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Abstract— Multi-agent mapping is a fundamentally impor-
tant capability for autonomous robot task coordination and
execution in complex environments. While successful algorithms
have been proposed for mapping using individual platforms,
cooperative online mapping for teams of robots remains largely
a challenge.A critical question to enabling this capability is how
to process and aggregate incrementally observed local informa-
tion among individual platforms, especially when their ability
to communicate is intermittent. We employ truncated signed-
distance field (TSDF) as the map representation, and propose
an Incremental Sparse Gaussian Process (GP) methodology to
regress over TSDF for multi-robot mapping. Doing so permits
each robot in the network to track a local estimate of an ap-
proximated GP posterior and perform weighted averaging of its
parameters with its (possibly time-varying) set of neighbors. We
focus on probabilistic variants of mapping due to its potential
utility in down-stream tasks such as uncertainty-aware path-
planning. We establish conditions on the GP representation, as
well as communications protocol, such that robots’ local GPs
converge to the one with globally aggregated information. We
further provide experiments that corroborate our theoretical
findings for probabilistic multi-robot mapping.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) refers
to the ability of a robot to identify its location within an
unknown environment while simultaneously constructing a
map of its surroundings. SLAM is critically important to
enable real-time robot operation, using only on-board sensing
[2], [3]. We focus on a distributed mapping problem, where
multiple robots acquire sensor data and seek to aggregate
it to boost the statistical accuracy of their maps [4], [5].
This setting is important for reducing the amount of time to
map an unknown environment at sufficiently high accuracy.
However, collecting and optimizing the data at a central
location requires every robot to send all of its observa-
tions followed by a large-scale optimization, rendering the
process excessively slow, expensive, and brittle in robotics
applications with challenging communication infrastructure
[6]. Instead of using a centralized architecture, in this work
we allow the robots to process their local observations
incrementally and communicate in a distributed manner. The
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Fig. 1: This work tackles probabilistic continuous-space
mapping using point-cloud observations from a robot team
with time-varying communication. The trajectories of 10
sequences from the NCLT dataset [1], representing different
robots, are shown at the top. The dataset provides 2D LiDAR
scans and other sensor data collected in a square kilometer
region of a university campus over several months. In our set-
ting, the robot communication is intermittent as robots move
in and out of communication range. Each robot collaborates
with its teammates to reconstruct a probabilistic truncated
signed distance field (TSDF) map of the environment. The
TSDF map and trajectory of robot 3 is shown at the bottom.
Even though robot 3 does not visit the entire environment,
it obtains a complete TSDF map of the environment.

challenge then becomes mixing the information received at
each robot from its neighbors that are within communication
range to collaboratively build the map, without knowing the
robot network topology a priori.

We use truncated signed distance field (TSDF) [7] as our
environment representation, which intuitively measures the
distance to the closest obstacle surface, up to a truncation
value for each point in the environment. Compared to occu-
pancy grid representations [8], TSDF quantifies both occu-
pancy and distance to the closest object surface, and is more
attractive for down-stream tasks such as collision avoidance
and accurate surface reconstruction. However, updating a
global map whenever new observations arrive is expensive.
Hence, to keep the computational complexity in check,
inspired by map decomposition methods such as Octomap



[9] and voxel-hashing [10], we employ a QuadTree (Octree
in 3D) data structure to reduce computation complexity, and
only update maps of the relevant regions when new sensor
observations are collected.

Furthermore, we focus on the case that individual plat-
forms seek to construct a probabilistic map, as uncertainty
quantification is important for collision avoidance. A Gaus-
sian Process (GP) is a non-parametric model that provides
a natural choice for tracking the posterior of the map while
providing uncertainty information [11]. However, the training
procedure of GP is cubic in the number of samples, and
various methods [12], [13] have been proposed to strike a
balance between computational effort and statistical accuracy
in GP inference. We develop an approach based off pseudo-
point approximations as in [14], which reduces the training
complexity from O(n3) to O(m2n), where n is the number
of training samples, m is the number of pseudo-points, and
whose convergence has recently been characterized [15].
When m ≪ n this could lead to significant computational
savings.

We further develop a weighted averaging scheme for
propagating distributions of TSDF estimated by individual
GPs across the network, inspired by consensus protocols
[16], [17]. While sub-optimal compared to approaches based
on Lagrangian relaxation of consensus constraints, such as
primal-dual [18], dual [19], and ADMM [20] methods, the
proposed approach is simple and efficient, making it suitable
for distributed probabilistic inference.

