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Abstract— This paper presents a method to compute an
approximate explicit model predictive control (MPC) law using
neural networks. The optimal MPC control law for constrained
linear quadratic regulator (LQR) systems is piecewise affine
on polytopes. However, computing this optimal control law
becomes computationally intractable for large problems, and
motivates the application of reinforcement learning techniques
using neural networks with rectified linear units. We introduce
a modified reinforcement learning policy gradient algorithm
that utilizes knowledge of the system model to efficiently train
the neural network. We guarantee that the network generates
feasible control inputs by projecting onto polytope regions
derived from the maximal control invariant set of the system.
Finally, we present numerical examples that demonstrate the
characteristics and performance of our algorithm.

I. INTRODUCTION

Model predictive control (MPC) is a dynamic optimization
technique that has seen widespread use in industrial process
applications such as oil refineries and chemical plants [1].
Recently, MPC has found mainstream use in robotics for the
control of quadrotors [2], [3], autonomous vehicles [4], and
humanoid robots [5] due to its versatility, robustness, and
safety guarantees. The transition from the process industry
to robotics brings an additional challenge since the available
computation time is reduced from hours to milliseconds.

One way to manage the computational load is to pre-
compute the optimal control law u∗ = µ∗(x) offline as
a function of all feasible states x. The resulting control
law for a linear system with quadratic cost is known to
be piecewise affine (PWA) on polytopes. If µ∗(x) is pre-
computed offline, the online optimization problem is reduced
to determining the polytopic region the system state is in,
and applying the pre-computed affine control. This method
is called explicit MPC, in contrast to implicit MPC, which
solves the optimization problem online at the current state x
at each time step as needed. The drawback of explicit MPC
approaches, however, is that the computational complexity,
measured by the number of polytopic regions, grows quickly
with the number of constraints. As a result, computing
the optimal explicit control law becomes computationally
intractable for large systems. In addition, even if this optimal
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control law can be computed, the process of determining
which region contains the system state can require too much
processing power or memory storage for real-time evaluation
online [6].

Fast MPC methods for implicit MPC focus on speeding
up the online optimization process. Wang et al. [7] exploit
the specific problem structure of MPC to decrease the time
complexity of solving the resulting quadratic program (QP).
Richter et al. [8] use the fast gradient method and provide
a practical upper bound on the number of iterations needed
for a specified accuracy.

One approach to address the computational limitations
of optimal explicit MPC control laws is to identify a sub-
optimal polytope partition of the state space, and construct a
control law or cost function based on those polytope regions.
Johansen et al. [9] partition the state space into orthogo-
nal hypercubes organized in a hierarchical data structure,
and the tree-structure of the resulting controller allows for
real-time computational complexity that is logarithmic with
respect to the number of hypercube regions. Summers et
al. [10] similarly use a hierarchical sparse grid structure to
approximate the value function and control law. Jones et
al. [11] use a double-description method to build piecewise
affine (PWA) approximations of the value function, and use
barycentric functions on the polytopic regions of the approx-
imate value function to compute an approximate control law.
Our approach differs from these methods because we do not
explicitly construct the polytope regions.

Bemporad et al. [12] use canonical PWA basis functions
to construct PWA Simplicial (PWAS) approximations of the
optimal control law, obtaining the corresponding weights
of these basis functions by solving a convex optimization
problem. This approach is similar to our method in that both
can be viewed as function approximation, but differs in that
they design their basis functions, or features, while our neural
network instead learns features during training.

An alternative approach assumes that the explicit optimal
control law is available, and modifies it to obtain a simpler
control law with fewer polytopic regions. Kvasnica et al. [6],
[13] reduce the complexity of the PWA control law by
eliminating regions which have attained saturated values,
thus resulting in a simpler, but still optimal control law.
Takacs et al. [14] find a sub-optimal PWA control law by
first obtaining polytope regions by solving the explicit MPC
optimization problem with a reduced time horizon. They then
locally minimize the integrated squared error with respect to
the optimal control law within each of these regions. These



methods differ from our approach since we do not assume
that the optimal explicit control law is available.

