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a b s t r a c t

This work presents an explicit–implicit procedure to compute a model predictive control (MPC) law
with guarantees on recursive feasibility and asymptotic stability. The approach combines an offline-
trained fully-connected neural network with an online primal active set solver. The neural network
provides a control input initialization while the primal active set method ensures recursive feasibility
and asymptotic stability. The neural network is trained with a primal–dual loss function, aiming to
generate control sequences that are primal feasible and meet a desired level of suboptimality. Since
the neural network alone does not guarantee constraint satisfaction, its output is used to warm start
the primal active set method online. We demonstrate that this approach scales to large problems
with thousands of optimization variables, which are challenging for current approaches. Our method
achieves a 2× reduction in online inference time compared to the best method in a benchmark suite
of different solver and initialization strategies.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Model predictive control (MPC) is a dynamic optimization
echnique widely used in industrial process applications, such
s oil refineries and chemical plants (Qin & Badgwell, 2003).
ecently, MPC has found mainstream use in robotics for con-
rolling ground (Richter, Vega-Brown, & Roy, 2018), aerial (Bouf-
ard, Aswani, & Tomlin, 2012; Watterson & Kumar, 2015), hu-
anoid (Erez et al., 2013), and other autonomous robots due to

ts versatility, robustness, and safety guarantees. The transition
rom the process industry to robotics brings additional challenges
ince the available computation time is reduced from hours to
illiseconds.
MPC techniques can be categorized into implicit and explicit.

mplicit MPC focuses on online computation of an open-loop con-
rol sequence, optimizing the system performance at its current
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state. For example, Wang and Boyd (2010) exploit the struc-
ture of the quadratic program (QP) associated with the MPC
problem to design efficient interior point methods. Vichik and
Borrelli (2014) experiment with a different computation scheme
and demonstrate that analog circuits can solve QPs in microsec-
onds through the use of custom hardware. Rather than solving
an optimization problem online, explicit methods manage the
computational load by pre-computing a control law u = µ(x)
offline, as a function of all feasible states x, where µ is known
to be piecewise affine on polytopes determined by the system
constraints (Borrelli, Bemporad, & Morari, 2017, Ch. 11). Comput-
ing an optimal explicit control law can become computationally
intractable in large problems because the number of polytopic
regions may grow exponentially (worst case) with the num-
ber of constraints. Even determining which region contains the
current system state online can require nontrivial processing
power or memory storage (Kvasnica & Fikar, 2012). One ap-
proach to address the computational challenges of explicit MPC
control is to construct an approximate sub-optimal controller.
Jones and Morari (2010) use a double-description method to
build piecewise-affine approximations of the value function and
use barycentric functions on the polytopic regions to obtain an
associated control law. The authors prove recursive feasibility
and asymptotic stability of the suboptimal controller. Despite
various approximation techniques, explicit MPC has not been
demonstrated to scale to the same problem sizes as those handled
by implicit MPC methods.
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This paper investigates the use of a Rectified Linear Unit
(ReLU) fully connected neural network to approximate the piece-
wise affine explicit MPC control law. There have been several
recent works using neural networks for MPC design. Chen et al.
(2018) use a neural network with an orthogonal projection oper-
ation to approximate the optimal control law. Hertneck, Köhler,
Trimpe, and Allgöwer (2018) use a neural network in a robust
MPC framework to provide statistical guarantees of feasibility and
stability. Zhang, Bujarbaruah, and Borrelli (2019) use a neural net-
work to approximate the primal and dual variables, and provide
statistical guarantees as well as certificates of suboptimality. Our
work extends these approaches by providing deterministic guar-
antees on recursive feasibility and asymptotic stability through
corrective steps generated by an online QP solver. Moreover,
we demonstrate for the first time that neural-network-based
approximations of MPC control laws scale to large problems with
thousands of optimization variables.

A few closely related works combine the strengths of machine
learning for scalability with the analytical tractability of QP prob-
lems in an explicit–implicit MPC approach. Zeilinger, Jones, and
Morari (2011) compute a piecewise affine control law approxima-
tion, combine it with an active set method, and provide criteria to
terminate the active set method early while still obtaining guar-
antees on recursive feasibility and asymptotic stability. Klaučo,
Kalúz, and Kvasnica (2019) use classification trees and nearest
neighbors to warm start an active set method and solve to the
optimal solution. These approaches differ from our method be-
cause they do not utilize a neural network as the control policy
approximator. In addition, they do not demonstrate nor address
the challenges in scaling to large systems, specifically related to
efficient generation of train data sets in high dimensions.

Generating large data sets of initial feasible states, optimal
inputs, primal, and dual variables for high-dimensional systems
to approximate an MPC controller has not been studied widely
in the literature. Yet, a large data set is critical for accurate
learning-based control law approximations, especially for high-
dimensional systems. A naïve rejection sampling approach to
generate feasible initial states has rapidly diminishing proba-
bility of success as the number of constraints and dimensions
grow. Existing works use gridding (Klaučo et al., 2019; Summers,
Jones, Lygeros, & Morari, 2011) or random sampling (Hertneck
et al., 2018; Zhang et al., 2019) methods that do not scale to
high dimensions, or rely on reinforcement and imitation learn-
ing techniques that perform closed-loop simulations leading to
weaknesses discussed in Ross, Gordon, and Bagnell (2011). We
propose an algorithm to efficiently generate large data sets in
high dimensions using geometric random walks.

