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Abstract— Recent advances in metric, semantic, and topolog-
ical mapping have equipped autonomous robots with concept
grounding capabilities to interpret natural language tasks.
Leveraging these capabilities, this work develops an efficient
task planning algorithm for hierarchical metric-semantic mod-
els. We consider a scene graph model of the environment and
utilize a large language model (LLM) to convert a natural
language task into a linear temporal logic (LTL) automaton.
Our main contribution is to enable optimal hierarchical LTL
planning with LLM guidance over scene graphs. To achieve
efficiency, we construct a hierarchical planning domain that
captures the attributes and connectivity of the scene graph and
the task automaton, and provide semantic guidance via an LLM
heuristic function. To guarantee optimality, we design an LTL
heuristic function that is provably consistent and supplements
the potentially inadmissible LLM guidance in multi-heuristic
planning. We demonstrate efficient planning of complex natural
language tasks in scene graphs of virtualized real environments.

I. INTRODUCTION

Advances in robot perception and computer vision have

enabled metric-semantic mapping [1]–[9], offering rich in-

formation in support of robot autonomy. Beyond single-

level maps, hierarchical models encode topological rela-

tions among local maps and semantic elements [10], [11].

A scene graph [11] is a prominent example that models

buildings, floors, rooms, objects, and occupancy in a unified

hierarchical representation. Scene graph construction can be

done from streaming sensor data [5], [12], [13]. The metric,

semantic, and topological elements of such models offer the

building blocks for robots to execute semantic tasks [14].

The objective of this work is to approach this challenge by

generalizing goal-directed motion planning in flat geometric

maps to natural language task planning in scene graphs.

Connecting the concepts in a natural language task to the

real-world objects they refer to is a challenging problem,

known as symbol grounding [15]. Large language models

(LLMs), such as GPT-3 [16], BERT [17], and LLaMA

[18], offer a possible resolution with their ability to relate

environment entities to concepts in natural language. Chen
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et al. [19], [20] use LLMs for scene graph labeling, showing

their capability of high-level understanding of indoor scenes.

Shah et al. [21] use GPT-3 to parse text instructions to

landmarks and the contrastive language image pre-training

model [22] to infer a joint landmark-image distribution for

visual navigation. Seminal papers [23], [24] in the early

2000s established formal logics and automata as powerful

representations of robot tasks. In works closely related to

ours, Chen et al. [25] show that natural language tasks in 2D

maps encoded as sets of landmarks can be converted to signal

temporal logic [26] via LLM re-prompting and automatic

syntax correction, enabling the use of existing temporal logic

planners [27]–[31]. Beyond temporal logics, other expres-

sive robot task representations include the planning domain

definition language [32], Petri nets [33], [34], and process

algebra [35]. Oh et al. [36] train a neural model to translate

a natural language task to LTL and use abstract product

Markov decision process to solve hierarchical planning prob-

lem considering accepting LTL traces. We use an LLM

to translate a natural language task grounded to semantic

attributes of a scene graph to a linear temporal logic (LTL)

formula [37]. We describe the scene graph to the LLM as an

attribute hierarchy and obtain task execution guidance from

the LLM to accelerate the planning algorithm. We employ

multi-heuristic planning to achieve both efficiency due to

semantic LLM guidance and optimality due to consistent

LTL guidance.

Given a symbolically grounded task representation, the

next challenge is to plan its execution in a hierarchical model

efficiently with optimality guarantee. A key component for

achieving efficiency in traditional goal-oriented planning is

the use of guidance from a heuristic function. Heuristics

play a critical role in accelerating both search-based [40],

[41] and sampling-based [42], [43] planners. More complex

tasks than goal reaching involve sequencing, branching, and

recurrence, making heuristic guidance even more important

for efficiency. Our work is inspired by Fu et al. [29]

who develop an admissible heuristic for LTL planning in

probabilistic landmark maps. We extend the approach by (a)

generalizing to hierarchical scene graphs via multi-resolution

planning, (b) designing a consistent LTL heuristic allowing

acceleration over admissible-only heuristic planning, and (c)

introducing an LLM heuristic allowing acceleration from

LLM semantic guidance while retaining optimality guaran-

tees via multi-heuristic planning. Our approach is enabled

by the anytime multi-resolution multi-heuristic A* (AMRA*)

