25. We used the publicly available YOLOX
weights by ByteTrack [2]. Following the common practice
of SORT [1], we set the detection confidence threshold at
0.4 for MOT20 and 0.6 for other datasets. A new track is
created if a detected box has IoU lower than 0.3 with all
the tracks. All experiments were conducted on a laptop with
i9-11980HK@2.60 CPU, 16 GB RAM, and RTX 3080 GPU.

C. Benchmark results
In this section, we first show that PKF can get comparable

results to other methods [2], [3] by only associating bounding
boxes, i.e., without using any other techniques or features. We
then show that PKF is compatible with more advanced object
features can serve as a backbone, same as SORT [1].
MOT17 and MOT20 The quantitative results on MOT17 [14]
and MOT20 [15] are shown in Table III and IV. To get a fair
comparison, we use the same detections as ByteTrack [2] and
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TABLE V: DanceTrack [11] results. Blue means shared detections.

Tracker HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ IDF1 ↑

FairMOT [43] 39.7 66.7 23.8 82.2 40.8
QDTrack [44] 45.7 72.1 29.2 83.0 44.8
TraDes [50] 43.3 74.5 25.4 86.2 41.2
MOTR [45] 54.2 73.5 40.2 79.7 51.5
SORT [1] 50.6 80.2 32.0 89.2 48.9
DeepSORT [32] 45.6 71.0 29.7 87.8 47.9
ByteTrack [2] 47.3 71.6 31.4 89.5 52.5
OC-SORT [3] 54.5 80.4 37.1 89.4 54.0
PKF 53.7 79.7 36.2 89.1 53.5

TABLE VI: Application to Hybrid-SORT-ReID [4].

Dataset Tracker HOTA ↑ AssA ↑ MOTA ↑ IDF1 ↑

MOT20 Hybrid-SORT-ReID [4] 63.9 64.7 76.7 78.4
Hybrid-PKF-ReID 64.3 65.1 76.7 79.0

DanceTrack Hybrid-SORT-ReID [4] 65.5 52.2 91.8 67.2
Hybrid-PKF-ReID 66.4 53.9 91.6 68.7

OC-SORT [3] and inherit the linear interpolation. While the
direct comparison to our PKF is the vanilla Kalman filter,
we can achieve comparable results to ByteTrack [2] and OC-
SORT [3], which do multiple rounds of associations [2] , make
use of velocities [3], and re-updates [3]. We can see that PKF
is able to achieve better data association, as indicated by IDF1
and AssA, and achieves slightly higher HOTA results.
DanceTrack The results on DanceTrack [11] are shown in
Table V. We can see that PKF achieves better results than
SORT [1] and ByteTrack [2]. In this dataset, there are a lot of
occlusions and the dancers can move dramatically. The increase
of AssA and IDF1 over SORT [1] shows again the advantage
of PKF in terms of association.
Application to Hybrid-SORT-ReID Besides data association
techniques from [2], [3], Hybrid-SORT-ReID [4] further uses
detection scores, a height-enhanced IoU, and a ReID module
with deep neural features. We show that our PKF is compatible
with these features, just as SORT [1] is, by replacing the
SORT part (Kalman filter) with PKF. We name the new
method Hybrid-PKF-ReID. With the score matrix computed
by Hybrid-SORT-ReID using all these features, we compute
the measurement probability as p(zt,k|xt,j) ∝ exp(−α/sk,j),
where sk,j is the association score of zt,k and xt,j . We
test Hybrid-PKF-ReID on MOT20 and Dancetrack, which
have more ambiguous scenarios. Table VI shows that adding
probabilistic association improves Hybrid-SORT-ReID’s results.
We show some sequences that PKF improves in Fig. 5, which
are highly occluded. This suggests that PKF is effective in
highly ambiguous cases.

D. Ablation study

We compare the effect of ambiguity checks and gating, and
analyze the computation time of the matrix permanent.
Ambiguity check We compare the performance of PKF with
and without ambiguity check in Table VII. We observe that
associating all measurements and tracks directly degrades the
performance due to updating with low-weight measurements,
which are mostly outliers. Introducing the ambiguity check in
PKF to discard low-probability measurements before computing
the matrix permanents, leads to better results than binary
association with almost the same tracking speed. Table VIII

Fig. 5: Visualizations of different datasets.

TABLE VII: Ablation study of ambiguity check (A.C.).

MOT17 DanceTrack

Metrics HOTA ↑ IDF1 ↑ t (ms) HOTA ↑ IDF1 ↑ t (ms)

Binary 64.9 76.9 5.9 47.8 48.3 3.4
PKF w/o A.C. 44.9 52.8 4970.6 44.2 45.2 121.2

PKF 66.8 78.5 6.2 53.5 53.3 3.7

TABLE VIII: Effect of gating and ambiguity check in the JPDAF
[10] on the l2 tracking error (meters) in simulation.

Method Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Avg

Binary 8.37 19.36 17.34 11.37 14.53 14.20
JPDAF [10] w/o gating 19.32 18.31 10.60 16.15 11.63 15.21
JPDAF [10] w/ gating 0.68 0.73 0.62 0.63 0.66 0.66
JPDAF [10] w/ A.C. 0.62 1.47 0.62 0.63 0.58 0.79

TABLE IX: Computation time (ms) of matrix permanent and overall
association weights with different matrix sizes.

Matrix size 5× 5 10× 10 15× 15 20× 20 30× 30

Nijenhuis et al. [7] 0.003 0.01 2.0 26.5 31510.9
Huber et al. [8] 6.5 20.1 21.7 35.4 67.8
Best 0.003 0.01 2.0 26.5 67.8

Weight compute 0.03 0.2 14.5 1073.6 1766.6

shows that our ambiguity check has a similar effect to Chi-
squared gating in the JPDAF [10] with 5 objects in simulation.
We do not do gating in real-world data since 1/IoU is ill-
conditioned for Chi-squared test while the ambiguity check is
more flexible with different features.
Matrix permanent computation time We analyze the
computation time of the matrix permanent used to obtained
the association weights. We take the faster matrix permanent
method between [7] and [8] (switch at size 20 × 20). Table
IX shows that the speed is very fast for matrices smaller than
15 × 15 and computations on matrices up to 30 × 30 run at
over 0.5 fps.
Discussion We observe that achieving effective use of proba-
bilistic data association requires a balance between removing
outliers (gating) and keeping in ambiguous measurements.
If there is no gating, the outliers will bring bias to the
measurements. On the other hand, if only the most likely
measurements are considered, wrong hard decisions could
harm the estimation. The probability and gating model can be
improved to unlock further potential of PKF.

VI. CONCLUSION

We derived a new formulation of the Kalman filter with
probabilistic data association by formulating a variational
inference problem and introducing data association as a latent
variable in the EM algorithm. We showed that, in the E-step, the
association probabilities can be computed as matrix permanents,
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while the M-step led to the usual Kalman filter prediction and
update steps but with an extended measurement model. Our
experiments demonstrated that our filter can outperform the
JPDAF and can achieve good results on MOT benchmarks.
Our algorithm is not restricted to the MOT application and
can serve as a general method for estimation problems with
measurement ambiguity.
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