In summary, the goal of this work is to develop a neural-
network approximation of an MPC control law that scales to large
systems, performs faster than implicit methods online, and pro-
vides guarantees on recursive feasibility and asymptotic stability.
Our contributions include:

• a primal–dual loss function that incorporates state and input
constraints to train a deep ReLU network approximation of
an explicit MPC control law (Section 3);

• an online approach that corrects the network output using
a primal active set solver to guarantee recursive feasibility
and asymptotic stability (Section 4);

• a geometric random walk algorithm for generating feasible
sample data sets efficiently, necessary for training control
law approximations for large systems (Section 5);

• a 2× reduction in online inference time against the best
benchmark method on a system with thousands of opti-
mization variables (Section 6).
2

2. Preliminaries

Consider a discrete-time linear time-invariant system,

x(t + 1) = Ax(t) + Bu(t), (1)

subject to state and input constraints,

x(t) ∈ X := {x ∈ Rn
|Axx ≤ bx} ∀ t ≥ 0,

u(t) ∈ U := {u ∈ Rm
|Auu ≤ bu} ∀ t ≥ 0.

(2)

Assuming that the pair (A,B) is stabilizable (Borrelli et al., 2017,
Ch. 7), we are interested in obtaining a receding horizon con-
troller (RHC) (Borrelli et al., 2017, Ch. 12). At each time t , we solve
a constrained finite-time optimal control problem (Borrelli et al.,
2017, Ch. 7),

min
u0:N−1

J(u0:N−1|x(t)) = x⊤

NPxN

+

N−1∑
k=0

(
x⊤

k Qxk + u⊤

k Ruk
)

s.t. xk+1 = Axk + Buk, x0 = x(t),

Axxk ≤ bx,Auuk ≤ bu,Af xN ≤ bf , (3)

where symmetric matrices Q, P ∈ Sn
≻0, R ∈ Sm

≻0 define desired
ystem behavior over planning horizon N . The terminal cost,
⊤

NPxN , and terminal constraints, Xf := {x ∈ Rn
|Af x ≤ bf }, ensure

feasibility and asymptotic stability of the RHC as will be discussed
in Section 2.3. The first input, u0, is applied to the system, leading
to a new state x(t +1), and the process is repeated. Alternatively,
nstead of recomputing u0:N−1 at every t , it may be desirable
to obtain a function u0 = µ(x) that specifies the input for an
arbitrary state x.

2.1. Batch formulation

The batch formulation of the problem in (3) is:

min
z

J(z|x) = z⊤Hz + x⊤Qx

s.t. Geqz = Eeqx, Ginz ≤ win + Einx
(4)

ith the following definitions

z = [x⊤

1 . . . x⊤

N u⊤

0 . . .u⊤

N−1] ∈ RN(n+m)

H = diag(IN−1 ⊗ Q, P, IN ⊗ R) ∈ RN(n+m)×N(n+m)

Geq = [INn − LN ⊗ A; −IN ⊗ B] ∈ RNn×N(n+m)

Eeq = e1 ⊗ A ∈ RNn×n (5)
Gin = diag(0cx , IN−1 ⊗ Ax,Af , IN ⊗ Au)

Ein = −e1 ⊗ Ax ∈ R(Ncx+cf +Ncu)×n

win = [1N ⊗ bx; bf ; 1N ⊗ bu] ∈ R(Ncx+cf +Ncu)

here LN is the matrix of size N × N with ones on the first
ubdiagonal and zeros elsewhere, ei is the ith standard basis
ector, 1N is the vector of all ones of size N , cx, cf , cu denote
he number of constraints specified by the rows of Ax, Af , Au,
‘;’’ denotes vertical concatenation, and ⊗ denotes the Kronecker
roduct. When the parameter x is fixed, (4) is a quadratic program
QP) and the solution is a vector z.

A common choice for the terminal cost matrix P is the solution
∞ to the algebraic Riccati equation (Borrelli et al., 2017, Ch. 8):

P∞ = A⊤P∞A + Q − A⊤P∞B(B⊤P∞B + R)−1B⊤P∞A. (6)

A common choice for Xf is the maximal positively invariant set,
LQR
∞

, of the linear quadratic regulator (LQR), which is computable
via reachability analysis (Borrelli et al., 2017, Ch.11) using stan-
dard toolboxes (Herceg, Kvasnica, Jones, & Morari, 2013). Note
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is easily computable even for large systems, and is
ifferent from the maximal control invariant set, C∞, used in Chen
t al. (2018), which is very challenging to compute for large
ystems.