Parisini et al. [15] use a neural network to approximate the
control law, but differs from our approach in that they con-
sider nonlinear systems, do not consider constraints, and train
their network using supervised learning. Other applications
of neural networks in MPC focus on approximating nonlinear
system models [16]–[18]. The use of function approxi-
mators in control problems, called Approximate Dynamic
Programming (ADP), has many connections to reinforcement
learning (RL) [19]. The application of RL to linear quadratic
regulator (LQR) and MPC problems has been previously
explored [20]–[22], but the motivation in those cases is
to handle dynamics models of known form with unknown
parameters. The recent success of deep RL demonstrates the
ability of neural networks to model extremely large-scale
RL problems [23]–[25]. However, most of these approaches
suffer from high sample complexity and do not guarantee
feasible control inputs.

The goal of this work is to develop methods for incorpo-
rating prior knowledge about constrained LQR, such as the
piecewise affine structure of the optimal control law and the
maximal control invariant sets, into deep RL techniques, in
order to train a neural network that approximates the explicit
MPC control law. The contributions of the paper are:
• an architecture for a PWA neural network that is guar-

anteed to generate feasible control inputs, accomplished
by projecting onto convex constraint regions derived
from the maximal control invariant set of the system,
and

• a reinforcement learning algorithm that improves the
efficiency and performance of policy gradient methods
by incorporating the known system model.

II. PROBLEM STATEMENT

Consider a discrete-time linear time-invariant system

xk+1 = Axk + Buk, xk ∈ Rn, uk ∈ Rm.

Our goal is to compute an infinite sequence of control inputs
u0:∞ to regulate the system to a desired state subject to
a set of constraints. It is assumed that the pair (A,B) is
stabilizable. This problem, known as the constrained infinite-
horizon LQR, is:

min
u0:∞

V∞(x0) =

∞∑
k=0

(
xTkMxk + uTkRuk

)
s.t. xk+1 = Axk + Buk,

xk ∈ X , uk ∈ U ,

(1)

where M ∈ Sn�0 and R ∈ Sm�0 are chosen to define
the desired optimal behavior for the system, and X , U are
polyhedra which contain the origin in their interior. Rather
than computing a sequence of control inputs u0:∞ for a given
state x0, our goal is to compute a control function µ∗(xk)
that specifies the optimal control input for an arbitrary state
xk at time k. This is possible since the system is time-
invariant and Problem (1) is infinite-horizon, and hence the
optimal control policy is stationary.

III. PRELIMINARIES

A. Explicit Model Predictive Control

In most cases, the constrained infinite-horizon formulation
is not feasible to solve [26], and a Receding Horizon Control
(RHC) or MPC technique is used. These methods simplify
Problem (1) by restricting the optimization to a finite horizon,
N , and introducing an appropriate terminal cost xTNFxN and
terminal state constraints xN ∈ Xf as follows:

min
u0:(N−1)

V (x0) = xTNFxN +

N−1∑
k=0

(
xTkMxk + uTkRuk

)
s.t. xk+1 = Axk + Buk,

xk ∈ X , uk ∈ U , (2)
xN ∈ Xf .

The terminal cost, xTNFxN , is chosen to bound the cost for
the remaining time (N,∞). A common choice for F is the
solution to the Algebraic Riccati Equation:

F = ATFA + M−ATFB(BTFB + R)−1BTFA (3)

which corresponds to the optimal cost-to-go after N time
steps for the unconstrained infinite-horizon LQR problem.
The optimal control law for the corresponding unconstrained
infinite-horizon LQR problem is uk = −Kxk where the
LQR gain matrix is:

K = (R + BTFB)−1(BTFA). (4)

There exists an N∗ < ∞ such that, for all N > N∗, the
system reaches the unconstrained region around the origin
within the time horizon [27], [28]. In this case, the cost-to-go,
xTNFxN , is exact and Problems (1) and (2) are equivalent.

Problems (1) and (2) may be reformulated as learning
problems by introducing a family of functions uk = µθ(xk),
parameterized by θ, and minimizing the cost function:

V θ(x0) = xTNFxN +
N−1∑
k=0

(xTkMxk + µθ(xk)TRµθ(xk)) (5)

with respect to θ. In this case, V θ(x0) is called the policy
conditional value function and represents the cost incurred
by starting at x0 and following control law µθ.