[39] . Our key contribution is to define the nodes, edges, and
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Fig. 1: Planning a natural language mission, µ : “Reach the oven in the kitchen”, in a scene graph G of the Gibson environment
Benevolence [38] with object, room, and floor attributes. The terms “oven” and “kitchen” in µ belong to the object and room attributes of
the scene graph, respectively. The scene graph G is described to the LLM using the connectivity of its attributes (attribute hierarchy) and
the LLM is used to translate µ to LTL formula φµ and associated Automaton Mφ. We construct a hierarchical planning domain from
the scene graph, and use multi-resolution multi-heuristic planning [39] to plan the mission execution. In addition to mission translation,
the LLM is used to provide heuristic guidance to accelerate the planning, while an LTL heuristic is used to guarantee optimality.

costs of a hierarchical planning domain from a scene graph

and to introduce guidance from a consistent LTL heuristic

and a semantically informed LLM heuristic.

Related works consider object search and semantic goal

navigation in unknown environments, represented as seman-

tic occupancy maps [44], topological maps [45], or scene

graphs [46], [47]. Shah et al. [44] develop an exploration

approach that uses an LLM to score subgoal candidates and

provide an exploration heuristic. Kostavelis et al. [45] per-

form place recognition using spatial and temporal proximity

to obtain a topological map and encode the connectivity of its

attributes in a navigation graph to enable Dijkstra planning

to semantically specified goals. Amiri et al. [46] employ a

scene graph generation network to construct a scene graph

from images and a partially observable Markov decision

process to obtain an object-search policy. Ravichandran et

al. [47] embed partial scene graph observations in feature

space using a graph neural network (GNN) and train value

and policy GNNs via proximal policy optimization. Liang

et al. [48] develop Code as Policies, an approach for LLM

code synthesis that utilizes action primitive APIs to solve

object manipulation tasks. Ding et al. [49] use an LLM

to create both symbolic and geometric spatial relationships

among tableware objects to assist task and motion planning.

In contrast with these works, we consider significantly more

general tasks but perform planning in a known scene graph.

In summary, this paper makes the following contributions.

• We use an LLM to translate natural language to LTL

tasks over the attributes of a scene graph.

• We construct a hierarchical planning domain capturing

the structure of the scene graph and LTL task.

• We design new LTL and LLM heuristic functions for

planning, and prove that the LTL heuristic is consistent.

• We employ hierarchical multi-heuristic planning to

guarantee efficiency (due to LLM semantic guidance)

and optimality (due to LTL consistent guidance), despite

potential inadmissibility of the LLM heuristic.

II. PROBLEM STATEMENT

Consider an agent planning a navigation mission specified

in terms of semantic concepts, such as objects and regions,

in a known environment. We assume that the environment is

represented as a scene graph, e.g., obtained from [11].

Definition 1. A scene graph is a graph G = (V, E , {Ak}
K
k=1)

with node set V , edge set E ⊆ V × V , and K attribute sets

Ak for k = 1, . . . ,K. Each attribute a ∈ Ak is associated

with a subset Va of the nodes V .

A scene graph provides a hierarchical semantic description

of an environment, such as a building, in terms of floors,

rooms, objects, and occupancy (see Fig. 1). For example, the

graph nodes V may represent free space, while the objects

may be encoded as an attribute set A1 such that an object

o ∈ A1 is associated with a free region Vo ⊂ V around it.

Similarly, rooms may be represented as a set A2 such that a

room r ∈ A2 is associated with a free-space region Vr ⊂ V .

Given the initial agent location s ∈ V , and a cost function

c : E 7→ R>0, our objective is to plan a sequence of scene

graph nodes (path) that achieves a mission µ with minimal

cost. We assume µ is provided in natural language using

terms from the attribute sets Ak of the scene graph. An

example scene graph mission is provided in Fig. 1.