Thus, to achieve distributed, probablistic, online and ef-
ficient mapping with uncertainy information, we construct
an algorithm based upon incremental sparse Gaussian Pro-
cesses (GP) with pseudo-input approximations, which are
regressed over sequentially observed TSDF measurements
taken by each robot. Information mixing is executed through
a parametric representations of the GP mean and covariance
functions. A key point of departure of this work from our
prior work in [21] is the consideration of a time-varying
network. This is important in settings where communication
is intermittent and dependent both on the robot locations
and the environmental characteristics, e.g., common in un-
derwater and underground [6] environments. In summary, the
contributions of this paper are to:

• develop a distributed protocol for mixing incremental
pseudo-points GP posterior of TSDF over a time-
varying network,

• establish a convergence guarantee under suitable con-
ditions on the pseudo-points, communications network,
and input space,

• corroborate the proposed algorithm on two real-world
LiDAR datasets, one of which is large-scale.

We demonstrate both theoretically and empirically that the
proposed distributed mapping algorithm with time-varying
communication converges asymptotically to a centralized
estimator, which relies on the information of all robots.

II. PROBLEM STATEMENT

We consider the problem of mapping a d-dimensional
environment (d ∈ {2, 3} in practice) with occupied space

Ω ⊂ Rd and free space F ⊂ Rd. We aim to estimate a
truncated signed distance function (TSDF) [10] as a contin-
uous representation of the environment. The truncated signed
distance from a point x to the boundary ∂Ω of the occupied
space Ω is defined as:

g(x) =

{
min(d(x, ∂Ω), h), if x /∈ Ω,

−min(d(x, ∂Ω), h), if x ∈ Ω,
(1)

where h > 0 is a pre-defined truncation value and:

d(x, ∂Ω) = inf
y∈∂Ω

∥x− y∥2. (2)

The TSDF g(x) provides the (truncated) minimum distance
from x to the boundary of the occupied space and is negative
if x is within the occupied space.

We employ a team of n robots to gather observations of the
environment over a time horizon 0, . . . , T . The observation
of robot i at time t is a point-cloud Zi

t ⊂ Rd obtained,
e.g., from a LiDAR scanner, depth camera, or another range
sensor. We assume that the robot positions pit ∈ Rd and
orientations Ri

t ∈ SO(d) are known for all i, t from an
odometry algorithm, e.g. scan-matching [22] or pose graph
optimization [23]. The world-frame coordinates of a point
z ∈ Zi

t observed by the robot can be obtained via pit +Ri
tz.

We assume the the team of robots are able to exchange
the information over an undirected time-varying graph Gt =
(V, Et) with nodes V = {1, . . . , n}, corresponding to the
robots, and edges Et ⊆ V × V . If two robots i, j ∈ V are
able to communicate at time t, then an edge (i, j) ∈ Et is
present in the graph. The robots that robot i can communicate
with at time t are called its neighbors and will be denoted
by the set N i

t = {j ∈ V|(i, j) ∈ Et}. We aim to design
a fully distributed TSDF mapping approach, in which the
robots communicate only with their neighbors and place
minimal restrictions on the communication structure. We
consider time-varying networks, in which the graph Gt may
be instantaneously disconnected but the union of the graphs
over a period of time B is connected. This assumption is
much weaker than requiring the robots to be in constant
communication and is utilized for many results in multi-agent
coordination and distributed optimization [24], [25].

Assumption 1. The graph sequence Gt = (V, Et) is
uniformly connected, i.e., there exists an integer B > 0
(potentially unknown to the robots) such that the graph with
node set V and edge set EBk =

⋃(k+1)B−1
t=kB Et is connected

for all k = 0, 1, . . ..

For each robot i, our goal is to incrementally infer a
posterior distribution over the TSDF representation g of
the environment, conditioned on the sequential observations
Zi
t of robot i as well as the information received from its

neighbors N i
t for t = 0, . . . , T . This amounts to an online

distributed Bayesian inference problem over a time-varying
network. Our approach to this problem is described in the
following section.

III. TECHNICAL APPROACH

We organize our technical approaches into the follow-
ing sections. Section III-A discusses the TSDF estimation



framework for a single agent, leveraging sparse pseudo-
point Gaussian Process. Section III-B presents the distributed
update protocol over time-varying network of robots, with
proposition and proof over the convergence of the algorithm.