Similarly, we define a policy conditional Q-function:

Qθ(x0,u0) = xT0 Mx0 + uT0 Ru0 + xTNFxN+
N−1∑
k=1

(
xTkMxk + µθ(xk)TRµθ(xk)

) (6)

The traditional approach to obtain an explicit feedback
law µ∗ for Problem (1) is to formulate it as Problem (2) and
solve it via multi-parametric Quadratic-Programming (mp-
QP) techniques [26, Chs. 6, 11]. As a result, the optimal
control law µ∗(x) is continuous and piecewise affine on
polyhedra and the optimal value function V ∗(x) is continu-
ous, piecewise quadratic on the same polyhedra, and convex
in the state x.



B. Overview of Our Approach

The challenge with computing the explicit MPC control
law is that the number of polytopic regions that determine
the optimal control law may grow exponentially with the
problem size. Specifically, the number of critical regions is
upper-bounded by the number 2q of possible combinations of
active constraints, where q is the number of constraints [29].
Increasing the state and control dimensionality, or increasing
the time horizon, all increase q. The actual number of
regions in the optimal control law is usually significantly
less than the exponential upper bound, and most prior work
on constructing approximate explicit MPC control laws focus
on construction or refinement of polytopic regions.

Rather than focusing on the construction of these polytopic
regions, we instead use function approximation and rein-
forcement learning techniques to directly learn an approx-
imate explicit control law. We first specify the architecture
of a deep neural network with rectified linear units (DNN
ReLU) that is guaranteed to respect constraint satisfaction of
our MPC problem. Once this architecture has been specified,
rather than minimizing some error function with respect to
the optimal control law, the algorithm then minimizes the
infinite-horizon value function V θ∞ over the parameters of the
neural network. The two key components of our approach
are: designing a neural network architecture that respects
constraint satisfaction (Sec. IV) and designing an algorithm
to find the optimal parameters θ∗ (Sec. V).

IV. NEURAL NETWORK ARCHITECTURE

We first introduce and motivate using a DNN ReLU to
approximate the control law and provide guidance on choos-
ing an appropriate architecture for these neural networks. We
then introduce Dykstra’s projection algorithm, which we use
to guarantee that the network will not generate control inputs
which lead to constraint violations.

A. Deep Neural Network with Rectified Linear Units

A neural network is a parameteric function approximator,
g(x;θ), which can be used to approximate the optimal
control law µ∗(x) ≈ g(x;θ) by an appropriate choice
of parameters θ. A deep neural network with L layers
represents g(x;θ) as a composition of L affine functions
λj(x) := Wjx + bj , each except the last one followed by
a nonlinear activation function h, so that (see Fig. 1):

g(x;θ) = λL ◦ h ◦ λL−1 ◦ · · · ◦ h ◦ λ1(x),

where θ := {W1:L,b1:L} are the affine function parameters
to be optimized, and h is a fixed (not optimized) function,
typically chosen as a sigmoid, hypertangent, or rectified
linear unit (ReLU) function (see [31, Ch.6] for details).

The optimal control law µ∗(x) of the constrained LQR
problem is a PWA function on polytopes. As a result, the
ReLU activation function, h(x) := max{0,x} (element-
wise), is of particular interest because a DNN ReLU is a
composition of PWA functions on polytopes, and as a result
is also a PWA function on polytopes [32]. In addition, a
DNN ReLU with n0 inputs, nL outputs, and L − 1 hidden

Fig. 1: The control law neural network is used to approximate
the optimal control input u∗ with u for a given state x. This
potentially infeasible u is projected onto the polytope R defined
by the constraints of (9) to output the feasible control input up.

layers of width n ≥ n0 can represent PWA functions with
Ω
(

( nn0
)(L−2)n0nn0

)
affine regions [34, Thm. 4, Cor. 5]. The

exact formula is(
L−1∏
i=1

⌊
ni
n0

⌋n0
)

n0∑
j=0

(
nL
j

)
. (7)

DNN ReLU are universal approximators [33], [36], and
in current deep learning practice, ReLU activations have
become the de-facto standard activation function [36]. These
observations make a DNN ReLU attractive for synthesizing
an approximate explicit MPC controller because 1) the
number of polytopic regions computed by the deep ReLU
models grows exponentially with the number of layers L and
polynomially with the number of weights per layer n and 2)
for a given architecture, we can calculate a lower bound on
the maximal number of polytopic regions that the architec-
ture can compute. Thus we can first design an architecture
based on considerations such as online computation speed or
memory requirements, and then use Eqn. (7) to estimate the
number of regions our chosen DNN ReLU can compute.