To interpret a natural language mission, we define atomic

propositions whose combinations can capture the mission

requirements. An atomic proposition pa : V 7→ {false, true}
associated with attribute a ∈ Ak of the scene graph G
evaluates true at node s ∈ V if s belongs to the nodes Va

that satisfy attribute a. We denote this by pa(s) : s ∈ Va.

The set of all atomic propositions at s ∈ V is denoted by:

AP(s) := {pa(s) | a ∈ Ak, k = 1, . . . ,K} . (1)

Intuitively, pa(s) being true means that the agent is at node

s that satisfies attribute a, e.g., reaching an object in A1

or being in a room in A2. Avoiding an object or leaving a

room can be specified via the negation of such propositions.

To determine which atomic propositions are satisfied at a

particular node, we define a labeling function.

Definition 2. Consider a scene graph G with atomic propo-

sitions AP = ∪s∈VAP(s). A labeling function ℓ : V 7→ 2AP

maps a node s ∈ V to a set ℓ(s) ⊆ AP of atomic propositions

that evaluate true at s.



The labels along a path s1:T are obtained as ℓ(s1:T ) =
ℓ(s1)ℓ(s2) . . . ℓ(sT ) and are called a word. A word contains

information about the objects, rooms, and floors that an agent

visits along its path in a scene graph. We can decide whether

the agent path satisfies a mission µ by interpreting its word.

We denote a word ℓ(s1:T ) that satisfies a mission µ by

ℓ(s1:T ) |= µ, and define the precise semantics of this notation

in Sec. III. With this, we are ready to state the problem of

natural language mission planning in scene graphs.

Problem. Given a scene graph G = (V, E , {Ak}
K
k=1),

natural language mission µ over the attributes of G, cost

function c : E 7→ R>0, and initial node s1 ∈ V , plan a path

s1:T that satisfies µ with minimal cost:

min
T∈N,s1:T∈VT

T−1∑

t=1

c(st, st+1)

s.t. (st, st+1) ∈ E , t = 1, . . . , T − 1,

ℓ(s1:T ) |= µ.

(2)

III. NATURAL LANGUAGE TO TEMPORAL LOGIC

We use an LLM to translate NL missions to LTL over

the scene graph propositions AP . The key challenge is to

describe a scene graph G to an LLM and ask it to translate

a mission µ to an LTL formula ϕµ. We focus on LTL [50]

with syntax in Table. I due to its popularity and sufficient

expressiveness to capture temporal ordering of propositions.

We require a syntactically co-safe formula (sc-LTL) [37]

to allow checking its satisfaction over finite paths. An sc-LTL

can be satisfied by a word ℓ(s1:T ) that consists of a finite

prefix followed by a potentially infinite continuation that

does not affect the formula’s truth value. LTL formulas that

contain only X, F and U temporal operators when written

in positive normal form (¬ appears only in front of atomic

propositions) are syntactically co-safe [36], [37].

To use an LLM for scene understanding, it is neces-

sary to design a prompt that describes the scene graph G
succinctly. Otherwise, the input might exceed the model

token limit (e.g., GPT-4 [51] has a token limit of 8192)

or confuse the model about the relationship between the

sentences. For this aim, we simplify the scene graph G into

an attribute hierarchy Ḡ that compactly represents scene

entities in a YAML format. In our setup, the top level of

Ḡ contains floors f ∈ A3. The rooms rf on floor f are

defined as {r ∈ A2|Vr ⊆ Vf}, and nested as children of floor

f . Additionally, each room r stores connections to other

rooms on the same floor. Similarly, the objects in room r,

{o ∈ A1|Vo ⊆ Vr}, are stored as children of room r. Each

entity in Ḡ is tagged with a unique ID to differentiate rooms

and objects with the same name. See Fig. 2a for an example

attribute hierarchy. In our examples, we define attributes for

floors, rooms, and objects. The attribute hierarchy contains

3 levels but this can be extended to more generalized

attribute sets (e.g., level for object affordances). The attribute

hierarchy removes the dense node and edge descriptions in

G which are redundant for mission translation, leading to a

significant reduction in prompt size.