A. Regressing TSDF via pseudo-point Gaussian Processes

To estimate a TSDF g(x) representation of the envi-
ronment using a single agent, we leverage pseudo-point
approximations of Gaussian Processes. This provides a way
to infer the distribution in a parametrically efficient manner.
Before doing so, we review the key steps of Gaussian Process
regression and sparse pseudo-point GP approximation.
Gaussian Processes. A Gaussian Process (GP) g(x) ∼
GP(µ0(x), k0(x, x

′)) is a stochastic process such that any
finite collection of its realizations [g(x1), . . . , g(xK)]⊤ is
jointly Gaussian with mean µ(x) = [µ0(x1), . . . , µ0(xK)]⊤

and covariance with elements k0(xk, xℓ). We employ this
nonparametric model to hypothesize that the robot’s obser-
vations are corrupted by zero-mean Gaussian noise: yi =
g(xi) + ϵi, where the noise satisfies ϵi ∼ N(0, σ2

i ). In
this work, {yi} are observations of the TSDF function g,
which we estimate from the point cloud observations Zi

t as
described at the end of this section.

In our setting, the robot collects observations D = (X , y),
where X = {xi} denotes the input vectors and y = {yi}
denotes the corresponding TSDF values. The posterior of
the GP is g(x)|D ∼ GP(µ(x), k(x, x′)). The associated
conditional mean and covariance functions of g, estimated
by the GP are:

µ(x) = µ0(x)+k0(x,X )(k0(X ,X )+σ2I)−1(y−µ0(X ))
k(x, x′) = k0(x, x

′)−k0(x,X )(k0(X ,X )+σ2I)−1k0(X , x′)
(3)

Complexity Reduction. The computational complexity of
the training procedure is O(n3) with sample size n = |D|,
due to the inversion of the kernel matrix k0(X ,X ) in (3).
We adopt an approximation based on a set of pseudo-points
P ⊂ X , where |P| = k ≪ n, as in [14]. The key is that
we parametrize the model with the pseudo-points P and g
evaluated at P , which we denote as pseudo targets ḡ. We
can then obtain the distribution of g, by integrating out the
derived distribution on ḡ and the likelihood of the model.

The distribution of g(x) conditioned on the input x, P and
ḡ, i.e. p(g(x)|ḡ) is Gaussian with parameters:

µ(x) = µ0(x)+k0(x,P)(k0(P,P) + σ2I)−1(ḡ−µ0(P))
k(x, x′) = k0(x, x

′)−k0(x,P)(k0(P,P) + σ2I)−1k0(P, x′)
(4)

Since we can assume the pseudo-targets come from the
same distribution as the dataset D, we place the same prior
on ḡ ∼ N (µ0, k0), and after using Bayes Rules on (4) and
the prior we can write ḡ|X , y,P ḡ|X , y as:

µ(P) = µ0(P)+ k0(P,P)(k0(P,P)+ Γ)−1γ

Σ(P) = k0(P,P)(k0(P,P)+ Γ)−1k0(P,P)
(5)

with weighting factors Γ = k0(P,X )(Λ+ σ2I)−1k0(X ,P),
Λ = k0(X ,X ) − k0(X ,P)k0(P,P)−1k0(P,X ), and γ =
k0(P,X )(Λ + σ2I)−1(y − µ0(X )).

Using the definition of info matrix Ω(P) = Σ(P)−1 and
information mean ω(P) = Ωµ(P), equivalently to (5) the
info mean and info matrix of P can be written as:

ω(P) = Ωµ0(P) + k0(P,P)−1γ

Ω(P) = k0(P,P)−1(k0(P,P) + Γ)k0(P,P)−1
(6)

Lastly, integrating out ḡ|X , y in (6) and g(x)|x,P, ḡ
g(x)|ḡ in (4), the TSDF posterior g(x)|X , y is distributed
as Gaussian N (µ(x), k(x, x′)) with parameters:

µ(x) = µ0(x)+ k0(x,P)k0(P,P)−1(Ω−1ω − µ0(P))
k(x, x′) = k0(x,P)k0(P,P)−1Ω−1k0(P,P)−1k0(P, x′)

+ k0(x, x
′)− k0(x,P)k0(P,P)−1k0(P, x′)