B. Dykstra’s Projection Algorithm

One difficulty in using a DNN ReLU in the constrained
LQR problem is guaranteeing constraint satisfaction, i.e. that
x0:∞ ∈ X , u0:∞ ∈ U . Prior work has restricted uk ∈ U
by manipulating the gradient ∇θg (zeroing, squashing, or
inverting) as the output uk nears constraint violation [37]. It
is, however, unclear how these approaches affect the learning
performance or how they could be used to also enforce the
remaining trajectory constraints xk+1:∞ ∈ X .

The feasible set X∞ is the set of all states x0 where
Problem (1) is feasible and V ∗∞ < +∞. We use Dykstra’s
projection algorithm [30] to guarantee that ∀ x0 ∈ X∞,
recursively calling our neural network control law g(xk;θ)
at each state xk will generate feasible state and control
input trajectories x1:∞ ∈ X and u0:∞ ∈ U . Recall that
the constraint regions X and U are polytopes. For a given
state xk, the neural network outputs a single, potentially



infeasible, control input uk which must be projected in a way
that ensures that the subsequent state and control trajectories
remain feasible. To obtain such a guarantee, we compute the
maximal control invariant set C∞ ⊆ X :

C∞ := {xk ∈ X | ∃{ut}∞t=k s.t. xt+1 = Axt + But,

ut ∈ U ,xt ∈ X ,∀t ∈ {k, k + 1, . . .}}.

Hence, for any state xk ∈ C∞, we project the network
output uk onto a polytope

R(xk) = {u|Axk + Bu ∈ C∞,u ∈ U}. (8)

Starting at xk, by recursively following our network control
law and performing a similar projection at all resulting states
xk+1:∞, we will guarantee that xk+1:∞ ∈ X and uk:∞ ∈ U .
Notice that since X∞ ⊆ C∞ [26], projecting uk onto R(xk)
does not eliminate any feasible solutions.

There are standard algorithms to compute C∞, but in
general it is difficult and is not guaranteed to terminate
in finite time [26]. In this work we make the assumption
that C∞ is computable, but this aspect is an interesting
direction for future work. One promising alternative is to
approximate the set, and there has already been some work in
this area [39]. A simpler alternative is to relax this guarantee
by projecting uk onto a set associated with a smaller control
invariant set, or onto a user-defined safe region.

Since C∞ and U are both polytopes, we can use their H-
representations to express the constraints as an intersection
of halfspaces:

C∞ = {x ∈ Rn | Ccx ≤ dc}
U = {u ∈ Rm | Cuu ≤ du}.

Thus, given xk ∈ C∞ and the potentially infeasible neural
network output uk = g(xk;θ), we can compute a projected
control input upk ∈ R(xk) which ensures that xk+1 = Axk+
Bupk ∈ C∞ by solving the following quadratic program:

arg min
up

k

‖uk − upk‖
2
2

s.t. CcBupk ≤ dc −CcAxk

Cuu
p
k ≤ du

(9)

where the constraints are theH-representation ofR(xk), and
the optimal solution is the orthogonal projection of uk onto
R(xk). Notice that once C∞ is calculated offline, R(xk)
can easily be computed online through matrix multiplication
operations. While (9) can be solved via standard quadratic
programming methods, we choose to use Dykstra’s projec-
tion algorithm because the projection onto the individual
halfspace constraints has a closed form solution, and Dyk-
stra’s is guaranteed to converge to the orthogonal projection
since R(xk) is the intersection of closed convex sets [30].