.2. Feasibility and duality

For a given state x, (4) is a strictly convex QP because if Q, P
re positive definite then H is positive definite too. While this as-
umption can be relaxed to allow positive semi-definite matrices,
t simplifies the development of our approach for approximating
he solution of (4), which is unique in this case. Let X0 ⊆ X be
he set of parameters x for which (4) is feasible (Borrelli et al.,
017, Defn. 6.3). Given x ∈ X0 and an associated primal feasible
, the suboptimality level of z is:

(z|x) := J(z|x) − J(z∗
|x) ≥ 0, (7)

here z∗ is the unique minimizer of (4). We introduce dual
ariables (ν, λ) (Boyd & Vandenberghe, 2004, Ch.5), and define the
agrangian associated with (4) as:

(z, ν, λ|x) := z⊤Hz + x⊤Qx + ν⊤
(
Geqz − Eeqx

)
+ λ⊤ (Ginz − win − Einx) . (8)

he Lagrangian dual of a minimization QP is a maximization QP
ver (ν, λ) with objective function d(ν, λ|x) := infz L(z, ν, λ|x).
he dual variables (ν, λ) are dual feasible if λ ≥ 0. For a given
arameter x, any primal feasible z, any dual feasible (ν, λ), and
ptimal primal–dual variables (z∗, ν∗, λ∗), strong duality holds
ecause Slater’s conditions are satisfied (Boyd & Vandenberghe,
004, Ch.5):

d(ν, λ|x) ≤ d(ν∗, λ∗
|x) = L(z∗, ν∗, λ∗

|x)
= J(z∗

|x) ≤ J(z|x).
(9)

he feasible duality gap associated with x, z, ν, λ is

(z, ν, λ|x) := J(z|x) − d(ν, λ|x) ≥ σ (z|x) ≥ 0, (10)

hich is an upper bound on the suboptimality level σ (z|x) for any
easible (z, ν, λ) due to (9).

.3. Receding horizon control

Alternatively, (4) can be viewed as a multiparametric quadratic
rogram (mp-QP) over functions that map x to primal variables
(Borrelli et al., 2017, Ch. 6).

efinition 1. A planner is a function π : X0 → RN(n+m) that
aps a parameter x to a decision variable z. A planner π is primal

feasible if z = π (x) is a primal feasible variable ∀x ∈ X0 in (4). It
s optimal, if z = π (x) is the optimal solution ∀x ∈ X0.

efinition 2. The receding horizon controller (RHC) correspond-
ng to a planner π is a function µ : X0 → Rm that returns the
first control input in z = π (x), i.e., u0 = µ(x).

Recursive feasibility and asymptotic stability (Borrelli et al.,
2017, Ch.12) are two properties that should be guaranteed for
an RHC. Primal feasibility is a property of a planner π and the
open-loop optimization problem, while recursive feasibility is a
property of an RHC µ and the corresponding closed loop system
x(t+1) = Ax(t)+Bµ(x(t)) for t ≥ 0. In general, primal feasibility
of the open-loop optimization problem does not imply recursive
feasibility of the corresponding closed-loop controller. Recursive
feasibility of a control law is a necessary, but not sufficient,
condition for asymptotic stability.
3

3. Explicit control policy approximation

The first step of our approach is offline training of a deep
neural network π̃ (x|θ) with parameters θ that provides a can-
didate solution z for the QP in (4). We choose to approximate
the entire primal prediction over the planning horizon instead of
the control law µ. Although this choice requires approximating
N(n + m) variables instead of only m, the additional predicted
variables may be used to obtain the desired guarantees through
an online primal active set solver in Section 4.

Definition 3. A deep neural network (DNN) π̃ (x|θ) with L layers
is a composition of L affine functions: λl(x) := θW

l x + θb
l , each

except the last one followed by a nonlinear activation function
h, so that: π̃ (x|θ) = λL ◦ h ◦ λL−1 ◦ · · · ◦ h ◦ λ1(x). The DNN
arameters are θ := {(θW

l , θb
l )}

L
l=1. Each layer l has width defined

y the number of rows of θW
l and θb

l .

The activation function h is fixed (not optimized) and typi-
ally chosen as a sigmoid, hypertangent, or ReLU (Goodfellow,
engio, & Courville, 2016, Ch.6). As noted in Chen et al. (2018),
ReLU activation h(x) := max{0, x}, where the max is applied
lementwise, is well-suited for mp-QP problems because any
iecewise-affine function on polyhedra, such as the solution for
n mp-QP (Borrelli et al., 2017, Thm. 6.7), can be represented
xactly by a ReLU DNN (Arora, Basu, Mianjy, & Mukherjee, 2018,
hm. 2.1). We restrict the approximation of a planner π to the
lass of functions represented by a ReLU DNN π̃ .
A train data set D :=

{
xi, z∗

i , ν
∗

i , λ
∗

i

}
i of optimal primal and

ual variables is necessary for supervised learning of the neu-
al network parameters θ that approximate an optimal planner
∗(x) ≈ π̃ (x|θ). Optimizing a least-squares loss function measur-
ng the discrepancy between z∗

i and zi := π̃ (xi|θ) is a common
hoice but it fails to explicitly account for the constraints in
4). We propose a loss function which incorporates information
rom the optimal primal and dual variables by measuring the
iscrepancy of the Lagrangian values:

(θ) :=

|D|∑
i=1

(L(π̃ (xi|θ), ν∗

i , λ
∗

i |xi) − L(z∗

i , ν
∗

i , λ
∗

i |xi))
2.