TABLE I: Grammar for LTL formulas φ and ϕ.

Syntax (Semantics)

pa (Atomic Proposition) ϕ ∨ φ (Or) ϕUφ (Until)

¬ϕ (Negation) ϕ ⇒ φ (Imply) Fϕ (Eventually)

ϕ ∧ φ (And) Xϕ (Next) Gϕ (Always)

Given the natural language mission µ and the attribute

hierarchy Ḡ, we first call the LLM to extract unique IDs

from the context of µ, outputting µunique. This step facilitates

LTL translations by separating high-level scene understand-

ing from accurate LTL generation. Specifically, this step

links contextually rich specifications to unequivocal mission

descriptions that are void of confusion for the LLM (Fig. 2b).

The list of entities involved in the mission are extracted from

µunique using regular expression, and stored as µregex. This

allows to inform the LLM about the essential parts of the

mission µunique, without providing Ḡ. The savings in prompt

size are used to augment the prompt with natural language to

LTL translation examples expressed in pre-fix notation. For

instance, ϕ ∧ φ is expressed as ∧ϕφ in pre-fix format. This

circumvents the issue of balancing parenthesis over formula

ϕµ. Ultimately, the LTL translation prompt includes µunique,

µregex, and the translation examples (Fig. 2c).

The translated LTL formula ϕµ is verified for syntactic

correctness and syntactical co-safety using an LTL syntax

checker. Further calls of the LLM are made to correct ϕµ

if it does not pass the checks, up to a maximum number

of allowed verification steps, after which human feedback

is used to rephrase the natural language specification µ

(Fig. 2d). Once the mission µ is successfully translated into

an sc-LTL formula ϕµ, we can evaluate whether an agent

path s1:T and its corresponding word ℓ(s1:T ) satisfy ϕµ by

constructing an automaton representation of ϕµ (Fig. 2e).

Definition 3. A deterministic automaton over atomic propo-

sitions AP is a tuple M = (Q, 2AP , T,F , q1), where Q is

a set of states, 2AP is the power set of AP called alphabet,

T : Q× 2AP 7→ Q is a transition function that specifies the

next state T (q, l) from state q ∈ Q under label l ∈ 2AP ,

F ⊆ Q is a set of final states, and q1 ∈ Q is an initial state.

An sc-LTL formula ϕ can be translated into a deterministic

automaton Mϕµ
using model checking tools such as Spot

[52]. The automaton checks whether a word satisfies ϕµ. A

word ℓ1:T is accepted by Mϕµ
, i.e., ℓ1:T |= ϕµ, if and only

if the state qT+1 obtained after transitions qt+1 = T (qt, ℓt)
for t = 1, . . . , T is one of the final states F . Hence, a path

s1:T satisfies an sc-LTL formula ϕµ if and only if its word

ℓ(s1:T ) contains a prefix ℓ(s1:t) that is accepted by Mϕµ
.

IV. OPTIMAL SCENE GRAPH PLANNING

We use the structure of the scene graph G with guidance

from the automaton Mϕµ
and the LLM’s mission semantics

understanding to achieve efficient and optimal planning.

A. AMRA* Planning

We use AMRA* [39]. The key challenge is to define a

hierarchical planning domain and heuristics that describe

the scene graph and mission. AMRA* requires node sets
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Ḡ. The unique IDs and the room connections are shown in parenthe-
ses and inside red brackets, respectively. (b) Unique ID extraction
from natural language mission µ. (c) LTL formula generation from
natural language specification. (d) Syntax and co-safety check over
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Xr and action sets Ur for each planning resolution level,

r = 1, 2, . . .. Each level (Xr,Ur) has an associated cost

function cr : Xr × Xr 7→ R>0. The algorithm defines an

anchor level (X0,U0), as X0 := ∪r>0Xr, U0 := ∪r>0Ur, and

requires an initial state x ∈ X0 and a goal region R ⊆ X0.