Let up = PR(u) be the orthogonal projection of u onto a
polytope R corresponding to the intersection of r halfspace
constraints, cTi u ≤ di, for i = 1, . . . , r in (9) and let PRi
denote the projection onto the i-th halfspace:

PRi (u) :=

{
u + (di − cTi u)ci/||ci||22 if cTi u > di

u if cTi u ≤ di.
(10)

Dykstra’s projection algorithm [30] generates a sequence
of variables u(i,j) and I(i,j) for i = 1 . . . r and j ∈ N. For
convenience, let u(0,j) = u(r,j−1). The algorithm initializes
with u(0,0) := u and I(0,0) = 0. It then iterates as follows:

u(i,j) = PRi
(
u(i−1,j) − I(i,j−1)

)
I(i,j) = u(i,j) −

(
u(i−1,j) − I(i,j−1)

)
.

(11)

The variable u(i,j) converges to PR(u) as j → ∞, ter-
minating once all constraints are satisfied. Thus given a
state xk, neural network g(xk;θ), and polytope R(xk),
our approximate control law will output upk = f(xk;θ) =
PR(xk)(g(xk;θ)).

V. TRAINING THE NEURAL NETWORK

This section discusses optimization over the parameters θ
of the neural network architecture with Dykstra’s projection
f(x;θ) developed in Sec. IV in order to approximate the
optimal control law µ∗(x). One possible approach is to use
a supervised learning method, which entails sampling a finite
set {x(i)}NB

i=1 ∈ C∞ of size NB , using implicit MPC to solve
for the corresponding optimal control inputs {u∗(i)}NB

i=1, and
then minimizing 1

NB

∑NB

i=1(u∗(i) − f(x(i);θ))2 with respect
to parameters θ. While this approach might work well for
linear systems, generalizing it to nonlinear systems would be
challenging as it would require solving implicit MPC for a
nonlinear system.

Instead, we propose a reinforcement learning approach,
specifically a policy gradient method, that iteratively updates
the parameters θ in the direction of the gradient ∇θV

θ
∞(x)

of the cost function, and extends naturally to nonlinear sys-
tems. For our application, policy gradient methods are more
suitable than value-based methods because policy gradient
methods will use the PWA DNN ReLU to approximate the
PWA control law, rather than the piecewise quadratic (PWQ)
value function. In addition, while it has been difficult to
provide convergence assurances for value-based algorithms
that rely on function approximation [19], policy gradients
using function approximation yield unbiased estimates of the
gradient with respect to the parameters θ, and hence are
guaranteed to converge to locally optimal solutions [40].

We propose an algorithm similar to REINFORCE [41]
to solve Problem (1) and exploit the reduction to the
MPC Problem (2) to estimate the infinite-horizon value
function efficiently. To derive the algorithm, we define a
stochastic control law, which samples control inputs uk from
a multivariate Gaussian probability density function (pdf)
φ(·; f(xk;θ),Σ), centered at the DNN ReLU output f(xk;θ)
with diagonal covariance Σ. The covariance Σ is annealed to
0 by the end of training to return to the deterministic control
law, and plays a similar role as the exploration parameter ε
in ε-greedy annealing for Q-learning [23].

For a stochastic control law, the infinite-horizon value
function should be redefined as follows:

V θ
∞(x) = Eτ∼p(·|θ)

[ ∞∑
k=0

(xTkMxk + uTkRuk)

∣∣∣∣x0 = x

]



where τ := (x0,u0,x1,u1, . . .) is a state-control trajec-
tory with pdf p(·|θ) defined by the stationary distribution
of the states encountered under the stochastic control law
φ(·; f(x;θ),Σ). Define the Q-functions Qθ∞(x,u) similarly.
We rely on the following result to obtain the gradient of the
value function.

Theorem (Policy Gradient [40]). The gradient of the infinite-
horizon value function V θ

∞(x) with respect to the policy
parameters θ is

∇θV
θ
∞(x) = Eu

[
Qθ
∞(x,u)∇θ log φ(u; f(x;θ),Σ)

]
where the expectation is with respect to u ∼ N (f(x;θ),Σ).

Due to the policy gradient theorem, we can use stochastic
gradient descent to update the neural network parameters:

θt+1 = θt−αtQθt
∞(xt,ut)∇θt

log φ(ut; f(xt;θt),Σ) (12)

where xt ∼ U(C∞) is uniformly sampled within the maxi-
mal control invariant set C∞, ut ∼ N (f(xt;θt),Σ), and αt
is a non-negative learning rate.