here are a variety of potential loss functions that utilize the
agrangian. We chose this particular one because it allows super-
ision from both the optimal primal and dual variables and was
ffective in our experiments (Section 6). Since π∗(x) is piecewise-
ffine, it can be represented exactly by π̃ (x|θ) with sufficient
epth and width. By strict convexity, the primal variables z∗

i are
nique minimizers of each term in the loss ℓ(θ). We train the
etwork using stochastic gradient descent (Kingma & Ba, 2015),
ampling a subset (mini-batch) of the train data D, computing
he loss, ℓ(θ), over the mini-batch, and using backpropagation to
ompute the loss gradient and update the network parameters
. The mini-batch sampling is continued until the data set is
xhausted, which concludes an epoch, and is then repeated until
onvergence.

. Primal active set method for guarantees

The trained neural network π̃ (x|θ) is a planner that maps
tates x to primal predictions z. It can be implemented as an RHC
by applying the first control input u0 from z = π̃ (x(t)|θ) at

ach encountered state x(t) over time. Theorem 4 summarizes
he conditions that ensure recursive feasibility and asymptotic
tability of µ.
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heorem 4. Let π be a planner for the finite-horizon deterministic
ptimal control problem in (3) with bx, bu, bf > 0. Assume that the
erminal constraint set Xf is control invariant and the terminal cost
(x) := x⊤Px is a control Lyapunov function (Borrelli et al., 2017,
mk 12.3) over Xf . If for all x ∈ X0, z = π (x) is primal feasible and
here exists a function γ (x) such that:

0 ≤ σ (π (x)|x) ≤ γ (x) ≤ x⊤Qx, (11)

hen the RHC µ corresponding to π is recursively feasible and
symptotically stable with domain of attraction X0 for system (1)

subject to constraints (2).

Proof. Recursive feasibility of µ follows from Borrelli et al. (2017,
hm. 12.1), while asymptotic stability follows from Borrelli et al.
2017, Thm. 13.1). □

If we guarantee that the neural network output z(t) = π̃ (x
t)|θ) at each time step t is primal feasible and that there exists
(x(t)) that satisfies threshold (11), then according to Theorem 4,
he RHC u(t) = µ(x(t)) will be recursively feasible and asymptot-
cally stable. In Section 4.1, we show how to construct γ (x) and
heck whether a given network output z satisfies primal feasibil-
ty and threshold (11). Then, in Section 4.2, we use the network
utput z as initialization of an online primal active set solver
hich optimizes z until primal feasibility and the suboptimality
ertificate in (11) are both satisfied.

.1. Obtaining a suboptimality certificate

Given z = π̃ (x|θ), primal feasibility can be checked using
he constraints in (4). Section 4.2 details how to obtain primal
easibility given a primal infeasible initialization. Once z is primal
easible, we obtain dual feasible variables (ν, λ) and define γ (x)
s the feasible duality gap η(z, ν, λ|x) in (10). This guarantees
hat σ (z|x) ≤ η(z, ν, λ|x) and we can directly check whether
(z, ν, λ|x) ≤ x⊤Qx to satisfy (11).
We use the KKT optimality conditions to derive (ν, λ). First, we

etermine which constraints in (4) are active at z. All Nn equality
onstraints Geqz = Eeqx are active by definition. Let A be the set
f inequality constraints i such that e⊤

i Ginz = e⊤

i win + e⊤

i Einx.
ue to complementary slackness, dual variables corresponding
o inactive constraints should be set to 0. The remaining dual
ariables (ν, λA) must satisfy the KKT conditions for an equality
onstrained QP:⎡⎣2H G⊤

eq G⊤
A

Geq 0 0
GA 0 0

⎤⎦[ z
ν

λA

]
=

[ 0
Eeqx

wA + EAx

]
, (12)

here GA, wA, and EA contain the rows of Gin, win, and Ein
orresponding to A. The dual variables can be expressed directly
n terms of z:[
GeqH−1G⊤

eq GeqH−1G⊤
A

GAH−1G⊤
eq GAH−1G⊤

A

][
ν

λA

]
= −2

[
Geq
GA

]
z. (13)

inally, we can ensure that λA are dual feasible by applying an
element-wise max{λA, 0}. Given a primal feasible z, this always
yields dual feasible ν, λ and we can obtain η(z, ν, λ|x) = J(z|x)−
d(ν, λ|x). The dual objective d(ν, λ|x) can be computed efficiently
by pre-computing 1

2H
−1

[Geq;Gin]
⊤ offline.