AMRA* allows multiple heuristics for each level but requires

the anchor-level heuristic to be unique and consistent to

guarantee optimality. A heuristic h is consistent with respect

to cost c if h(x) ≤ c(x, x′) + h(x′). We construct the levels

{Xr,Ur, cr}, initial state x, and goal region R required for

running AMRA* in Sec. IV-B. We define two heuristics,

hLTL, which is used in the anchor level and other levels,

and hLLM for other levels, in Sec. IV-C and Sec. IV-D,

respectively, and prove that hLTL is consistent.

B. Hierarchical Planning Domain Description

Given a scene graph G with initial node s1 ∈ V and au-

tomaton Mϕµ
, we construct a hierarchical planning domain

with K levels corresponding to each scene graph attribute

Ak. Given an attribute set Ak, we define Vk := ∪a∈Ak
Va,

where Va is the node set associated with attribute a ∈ Ak.

Then, the node set corresponding to level k of the planning

domain is defined as Xk := Vk × Q. We define the actions

Uk as transitions from xi to xj in Xk with associated cost

ck(xi, xj). A transition from xi = (si, qi) and xj = (sj , qj)
exists if the following conditions are satisfied:

1) the transition is from Va of attribute a to the boundary

∂Vb of attribute b such that si ∈ Va, sj ∈ ∂Vb for a ̸= b

with a, b ∈ Ak and intVa ∩ intVb = ∅,

2) the automaton transitions are respected: qj =
T (qi, ℓ(si)), where ℓ(si) ∈ 2AP is the label at si,

floor1

Fig. 3: Four-level hierarchical planning domain for Benevolence.

3) the transition is along the shortest path, sj ∈
argmins d(si, s), where d : V × V → R is the shortest

feasible path between two scene graph nodes.

The transition cost is defined as ck(xi, xj) = d(si, sj).

Since Xk ⊆ V×Q, we can define the AMRA* anchor level

as X0 = V×Q with actions U0 derived from the scene graph

edges E , automaton transitions, and ∪k>0Uk. The initial state

and goal region are defined as x = (s1, q1) and R = V ×F .

The hierarchical planning domain is illustrated in Fig. 3.

Four levels, occupancy (V), objects (A1), rooms (A2) and

floors (A3), are used in our experiments. For example, in the

object level, the agent can take an action to move directly

from the couch to the TV with transition cost computed as

the shortest path in the occupancy level.

C. LTL Heuristic

A consistent heuristic is required at the anchor level to

ensure path optimality. Fu et al. [29] designed an LTL

heuristic that considers the next label to induce transitions

in Mϕµ
towards a final state. This heuristic is admissible

but not consistent. We extend the formulation to consider

the shortest path to reach a final state in the automaton label

space. We design a heuristic function hLTL that approximates

the scene graph distance to R = V × F . We require

that the scene graph cost c satisfies the triangle inequality,

c(s, s′) ≤ c(s, s′′)+ c(s′′, s′) for any s, s′, s′′ ∈ V . Then, we

define the cost between two labels l1, l2 ∈ 2AP as

cℓ(l1, l2) = min
s1,s2:ℓ(s1)=l1,ℓ(s2)=l2

c(s1, s2), (3)

which is a lower bound on the transition cost from l1 to l2 in

the metric space of cost function c. Next, we define a lower

bound on the transition cost from automaton state q ∈ Q
with label l ∈ 2AP to an accepting state qf ∈ F as:

g(l, q) = min
l′∈2AP

cℓ(l, l
′) + g(l′, T (q, l′)). (4)

The function g : 2AP ×Q 7→ R≥0 can be pre-computed via

Dijkstra’s algorithm on the automaton Mϕµ
. We also define

a next labeling function ℓn : 2AP × Q 7→ 2AP that tracks

the least-cost label sequence returned by Dijkstra’s algorithm

with g(l, q) = 0, ℓn(l, q) = true, ∀q ∈ F .