(7)
This is a key complexity reduction of GP posterior compu-
tations. In general, the pseudo-points P could be arbitrary
locations in the environment, and do not need to come
from the dataset X . However, in incremental and distributed
settings, the team of robots may encounter repeated obser-
vations of the same locations. To keep the complexity of
model proportional to complexity of environment, we pick
the pseudo points out of a fixed grid of the environment. We
incorporate the pseudo-point aggregation technique in [26] as
the pseudo-point values ḡ, which is proven to have the same
distribution as the pseudo-point GP mean and covariance in
(7). The GP using the aggregated statistics have mean and
covariance:

µ(x) = µ0(x) + k0(x,P)Q(ζ − µ0(P))
k(x, x′) = k0(x, x

′)− k0(x,P)Qk0(P, x′)
(8)

where Q−1 := k0(P,P) + σ2diag(m)−1

The locations of the pseudo-points are denoted by P ⊂ X ,
and ζ is a vector containing the arithmetic average of the
observations for p ∈ P , and m is the vector containing count
of observations for each p ∈ P .
Tree Data Structures. To keep the computational effort
under control, for each agent i we use one QuadTree Trit
(Octree in 3D) to keep track of the pseudo points at time
t. Let Li,k

t denote the kth QuadTree leaf node for tree Trit,
which may be the root when the tree has not been split,
or a child of Trit. When new pseudo-points are inserted,
if the number of pseudo-points in Li,k

t exceeds a threshold
maxLeafSize, the node Li,k

t is split recursively until all leaves
of Li,k

t have less than maxLeafSize pseudo-points.
Pseudo-point Placement. To place the pseudo-points in the
environment, we adopt a grid-approach, and place a local
frameM over the laser endpoints, as proposed by [26]. Since
the laser beams are hit where there are obstacles, we can
assume the endpoints of the laser beams have g(x) = 0.
As illustrated in Fig.2, a 3x3 frame is placed over the
laser endpoint, and the pseudo-points are selected from each
point within the frame M such that pseudo-points of both
positive and negative TSDF values are selected. Thus with
the observations Zi

t we locate the set of pseudo points P̃i
t .



Fig. 2: Approximation of the TSDF values at a set of pseudo-
points in 2D. The gray lines are LiDAR rays from the sensor.
The blue line represents a surface boundary of the occupied
space Ω. The green and brown points p0, p1 are hit locations
on the boundary of two adjacent laser rays. Pseudo-points
(black) are placed in a local frame M associated with point
p0. The TSDF of a pseudo-point q is approximated as the
distance to the line l through the adjacent laser hit points.

A key observation is that for each robot i, ki = |P̃i
t |

is much less than n = |Zi
t | as the robot team repeatedly

explores the environment. k is controlled by the resolution
of the environment, as pseudo-points are placed on the global
map. n is controlled by the resolution, as well as the size of
the frame placed on each laser hit point.
TSDF Approximation in 2D. For each pseudo-point q ∈ P̃i

t ,
to compute the TSDF corresponding to the recent observation
Zi
t , suppose that p1, p2 ∈ X are two adjacent laser hit points,

and p⃗1, p⃗2 denote the corresponding vectors starting from the
origin O. We assume that p1, p2 belong to the same boundary
surface ∂Ωj , and approximate the distance field of a pseudo-
point q ∈ M(p1) as the distance d(q, p1p2), where p1p2
denotes the line passing through p1p2 in 2D, or the plane
containing p1, p2 in 3D. In 2D, d(q, p1p2) can be calculated
using the following equation:

d(q, p1p2) =
|(x2 − x1)(y1 − y0)− (x1 − x0)(y2 − y1)|√

(x2 − x1)2 + (y2 − y1)2

(9)
where q = (x0, y0), p1 = (x1, y1), p2 = (x2, y2). We obtain
g(q) = min(d(q, p1p2), h) if q is in the same halfspace of
robot’s position pt, or −min(d(q, p1p2), h) otherwise.

Then we have a set of pseudo points P̃i
t with their

estimated TSDF values corresponding to observation Zi
t . The

transformed data are samples of g that are regressed with GP
with mean µ(x) and covariance k(x, x) defined in (8).

B. Distributed Updates in Time-Varying Network

To make the updates for the GP approximation scoped in
the previous subsection executable in a distributed manner,
we consider a setting where each robot acquires a local
observation stream. Then, it must incorporate message pass-
ing with others in order to propagate its local information
across the network and achieve a degree of coordination.
Cooperation is defined from the perspective of whether indi-
viduals estimates approach that of a centralized estimator that
theoretically has access to all robots’ local information. In
this work we show under Assumption 1, the GP parameters

maintained by the individual robots converges to that of the
central estimator.