.2. Ensuring feasibility and bounded suboptimality with an online
rimal active set solver

The procedure in Section 4.1 only checks whether the neural
etwork output z = π̃ (x|θ) is primal feasible and satisfies the
uboptimality certificate in (10) but does not provide an approach
4

Algorithm 1 Explicit–Implicit Planner
Input: initial state x, NN parameters θ, primal active-set QP solver α

1: procedure ExplicitImplicitPlanner(x, θ, α)
2: Obtain neural network prediction z = π̃ (x|θ)
3: if z is not primal feasible then ▷ Section 4.1
4: Perform Phase I (feasibility) of α

5: while not CertifySuboptimality(x, z) do
6: Update z via one Phase II iteration of α

7: return z
8: procedure CertifySuboptimality(x, z)
9: Obtain dual feasible variables , – ▷ Section 4.1
0: if η(z, ν, λ|x) ≤ x⊤Qx then return True ▷ Eq. (10)
1: else return False

to modify z in case any of the two requirements is violated. We
use a primal active-set QP solver (Wright & Nocedal, 1999, Ch. 16)
online to ensure satisfaction of both conditions. Primal active-
set QP methods can be accelerated via warm start from a good
initialization point, such as the neural network output z.

A primal active-set method employs two phases. In Phase I,
linear feasibility program is solved to ensure that z is primal

easible. Starting from this primal feasible point, Phase II updates
he primal solution and the active constraints A and solves a
equence of equality-constrained QPs. Phase II maintains primal
easibility throughout the iterations and, hence, can be termi-
ated early, as soon as the suboptimality certificate in (11) is
chieved, rather than continuing until optimality. We check the
uality gap at intermediate iterates using the approach described
n Section 4.1 and terminate Phase II as soon as the subopti-
ality certificate is obtained. Compared to other QP solvers, our
pproach accelerates online computation by reducing the initial
terations using good initializations from the neural network.
t also reduces the final iterations using the early termination
ondition in (11). Interior-point methods are difficult to warm
tart (John & Yıldırım, 2008), while non-primal active-set meth-
ds do not guarantee primal feasibility of intermediate iterates
nd cannot be terminated early (Ferreau, Bock, & Diehl, 2008). In
eneral, however, the neural network output can be used to ac-
elerate any QP solver which benefits from a good but potentially
nfeasible initialization point.

Alg. 1 presents our final explicit–implicit planner π . It is guar-
nteed to terminate since primal active-set QP methods reach an
ptimal solution in finite time for strictly convex QPs (Wright &
ocedal, 1999, Ch. 16) and the associated RHC µ is guaranteed to

be recursively feasible and asymptotically stable by Theorem 4.

5. Scaling to large systems

The efficiency of Alg. 1 online depends on the neural network
π̃ (x|θ) accurately approximating an optimal planner π∗(x) for the
mp-QP in (4). If π̃ (x|θ) approximates π∗(x) perfectly, Alg. 1 does
not need to perform any computations online. However, if π̃ (x|θ)
is a poor approximation of π∗(x), Alg. 1 may need to perform
many Phase I and Phase II iterations.

Providing a large train set D =
{
xi, z∗

i , ν
∗

i , λ
∗

i

}
i is important

for good neural network performance and generalization. This
data set is generated offline using a QP solver to obtain optimal
solutions (z∗

i , ν
∗

i , λ
∗

i ) for initial states xi that render (4) feasible.
The main challenge is that the set X0 of initial states that make
(4) feasible cannot be described explicitly, e.g., via halfspace or
vertex representation. This makes sampling xi from X0 challeng-
ing, especially for high-dimensional systems with long planning
horizons.

The set X0 can only be described by a membership ora-
cle (Vempala, 2005), i.e., for a given x ∈ X , a QP solver can
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Algorithm 2 Data Set Generation
Input: number of goal points Ntrn, Nbf , Ntst for the train set, buffer set,

and test set; step size d > 0; polyhedron X ; primal active-set QP
solver α

1: procedure GenerateData(Ntrn, Nbf , Ntst , d, X , α)
2: Let s0 = (x0, z0, ν0, λ0, a0) be an initial seed with optimal

primal, dual, and auxiliary solver variables
3: Let Gtrn ∪ Gbf ∪ Gtst ⊂ X be a set of Ntrn + Nbf + Ntst points of

a Sobol sequence in X
4: Strn,Dtrn = RandomWalk(Gtrn, {s0}, d, α)
5: Sbf ,Dbf = RandomWalk(Gbf ,Strn, d, α)
6: Stst ,Dtst = RandomWalk(Gtst ,Sbf \Strn, d, α)
7: return Dtrn,Dtst

8: procedure RandomWalk(G, S, d, α)
9: D = ∅

10: for xg ∈ G do
11: Sample seed tuple s ∈ S
12: D′

= LineSolve(s, xg , d, α)
13: D = D ∪ D′

14: Place last seed from D′ in S
15: return S,D
16: procedure LineSolve(s0, xg , d, α)
7: Let x be the first element of s0 = (x0, z0, ν0, λ0, a0)