Proposition 1. The heuristic function hLTL : V × Q → R



defined below is consistent:

hLTL(s, q) = min
t∈V

[c(s, t) + g(l(t), T (q, l(t)))] ,

hLTL(s, q) = 0, ∀q ∈ F .
(5)

Proof. Consider a state x = (sx, qx) with label lx = l(sx).
For any y = (sy, qy) that sy is reachable from sx in one step,

we have two cases to handle. When T (qx, l(sy)) = qy = qx:

hLTL(sx, qx) ≤ min
t∈V

[c(sx, sy) + c(sy, t) + g(l(t), T (qx, l(t)))]

= c(sx, sy) + min
t∈V

[c(sy, t) + g(l(t), T (qy, l(t)))]

= c(sx, sy) + hLTL(sy, qy).

When T (qx, ly) = qy ̸= qx, with ly = l(sy), we have:

c(sx, sy) + hLTL(sy, qy)

= c(sx, sy) + min
t∈V

[c(sy, t) + g(l(t), T (qy, l(t)))]

≥ min
t∈V,l(t)=ly

c(sx, t) + min
t∈V

[c(sy, t) + g(l(t), T (qy, l(t)))]

≥ min
t∈V,l(t)=ly

c(sx, t) + min
l′∈2AP

[

cl(ly, l
′) + g(l′, T (qy, l

′))
]

≥ min
t∈V

[c(sx, t) + g(l(t), T (qx, l(t)))] = hLTL(sx, qx).

D. LLM Heuristic

In this section, we develop an LLM heuristic hLLM : V ×
Q → R that captures the hierarchical semantic information

of the scene graph. The LLM heuristic uses all attributes at

a node s ∈ V , the current automaton state q ∈ Q, and the

attribute hierarchy Ḡ, and returns an attribute-based guide

that helps the AMRA∗ to search in the right direction for an

optimal path. We design the prompt to ask LLM for attribute-

based guidance with 4 components as follows:

• environment description from its attribute hierarchy Ḡ,

• list of motions M = {mi(·, ·)}, where mi(aj , ak), aj ∈
Aj , ak ∈ Ak describes movements on Ḡ from attribute

ai to aj that the LLM model uses to generate its guides,

• an example of the mission µunique and how to response,

• description of the mission µunique, current attributes,

remaining task given the automaton state q ∈ Q, and

request for guidance on how to finish the task.

The LLM model returns a sequence of function calls

{fi(aj , ak)}
N
i=0, fi ∈ M , aj ∈ Aj , ak ∈ Ak in XML format,

easing response parsing [53]. Each function call returns a

user-defined cost, e.g., Euclidean distance between attributes:

fi(aj , ak) = c(sj , sk), where sj , sk are the center of Vaj

and Vak
, respectively. The total cost of the LLM functions

is used as an LLM heuristic hLLM (s, q) =
∑N

i=0 fi(aj , ak).
Due to the LLM query delay and its limited query rates, the

sequence of function calls suggested by the LLM model is

obtained offline, stored and used to calculate the heuristic

hLLM online in AMRA* based on the user-defined cost.

Fig. 4 illustrates a sample prompt and response. The

prompt first describes the attribute hierarchy Ḡ. Each attribute

is mentioned with a unique ID to avoid confusing the LLM,

as shown in the first paragraph of the prompt in Fig. 4. The

second part of the prompt provides a list of possible functions

used to guide the agent, such as move(1, 2) to move from

room 1 to room 2, or reach(1, 3) to reach an object 3 in room

Robot:
You are a robot in a building. The building has 1 floor and 6 rooms.
  ...  
  Room 2 is a bedroom. Room 2 is connected to rooms 1, 3. Room 2 has 1 object: a bed with ID 8.
  Room 3 is a kitchen. Room 3 is connected to rooms 2, 4. Room 3 has 2 objects: an oven with ID
  11 and a fridge with ID 12.
  ...  