In a distributed setting over a time-varying graph of
robots, each individual platform i receives information from
the neighboring platforms. For each robot i mixing the
information from the neighbors N i

t is usually achieved using
a weighting scheme [17], [25]. Let Wt be the weighted
adjacency matrix of the network at time t. We assume that
[Wt]ii > 0 for all i ∈ V . Given the communication graph
Gt, a weight matrix that is widely used in the distributed
estimation literature is Metropolis weights [16] [25]:

[Wt]i,j =


1

(1+max(degi
t,deg

j
t))

, if (i, j) ∈ Et,
0, if (i, j) /∈ Et,
1−

∑
j∈N i

t
[Wt]i,j , if i = j,

(10)

where degit = |N i
t | is the number of neighbors for robot

i at t. As established in [25], an important property of
the Metropolis weight matrix is that Assumption 1 ensures
Π∞

t=τW
t → 11⊤

n , i.e. the time-inhomogeneous Markov
chain defined by the weights Wt has a uniform stationary
distribution equal to 1/n.

Next, we introduce our method to update the robotic
network. For each robot i at time t, we transform the
observation {Zi

t} into a set of pseudo-point statistics, as
explained in Sec.III-A. Using (9) for each new pseudo
point p ∈ P̃i

t we average the TSDF values into ζ̃it(p) and
corresponding counting number of observation in m̃i

t(p). We
also introduce a list ℓit containing the robots that received this
message to enforce each robot receives each message exactly
once. By combining all parameters, each observation Θ̃i

t :=
{P̃i

t , m̃
i
t(P̃i

t), ζ̃
i
t(P̃i

t), ℓ
i
t} defines a message of observations

for robot i observed at time t. In addition, B̃i
t and Bi

t define
the set of messages robot i receives at t and retains at all
time respectively. In practice, the distributed protocol would
be mixed via weighting using (10); however, as Π∞

t=τW
t

converges to 11⊤

n , we define our distributed protocol based
off the stationary distribution as the following:

B̃it+1 =
⋃

Θ̃j
τ∈Br

t ,r∈N i
t ,i̸∈ℓjτ

Θ̃j
τ ∪ Θ̃i

t+1

Bit+1 = Bit ∪ B̃it+1

ℓjτ = ℓjτ ∪ {i} for all Θ̃j
τ ∈ B̃it+1 (11)

Pi
t+1 =

⋃
Θ̃j

τ∈B̃i
t+1

Pj
τ ∪ Pi

t

mi
t+1(p) = mi

t(p) +
∑

Θ̃j
τ∈B̃i

t+1

m̃j
τ (p)

n

ζit+1(p) =
mi

t(p)ζ
i
t(p) +

1
n

∑
Θ̃j

τ∈B̃i
t+1

m̃j
τ (p)ζ̃

j
τ (p)

mi
t+1(p)

where a message is dropped from robot i when ℓit is full.
To evaluate the convergence of our distributed protocol, we

obtain the GP estimation of function g through a centralized
estimator. A centralized estimator is defined as an imaginary
robot that receives observations at each time t from all robots,



and the update of its GP parameters is defined as equal
averaging of the statistics from all robots:

Pctr
t+1 = ∪ni=1P̃i

t+1 ∪ Pctr
t ,

mctr
t+1(p) = mctr

t (p) +

n∑
i=1

m̃i
t+1(p)

n
, (12)

ζctrt+1(p) =
mctr

t (p)ζctrt (p) + 1
n

∑n
i=1 m̃

i
t+1(p)ζ̃

i
t+1(p)

mctr
t+1(p)

,

Proposition 1. For the data collected by the robot team by
time T <∞, at time t = (⌈ TB ⌉+(n−1))B, the distributions
GP(µi

t(x), k
i
t(x,x

′)) maintained by each robot i, specified
according to (8) with parameters in (11) are exactly equal to
the distribution GP(µctr

t (x), kctrt (x,x′)) of the centralized
estimator with parameters in (12), i.e., µi

t(x) = µctr
t (x) and

kit(x,x
′) = kctrt (x,x′) almost surely for all i ∈ V , x,x′.