18: n = ∥xg − x∥, xn = (xg − x)/n
19: for i = 1 . . . ⌈n/d⌉ do
20: xi = x + idxn
21: Let QP(xi) be problem Eq. (4) with parameter xi
22: (success, si) = Hot start α with si−1 on QP(xi)
23: if success then D = D ∪ si
24: else break
25: return D

report whether (4) is feasible, i.e., x ∈ X0 or not. Unfortunately,
simple approach, such as rejection sampling, which generates

amples xi uniformly from X and only keeps those that are
easible according to the QP solver, cannot be used because the
robability of sampling feasible xi decreases quickly with the
ystem dimension and the number of constraints in X , U , and
f .
Instead of independent sampling from X , we propose a ge-

metric random walk technique which generates new samples
ased on previous successful samples from X0. The proposed ap-
roach starts with one feasible sample x0 ∈ X0, e.g., chosen as the
ystem equilibrium state. We pick a random line l at the current
easible point and iteratively take small steps along the chord
∩X0. At each potential point xi along l, we check whether the QP
n (4) with parameter xi is feasible. If yes, the algorithm moves
o xi and proceeds along l, otherwise, it stays at xi−1 and picks a
ew random direction. To select random directions, we generate
set of goal states xg ∈ X using a Sobol sequence (Sobol’, 1967).
lg. 2 summarizes the proposed approach for data set generation.
t generates one large data set and then splits it into a train set,
uffer set, and test set. Due to the sequential nature of the data set
eneration, the buffer set is needed to ensure that the train and
est sets do not contain overlapping seed and goal points. Fig. 1
llustrates the behavior of Alg. 2 for a double integrator system
escribed in Section 6.1.

. Evaluation

We demonstrate the proposed approach on four systems of
ncreasing complexity. The experiments highlight the challenges
hat arise when scaling to high-dimensional systems. We use
PT3 (Herceg et al., 2013) to compute the terminal cost and con-
traints in (3), Tensorflow (Abadi et al., 2016) to train and evalu-
te the neural network planner π̃ (x|θ), and the primal active-set
5

Fig. 1. Illustration of the data set generation algorithm (Alg 2) for a double
integrator system defined in Section 6.1.

Fig. 2. Neural network architectures. Each layer is fully connected and followed
by the ReLU nonlinearity. Bolded are the input and output sizes of the network.

QP solver SQOPT (Gill, Murray, Saunders, & Wong, 2018) to im-
plement the Phase I and Phase II iterations in Alg. 1. The neural
network models were trained using dual Xeon E5-2683 v4 CPUs
with 32 cores for data generation and two NVIDIA Titan X Pascal
GPUs for training. The online inference speed evaluation was
performed on an i7-7700K CPU with 4 cores and NVIDIA GeForce
GTX 1080 Ti GPU.

The networks were trained with the Lagrangian loss function
ℓ(θ) using the Adam optimizer (Kingma & Ba, 2015) for 100
epochs. The network architectures and training parameters are
listed in Fig. 2. The network depths were chosen using techniques
described in Chen et al. (2018) and the widths were chosen by
trial and error. Other methods to choose network architectures
are described in Lucia and Karg (2018). Given the large sizes of
the train data sets (see Fig. 4), 100 epochs is sufficient to reach
convergence. Depending on the system, we take 2.5–10% samples
rom the train set as a held-out validation set. The validation
et is only used to evaluate the training loss to avoid over-
r under-fitting and is not used to update the neural network
eights.
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Fig. 3. Problem specifications: state dimension (n), control dimension (m),
ime horizon (N), state constraints (cx), terminal state constraints (cf ), control
onstraints (cu), primal variable dimension (dp), dual variable dimension for
nequality constraints (din) and equality constraints (deq).

.1. System descriptions

The dimensions of the four problem settings are summarized
n Fig. 3. We choose the terminal region Xf to be OLQR

∞
, and the

erminal cost x⊤

NP∞xN , defined in (6).

ystem 1 (Double Integrator). A mass under force input can be
odeled as a double integrator system,

∈ R2, u ∈ R, A =

[
1 1
0 1

]
, B =

[
0.5
0.1

]
.

e consider a problem with cost matrices Q = I2, R = 1, state
onstraints Ax = [I −I]⊤, bx = [5 1 5 1]⊤, and input constraints
uk|≤ 2, for k = 1, . . . ,N .

ystem 2 (Quadrotor). The differential flatness of quadrotor robot
ynamics enables trajectory generation in the space of flat out-
uts (position, yaw and their derivatives) that are dynamically
easible for an underactuated quadrotor (Liu, Atanasov, Mohta,
Kumar, 2017). This leads to a time-invariant continuous-time

ystem ẋ = Acx + Bcu, where Ac = L4 ⊗ I3 and Bc = e4 ⊗ I3. The
× 3 sub-matrices correspond to position, velocity, acceleration,
nd jerk. We discretize the system using Euler discretization with
ime step 0.1, and consider constraints Ax = [I12, −I12]⊤, bx =

10·13, 5·13, 3·13, 1·13, 10·13, 5·13, 3·13, 1·13]
⊤, Au = [I3, −I3]⊤,

u = [13, 13]
⊤ and cost matrices Q = I12, R = I3.

ystem 3 (Oscillating Masses). Introduced in Wang and Boyd
2010), the oscillating masses is a linear system that can be scaled
o large dimensions by increasing the number of masses and
prings in the system. We use 6 masses with a mass of 1, and
springs with a spring constant c = 1 and damping constant
= 0.1. Let a = −2c and b = −2. The system is defined as