The main functions you can use are:
  move(room1, room2): move from room1 to room2 only if room1 is connected to room2.
  reach(room, object): reach an object if the object is in the room.  

An example of your task is to visit the couch in the living room and then go to the kitchen.
If you are in bedroom 2, you can achieve the task by the following sequence of function calls: 
<command>move(2, 4)</command> 
<command>reach(4, 10)</command> 
<command>move(4, 3)</command>

You are in room 1. Your task is to visit the kitchen with ID 3, reach the oven with ID 11. How do
you finish the task? Answer using move and reach function only. No explanation.

GPT:
<command>move(1, 2)</command>
<command>move(2, 3)</command> 
<command>reach(3, 11)</command> 

Target: go to the bedroom with ID 2, the visit the kitchen with ID 3,
 reach the oven with ID 11, and always avoid the TV with ID 9.

Fig. 4: ChatGPT prompt requesting a scene graph path.

Fig. 5: The automaton graph T for the mission "go to the bedroom
2, then visit the kitchen 3, reach the oven 11, and always avoid the
TV 9" with an initial node q1 = 4 and an accepting node 0.

1. The third component provides an example of a mission and

how the LLM should response. The last component describes

the current attributes and the remaining mission, generated

based on the current automaton state q, and requests LLM

to generate a high-level plan using the provided functions.

The automaton state q represents how far we have achieved

the mission. Thus, to describe the remaining mission, we

run Dijkstra’s algorithm on the automaton Mϕµ
to find

the shortest path from q to an accepting state in F . We

obtain a set of atomic prepositions evaluated true along

the path, and concatenate their descriptions to describe the

remaining mission in the prompt. For example, the desired

mission is to “go to the bedroom 2, then visit the kitchen

3, reach the oven 11, while always avoid the TV 9". Let

the atomic prepositions be defined as p2, p3, p11, and p9,

where the indices correspond to the ID of the room or

object. The task can be described using an LTL as follows:

ϕ = F(p2∧F(p3∧Fp11))∧¬p9, whose automaton graph T

generated from Spot [52] is shown in Fig. 5 with the initial

state q1 = 4 and the final states F = {0}. The agent is

currently in room 1 and have visited room 2, i.e. q = 2. The

shortest path from q to the accepting state 0 is marked by

red arrows in Fig. 5. Along this path, p3 and p11 turn true,

causing the remaining mission to be “visit the kitchen 3 and

reach the oven 11" (Fig. 4). The atomic preposition p9 leads

to a sink state 5 if it evaluates true, and never appears in the

next mission, leading to an optimistic LLM heuristic.

V. EVALUATION

To evaluate our method, we use Allensville (1-floor),

Benevolence (3-floor) and Collierville (3-floor) from the 3D

Scene Graph dataset [11]. For each scene, we designed 5

missions (some are shown in Table II). For each mission,



TABLE II: Example mission descriptions for each scene.

Allensville
Clean all vases in the dining room. Eventually water
the potted plants in the bathrooms one after another.

Benevolence

Visit the bathroom on floor 0 and avoid the sink,
then go to the dining room and sit on a chair. Always
avoid the living room.

Collierville Clean all the corridors, except the one on floor 0.

A

B

C
A

D

E

A B C D E

Fig. 6: Optimal path for the Benevolence mission shown in Table II.

we used 5 initial positions across different floors and rooms.

We use GPT-4 [51] to translate missions to LTL formulas,

and Spot [52] for LTL formulas to automata as described in

Sec. III. Following Sec. IV-D, we use GPT-4 [51] to generate

the LLM heuristic function hLLM. Given a scene graph

G, the mission described by the automaton Mϕ, the LTL

heuristic hLTL, and the LLM heuristic hLLM, we construct

the hierarchical planning domain and run AMRA*.

Fig. 6 shows a path in Benevolence for the mission in

Table II. Starting from the empty room on floor 0, the agent

goes to the bathroom entrance without approaching the sink,

and then proceeds upstairs to floor 1, finally reaching a chair

in the dining room without entering the living room.