The policy gradient theorem can be generalized to include
a comparison of the state-action value Qθ

∞(x,u) to an
arbitrary baseline function b(x). The baseline can be any
function, even a random variable, as long as it does not vary
with u, since the expectation above remains unchanged [42]:

∇θV
θ
∞(x) = Eu

[(
Qθ
∞(x,u)− b(x)

)
∇θ log φ(u; f(x;θ),Σ)

]
.

The reason for introducing the baseline is that it can have
a significant effect on the variance of the stochastic update
rule in (12). A near-optimal reduction in variance can be
achieved [43] by picking b(x) = V θ

∞(x) because the dif-
ference Aθ

∞(x,u) := Qθ
∞(x,u) − V θ

∞(x), known as the
advantage function, measures the expected contributed value
of individual control inputs u at state x, relative to the
average expected value V θ

∞(x). Using this variance reduction
strategy and simplifying the expression in (12), we arrive at
the final update rule for the neural network parameters:

θt+1 = θt − αtAθt
∞(xt,ut)[∇θt

f(xt;θt)]Σ
−1(ut − f(xt;θt)) (13)

where as before xt ∼ U(C∞) and ut ∼ N (f(xt;θt),Σ).
A key idea in our approach is to estimate the infinite-

horizon advantage function Aθ
∞(x,u) via the terminal cost

xTNFxN used by MPC. More precisely, given a state
xt ∈ C∞, we sample two state-control trajectories τ q :=
{(xqk+1,u

q
k)}N−1k=t and τv := {(xvk+1,u

v
k)}N−1k=t of length N ,

by following the stochastic control law φ(·; f(xk;θt),Σ) and
the system dynamics xk+1 = Axk + Buk and ensuring that
uqk and uvk are projected via (9), to estimate the advantage:

Aθt
∞(xt,u

q
t ) ≈ [uqt ]

TRuqt − [uvt ]
TRuvt + [xqN ]TFxqN − [xvN ]TFxvN

+

N−1∑
k=t+1

[uqk]TRuqk − [uvk]TRuvk + [xqk]TMxqk − [xvk]TMxvK

(14)
Exploiting the terminal cost F and the system dynamics to
compute the advantage function significantly increases train-
ing efficiency. Moreover, our policy gradient algorithm (13)

Algorithm 1 Constrained LQR Curriculum Policy Gradient

1: procedure POLICY GRADIENT (A, B, M, R, F, K, N )
2: Randomly initialize θ
3: Compute C∞
4: Set learning rate α, batch size NB , sample size NS
5: t← 0
6: repeat . Initial Fit to Projected LQR
7: Sample batch NB of x(i) ∼ U(C∞)
8: For each x(i), compute polytope R(x(i))

9: θt+1 ← θt + αt∇θt

[
1

NB

NB∑
i=1

||PR(x(i))(−Kx(i))− f(x(i);θt)||22

]
10: t← t+ 1
11: until convergence
12: for η = 1 . . . N do . Curriculum
13: repeat
14: repeat . Rejection Sampling
15: D ← {}
16: Sample batch NS of (x(i),u(i)) ∼ [U(C∞)×N

(
f(x(i);θt),Σ

)
]

17: For each x(i), compute polytope R(x(i))
18: Compute Aθt

∞(x,u) according to (14)
19: D ← D ∪ {(x(i),u(i))|Aθt

∞(x(i),u(i)) > 0}
20: until |D| ≥ NB
21: Apply update rule (13)
22: t← t+ 1
23: until convergence

return θt

can be applied to a nonlinear system directly (as long as
C∞, or an appropriate subset, can be calculated), as it only
depends on the assumptions that the system model and cost
function are known, and not on their specific representational
forms.

We make two additional modifications which we observed
improved empirical performance. First, we only use (x,u)
pairs with positive advantage. Updating using positive rein-
forcement and ignoring negative reinforcement is analogous
to other techniques such as stochastic hill-climbing [44],
Continuous Actor Critic Learning Automaton (CACLA) [45],
and the linear reward-inaction update [46]. This sampling can
easily be performed using rejection sampling.