˙ = Acx + Bcu, where

c =

[
06 I6

aI6 + cL6 + cL⊤

6 bI6 + dL6 + dL⊤

6

]
Bc =

[
0
F

]
F =

[
e1 −e1 e2 e3 −e2 e3

]⊤
∈ R6×3. (14)

e discretize this system using first-order hold and time step of
.5. The cost terms are Q = I12, R = I3, subject to state constraints
x = [I, −I]⊤, bx = 4 · 1, and input constraints Au = [I, −I]⊤,
u = 0.5 · 1.

ystem 4 (High Dimensional Oscillating Masses). The high dimen-
ional oscillating masses system is a scaled-up version of Sys. 3.
he matrix Ac is the extension of (14) to 36 dimensions obtained
y replacing the 6-dimensional submatrices with 18-dimensional
ounterparts. The input matrix is Bc = [0 | I3 ⊗ F⊤

]
⊤. The cost

nd constraint terms are chosen similarly as for Sys. 3.
6

.2. Data generation

As discussed in Section 5, X0 cannot be sampled directly.
ithout an efficient data set generation strategy, obtaining large
ata sets is practically impossible. For example, a naive rejection-
ampling approach yields feasible samples 98.6% of the time for
ys. 1, 16.7% for Sys. 2, 1.1% for Sys. 3, and 0.4% for Sys. 4.
enerating a data set of 1 million feasible states for Sys. 4 using
ejection sampling will take 2.5 years. In contrast, the geometric
andomwalk approach in Alg. 2 generated a data set of 1.7 million
easible states in 5.2 h. Fig. 4 shows the data set sizes used for the
ifferent systems and the computation time for data generation
sing Alg. 2.

.3. Open-loop metrics

On the test set, we compare our method (magenta) in Fig. 5 to
arious baseline methods. The baselines are the 6 combinations
etween 2 initialization methods – NN Warm start and Cold
tart – and 3 termination criteria — terminating after primal
easibility (p.f.), primal feasibility and suboptimality (p.f. + sub.),
nd optimality. Sub. is achieved at the time when the duality
ap η(z, ν, λ|x) defined in (10) is less than x⊤Qx according to
heorem 4. The main benchmark is Cold start and solving to
ptimality (olive). Fig. 5 displays the results on the four systems
ccording to various initialization and termination criteria. We
valuate speedup by reporting the number of required iterations
nd evaluate performance by reporting the suboptimality levels.
or Sys. 4, compared to the benchmark Cold optimal control
aw, our method (NN p.f. + sub.) reduces required iterations by
8×. The results demonstrate that early termination is especially
ynergistic when paired with NN Warm starts, as it reduces the
equired iterations by 14.4× versus only 1.3× when paired with
Cold starts.

Our method additionally performs well in terms of the subop-
timality level. We define open loop sub. (%) as σol :=

J(z|x)−J(z∗|x)
J(z∗|x) .

n Sys. 4, it has an average σol of 4.9% when only the p.f. criterion
is met, and 3.5% when both p.f. + sub. criteria are met. This is
in contrast to the Cold start method, where σol is high (192.9%)
when only the p.f. criterion is met, and obtaining both p.f. + sub.
criteria is necessary to obtain a reasonable suboptimality (6.3%).
This discrepancy demonstrates that the neural network π̃ alone
is obtaining a good guess of the optimal solution, and the online
iterations serve mostly to satisfy the p.f. criterion. For the low
imensional Sys. 1, σol of both the NN Warm start and Cold start
ethods for the p.f. criteria is high because the optimal cost is

very small (∼ 0).

6.4. Closed-loop metrics

We compare the closed-loop performance of our method to
various benchmarks on Sys. 4 in Fig. 6. While a Cold start is
unavoidable at the initial state x(0), we benchmark against Hot
start initialization techniques (Ferreau, Kirches, Potschka, Bock,
& Diehl, 2014) that exploit solutions of previously solved states
for the subsequent states x(t). The first benchmark is the SQOPT
solver (Gill et al., 2018) using Hot starts. The other benchmarks
include state-of-the-art interior-point QP solvers, ECOS, Gurobi,
and Mosek, from CVXPY (Diamond & Boyd, 2016). For the SQOPT
methods, we evaluate 3 termination criteria: ours (p.f. + sub.), a
fixed duality gap threshold η(z, ν, λ|x) < 0.1, and optimal. The
CVXPY methods cannot be terminated early, and warm/hot starts
are less effective.

We evaluate on trajectories generated from 128 initial states
x(0) randomly sampled from the test set. At each subsequent
state x(t), we apply the first control u obtained from each
0
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Fig. 4. Overview of the data set sizes and offline data generation, train, and test time statistics.
Fig. 5. Open-loop metrics: average and worst case number of iterations and suboptimality. Our method is displayed in magenta, and the baseline method is displayed
n olive. The evaluations are performed on independent states in the test set, and the baselines methods can only be initialized from a Cold start. On Sys. 4, our
ethod achieves a 58× reduction in required iterations compared to the baseline. Our methods achieve better suboptimality metric σol compared to Cold starts due