We compare different setups to investigate the effect of

each hierarchy levels and the benefit of using our LLM

heuristic. With all hierarchy levels having an LTL heuristic,

we design 7 setups: occupancy level only without LLM

heuristic (A*), all levels available but without LLM heuristics

(NO-LLM), all levels with LLM heuristics (ALL), and one

of the levels with LLM heuristic (OCC, OBJ, ROOM, FLR).

Fig. 7 shows that the ALL setup manages to return a feasible

path much faster than others thanks to the LLM guidance

across all hierarchical levels, while it also approaches the

optimal solution within similar time spans.

As an anytime algorithm, AMRA* starts searching with

large weights on the heuristics, then reuses the results with

smaller heuristic weights. As the planning iterations increase,

the path gets improved. When the heuristic weight decays

to 1, we obtain an optimal path. To further investigate the

benefits of using LLM heuristics, we compare the number of

node expansions per planning iteration. As shown in Fig. 8,

applying our LLM heuristic to any hierarchy level reduces

the node expansions significantly, which indicates that our

LLM heuristic produces insightful guidance to accelerate

AMRA*. An exciting observation is that the more hierarchy

levels we use our LLM heuristic in, the more efficient the

algorithm is. This encourages future research to exploit scene

semantic information further to accelerate planning.

AMRA* allows a robot to start executing the first feasible

path, while the path optimization proceeds in the background.
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Fig. 7: Path cost vs planning time for different AMRA* variants.

1 2 3 4 5 6
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f e
xp

an
sio

ns

occupancy level
NO-LLM
ALL
OCC
OBJ
ROOM
FLR
A*

1 2 3 4 5 6
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f e
xp

an
sio

ns

object level
NO-LLM
ALL
OCC
OBJ
ROOM
FLR
A*

1 2 3 4 5 6
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f e
xp

an
sio

ns

room level
NO-LLM
ALL
OCC
OBJ
ROOM
FLR
A*

1 2 3 4 5 6
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f e
xp

an
sio

ns

floor level
NO-LLM
ALL
OCC
OBJ
ROOM
FLR
A*

Fig. 8: Number of node expansions v.s. the planning iteration. Each
sub-figure presents a hierarchy level.

TABLE III: First feasible path computation time, relative cost
between first and optimal path, and optimal path computation time
averaged over 5 initial conditions for mission 1 in Benevolence.

1st iter. time (sec.) 1st iter. cost/costopt opt. time (sec.)

ALL 0.0007 1.3763 8.9062
OCC 0.0244 1.0827 8.3144
OBJ 3.7460 1.0387 24.936

ROOM 3.6878 1.0306 13.1352
FLR 3.8106 1.0369 13.3287

NO-LLM 3.3260 1.0318 24.2516
A* 1.1202 1.0997 11.7594

TABLE IV: First path computation time, relative cost between first
and optimal path, and optimal path computation time averaged over
each scene’s 5 missions and 5 initial positions/mission.

Allensville(1-floor) Benevolence(3-floor) Collierville(3-floor)

ALL 0.24/1.69/3.50 0.32/1.24/11.82 0.009/1.26/5.48
NO-LLM 0.36/1.34/6.33 2.82/1.18/21.57 1.16/1.38/8.13

A* 0.15/1.08/3.23 1.33/1.16/14.22 1.19/1.06/7.04

Tables III and IV shows the time required to compute the

first path, the path cost relative to the optimal path, and the

time required to find an optimal path. The ALL configuration

outperforms other setups in speed of finding the first path and

the optimal path when the scene gets more complicated.

VI. CONCLUSION

We demonstrated that an LLM can provide symbolic

grounding, LTL translation, and semantic guidance from

natural language missions in scene graphs. This information

allowed us to construct a hierarchical planning domain and

achieve efficient planning with LLM heuristic guidance. We

managed to ensure optimality via multi-heuristic planning,

including a consistent LTL heuristic. Our experiments show

that the LLM guidance is useful at all levels of the hierarchy

for accelerating feasible path generation.
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