Second, we integrate policy gradients into a curriculum
learning framework. Curriculum learning is based on numeri-
cal continuation methods for optimizing complex non-convex
functions [47], which define a family of cost functions Vη for
η = 0 . . . N where V0 can be optimized easily and VN is the
actual performance criteria to minimize. Applying a contin-
uation method involves tracking the minimizing solution of
increasingly non-smooth cost functions as η goes from 0 to
N , and has been empirically shown to yield better solutions,
especially in optimizing DNNs [48]. In our application, V0
corresponds to the value function of the unconstrained LQR
solution projected onto the polytope via (9). VN corresponds
to the value function of the optimal N -horizon control law
in Problem (2). The entire curriculum policy gradient for
constrained LQR is presented in Alg. 1.



Fig. 2: Top Left: Neural Network Regions; Top Right: Optimal Ex-
plicit MPC Regions; The general shape of the explicit MPC regions
can be seen in the neural network solution Bottom Left: Control
Law Comparison; Bottom Right: Value Function Comparison; Our
network is able to closely approximate the optimal control law.

VI. NUMERICAL EXAMPLES

The examples are intended as a proof of concept and
to check the quality of the approximation algorithm. We
did not make any effort to optimize the offline and online
computation speeds.

A. Double Integrator

Consider a 2-D double integrator system:

A =

[
I εI
0 I

]
, B =

[
ε2

2 I
εI

]
where I = 1, x ∈ R2,u ∈ R, and ε = 0.1 is a time
discretization parameter. We are interested in stabilizing the
system by solving the MPC problem in (2) with cost terms
R = 1, M = I2, horizon N = 15, position constraints
|x(1)k | ≤ 6, velocity constraints |x(2)k | ≤ 1, k = 0, . . . , N
and input constraint |uk| ≤ 2, k = 1, . . . , N − 1.

Using prior knowledge that the optimal control law has
439 regions, we construct a neural network with 2 hidden
layers of width 8. Since the input size n0 = 2, according
to Eqn. (7), the lower bound on the maximal number of
polytope regions this neural network can compute is 576.

Fig. 2 compares the proposed policy gradient method to
the optimal explicit MPC solution in terms of the computed
control law, value function, and the polytopic regions that
define the piecewise affine control law structure. Even though
the network is small, with only 16 nodes, it is able to closely
approximate the optimal solution. The plot of the regions
defining the neural network control law is illustrated in
Fig. 2 and indicates that the neural network ignores saturated

Fig. 3: Neural Network: Our approach; Actor Critic Same control
law network architecture trained using actor critic algorithm. Our
method plateaus after 1000 iterations, while the actor critic method
plateaus after 3000 iterations. The resulting control law learned by
our method has better performance as measured by the difference in
value compared to the optimal value. The drops in this error around
training iterations 200 and 1000 in the neural network method is
due to the curriculum schedule.

regions at the top and bottom of the optimal regions plot.
These saturated regions correspond to regions which add
additional complexity to the control law, but have no effect
on the performance. The extra lines in the neural network
regions plot, such as the ones through the large center region,
could cause approximation error, but the effects are close
to negligible as shown by the close match between the
optimal and approximate control laws and corresponding
value functions. The regions of the neural network can be
visualized by sampling on a dense grid, and plotting where
changes in the gradient of the neural network with respect
to the inputs occur.

Since one of our contributions is in improving the policy
gradient algorithm by computing the finite horizon advantage
in (14), we quantify the impact of this change by comparing
our algorithm against an actor-critic algorithm based on
A3C [49]. The A3C algorithm approximates the advantage
function rather than computing it exactly based on the system
model. The same neural network architecture is used to
represent the control law in the actor-critic method, while
a second neural network is used to approximate the value
function. The value network has 3 hidden layers of width
64 and is trained via standard techniques of minimizing a
temporal difference error.

Fig. 3 compares the control values generated by each
method during training with the optimal value obtained from
the MPC controller. Our method learns significantly faster
and results in a better control law (mean value difference
of +0.09) in 1000 iterations, while the actor-critic method
converges to a control law with worse performance (+5.35)
after 3000 iterations. These results indicate that computing a
finite-horizon advantage based on the system model impacts
both the training efficiency and the quality of the resulting
neural network controller.



Fig. 4: Example Trajectory: These plots depict the state error
for each method compared to optimal implicit MPC on a sample
trajectory. The corresponding value errors are Neural Network
(0.11), Projected LQR (1.82), Wavelet (1.16), and Actor Critic
(2.48).