o the higher-quality NN initialization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Closed-loop metrics (Sys. 4): Average and worst case time required to implement the RHC for Warm starts, Hot starts, and Cold starts. The closed-loop
rajectory suboptimality metric σcl (defined after (15)) is different from the open-loop suboptimality metric σol . The former is a cumulative measure computed along
he entire closed-loop trajectory, while the latter is an instantaneous measure at a given state x. The CVXPY benchmarks are state-of-the-art QP solvers that provide
baseline for the online inference speed of the active set methods. The results show that relative to Hot starts, the NN Warm starts quickly reach the conditions

pecified in Theorem 4 (represented by p.f. + sub.). The NN Warm starts then switch from faster to slower relative to Hot starts captured at the fixed duality
ap threshold σ (z|x) ≤ η(z, ν, λ|x) < 0.1. The NN methods proceed slowly to the precise thresholds needed for optimality. Practically, these latter iterations are
nnecessary, because when NN and Hot are terminated with η < 0.1, the resulting primal variables are essentially optimal, and the closed-loop trajectory matches
he optimal one with σcl = 0.0. While NN p.f. + sub. does have a higher σcl compared to Hot p.f. + sub., this difference indicates the effectiveness of pairing early
ermination criteria with NN warm starts, as Hot starts need to bear additional computation time to reach near optimal solutions before obtaining the required
ermination certificates.
w
ethod. We repeatedly execute this closed-loop controller until
he system reaches a state x(t) ∈ Xf , at which point each method
witches to an optimal LQR controller (Borrelli et al., 2017, Ch.
). Inference speed is evaluated on states x(t) /∈ Xf , and these
tates will vary across each method. Optimality performance is
valuated on the entire infinite-horizon trajectory:

cl =

∞∑
x⊤(t)Qx(t) + u⊤(t)Ru(t), (15)
t=0

7

here the trajectory suboptimality is σcl =
Jcl−J∗cl
J∗cl

.
For methods that terminate early, rather than performing the

suboptimality check at every iteration, it is more efficient to per-
form the check periodically. In our implementation with SQOPT,
API restrictions require the suboptimality checks to be performed
externally to the solver, and as a result, we periodically termi-
nate the solver to check the intermediate iterates. We utilize
the SQOPT API optimality tolerance parameter, which evaluates
the size of the reduced gradients (Gill et al., 2018, pg. 39) to
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rematurely terminate the solver and then perform the subopti-
ality check with the procedure described in Section 4.1 at each

esulting iterate. If we are unable to obtain a sub. certificate, we
educe the optimality tolerance parameter by 2 and repeat from
he current SQOPT solver state. For consistency, we apply the
ame termination strategy across all evaluated methods.
The closed-loop experiments with Hot starts (Fig. 6) exhibit

imilar patterns to the open-loop experiments with Cold starts
Fig. 5). On average, across the entire trajectories, our method
chieves a 2× speedup compared to Hot p.f. + sub., and a 3.6×

speedup compared to Hot optimal. Similar to the open loop
experiments, the closed loop experiments also demonstrate that
early termination is especially synergistic with NN Warm starts
compared to Hot starts. Versus optimal, early termination reduces
inference time by 12.9× for NN compared to 2.2× for Hot.
Further analysis suggests that early termination works well with
NN because NN initialized methods reach approximate thresholds
quickly, and then slowly reach the precise thresholds required for
optimality. While, NN p.f. + sub. is 2× faster than Hot p.f. + sub., it
becomes 1.8× slower when solved to optimality. To demonstrate
this switch, Fig. 6 evaluates each initialization method with a
fixed duality gap threshold η < 0.1 which shows that the
N Warm start inference time is only 1.1× slower than Hot.

Importantly, when terminating with η < 0.1, the trajectories
ave effectively 0 suboptimality, demonstrating that improving
rom an approximate threshold to a precise optimality threshold
as little benefit.
The σcl metrics in Fig. 6 further highlight synergies between

N Warm starts and early termination. NN p.f. + sub. has σcl of
8.8% compared to 0.6% for Hot p.f. + sub. While this may initially
seem like a drawback for the NN methods, it actually demon-
strates that early termination is not as effective in reducing online
inference time for Hot starts, as satisfying the termination criteria
requires near optimal solutions. The motivation of these methods
is fast online inference speed with guarantees of feasibility and
stability, not in achieving optimality.

7. Conclusion

We presented a hybrid explicit–implicit MPC procedure that
combines an offline trained neural network with an online primal
active set solver. We proposed a primal–dual loss function based
on the Lagrangian to train the neural network. Using the primal
variable predictions, we derived an algorithm to provide certifi-
cates of primal feasibility and suboptimality, the criteria neces-
sary to guarantee recursive feasibility and asymptotic stability.
Finally, we demonstrated how warm start and early termination
can combine the primal active set solver with the neural net-
work to accelerate inference times. The key challenge of function
approximation in high dimensional mp-QPs is choosing good
training points in a convex set defined by a membership oracle.
We introduced a geometric random walk algorithm that can
efficiently generate a data set for large problems. Our results
indicate the importance of addressing this data generation prob-
lem to obtain a scalable solution. The combination of these ideas
yields an RHC with guarantees on recursive feasibility and asymp-
totic stability, while achieving a 2× speedup versus the best
enchmark method on a system with thousands of optimization
ariables.
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