B. 4-Dimensional System

We consider a second numerical example that compares
our method to other approximation methods for explicit
MPC. Consider the following system with 4 state dimensions
and 2 action dimensions (from [11]):

A =


0.7 −0.1 0.0 0.0
0.2 −0.5 0.1 0.0
0.0 0.1 0.1 0.0
0.5 0.0 0.5 0.5

 , B =


0.0 0.1
0.1 1.0
0.1 0.0
0.0 0.0


with constraints given by the inequalities:

|xk| ≤


6.0
6.0
1.0
0.5

 , |uk| ≤
[
5.0
5.0

]
,

costs parameters R = I, M = I, and time horizon N = 10.
We compare our neural network method with: (1) Projected
LQR; (2) Wavelet; and (3) Actor Critic.

The Projected LQR control law uses Dykstra’s projection
algorithm to project the unconstrained LQR control law onto
the polytope defined by the constraints in (9). Our initial
curriculum learning step fits the neural network to projected
LQR, so improvement beyond this control law is due to the
policy gradient optimization. The wavelet method [10] splits
the feasible region into a grid of hypercubes, and stores the
value and control law at each vertex. However, some of the
vertices of the hypercube may lie outside the feasible region
and have no solution, and as a result the approximate control
law may not feasible [10, Lemma 3]. Thus, it is necessary
to formulate the MPC problem using soft-constraints when
using the wavelet approach, and the resulting control law
may violate the constraints. Our third benchmark is the actor-
critic method introduced in Sec.VI-A.

XXXXXXXX
Error Avg % Max % SD % Fail %

Neural Network 1.7 10.5 1.4 0
Projected LQR 2.4 55.9 5.6 0
Wavelet 15.7 157.9 25.6 8.3
Actor Critic 8.4 89.8 9.5 0

TABLE I: Value Error Metrics: These statistics are conditional
on the approximate control law computing a feasible sequence of
control inputs. Due to Dykstra’s projection algorithm, the Neural
Network, Projected LQR, and Actor Critic are guaranteed to gen-
erate feasible control inputs. However, due to its soft-constrained
formulation, the Wavelet method failed to find a feasible trajectory
for 83 out of the 1000 sampled states.

Our neural network controller has 3 hidden layers with 16
nodes in each layer. The wavelet method controller has 3256
hierarchical details. The value network in the actor critic
method has 3 hidden layers with 64 nodes. The computation
of the optimal explicit MPC controller for a system of this
size is already computationally burdensome, so instead we
randomly select 1000 states from C∞, and solve for the
optimal controller using implicit MPC. Fig. 4 shows an
example trajectory of each method compared to optimal
implicit MPC, and Table I shows the error statistics. Our
neural network approach performs the best, with an average
value error of 1.7% from the optimal value, and maximum
error of 10.5%. It significantly improves over projected LQR,
especially at initial states for which the optimal value is high,
indicating that the policy gradient approach is effective in
training the network. Due to the soft constraint formulation,
the wavelet method fails to output a feasible solution for 83
out of the 1000 examples. The actor-critic method converges
to a control law that has similar value to the projected LQR
control law, but does not improve beyond that.

VII. CONCLUSION

This paper presented a deep reinforcement learning ap-
proach for synthesizing an approximate explicit MPC control
law. We extended the DNN ReLU network structure by
using Dykstra’s projection algorithm to guarantee constraint
satisfaction. In addition, we proposed a policy gradient
algorithm that explicitly takes the known system model
into account when calculating the advantage to determine
the gradient direction. We showed in simulation that this
increases the training efficiency and quality of the resulting
control law. Finally, we incorporated the idea of curriculum
learning using the closed form unconstrained LQR solution
to initialize the network and incrementally train on increasing
time horizons. Empirically, this not only decreases training
time but also increases accuracy by helping avoid local
minima which exist in the parameter space.

There are a few limitations with our current work. First, we
do not provide measures of the sub-optimality of the resulting
control law synthesized by our method. In addition, there
are no guarantees or considerations about stability. These
issues have previously been noted as drawbacks of function
approximation methods [12]. Future work will focus on
addressing these issues, as well as extending our algorithm
to more complicated scenarios such as higher dimensional



or non-linear systems.
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