Proof. With regard to Eq (8), it is sufficient to show that
at t = (⌈ TB ⌉ + (n − 1))B, mi

t(p) = mctr
t (p) and ζit(p) =

ζctrt (p) for all i ∈ V , p ∈ P . We express mi
t(p) and ζit(p)

in terms of m̃j
τ (p) and ζ̃jτ (p) for arbitrary p ∈ P and τ ≤ t.

The key is to check whether message Θ̃i
τ is received by

robot j at time t. Since the message exchanges are happening
based on the communication graph structure, the elements of
Πt

s=τWs determines which robots have received a message
released at time τ by time t. Precisely, if [Πt

s=τWs]ij >
0 then robot i has received message Θ̃j

τ by time t and if
[Πt

s=τWs]ij = 0 robot i has not received it. Let sign(x) be
the sign of a scalar x with sign(0) = 0 and sign(x) = 1
for x > 0. Expanding (11) recursively leads to:

mi
t(p) =

t∑
τ=0

n∑
i=1

sign([Πt
s=τWs]ij)

m̃j
τ (p)

n
(13)

ζit(p) =
1

mi
t(p)

t∑
τ=0

n∑
j=1

sign([Πt
s=τWs]ij)

m̃j
τ (p)

n
ζ̃jτ (p)

Next we will show under Assumption 1, a message produced
by robot j at time τ will be received by all robots in (n−1)B
steps. At time step t, let At be set of all robots who received
the message produced by robot j at time step τ , and Āt be
the set of the rest of robots who did not received it. At first
Aτ = {j} and rest of robots are in Āτ including i. Note
that Assumption 1 means that in each B steps there is a
time when a edge connects At and Āt. At such time, we can
consider the vertex of this edge in Āt, remove it and add it
to At. Since in the beginning there is n− 1 robots in Āτ , at
some point in (n − 1)B steps robot i will be added to At,
and hence sign([Π

(n−1)B+τ
s=τ Ws]ij) = 1, ∀i, j ∈ V .

For the pseudo-points p not observed by robot i we
assume m̃i

τ (p) = ζ̃iτ (p) = 0. Let us consider the non-zero
terms m̃i

τ (p)
n ,

m̃i
τ (p)
n ζ̃iτ (p), corresponding to observation by

robot i at time step τ . It includes pseudo points p such that
m̃i

τ (p) > 0. We also have shown that the statistics in the
corresponding message is observed by t = (n − 1)B + τ .
Comparing (13) and (12) concludes the equality µi

t(x) =
µctr
t (x) and kit(x,x

′) = kctrt (x,x′) at t = (⌈ TB ⌉ + (n −
1))B.

Fig. 3: Diagram for message passing among 3 agents with
a time-varying communication graph Gt. The yellow box
denotes the event when a new batch of pseudo-point and
TSDF is observed, and a new message is constructed (Line
1-2 of Algorithm 1). At each step t new observations are
collected, and at t′ messages are sent. (Line 4-5).

Synthesizing Sec.III-A and the distributed protocol pro-
posed in (11), we put forth the following algorithm for
distributed update of pseudo-points statistics of the TSDF.
An illustration for the message passing between the agents
is in Fig 3. The GP parameters GPi

t+1 for the corresponding
QuadTree Node Trit+1 is updated according to (11) (Line 10
of Algorithm 1). When merging the pseudo-points statistics
from the neighbors, if the QuadTree Node Trit+1 has number
of pseudo-points larger than maxLeafSize, the node including
its pseudo-point statistics is split recursively (Line 10).

Algorithm 1 Distributed Mapping for robot i

Input: new local observations Zi
t+1, robot position pit+1

Octree Trit, GP
i
t, Neighbors N i

t+1

Output: Octree Trit+1, GPi
t+1

1: P̃ i
t+1, ζ̃

i
t+1, m̃

i
t+1 ← computePseudoPoints(pit+1, Z

i
t+1)

2: Θ̃i
t+1 ← {P̃i

t+1, m̃
i
t+1(P̃i

t+1), ζ̃
i
t+1(P̃i

t+1), ℓ
i
t+1}

3: for j ∈ N i
t+1 do

4: ∆̃i,j
t+1 = Θ̃i

t+1

⋃
Θ̃k

τ∈Bi
t,j ̸∈lkt

Θ̃k
τ

5: sendToNeighbor(∆̃i,j
t+1)

6: end for
7: P̄ i

t+1 ← P̃ i
t+1

⋃
j∈N i

t+1,Θ̃
k
τ∈∆̃j,i

t

P̃ k
τ

8: Trit+1 = Trit
9: for pit+1 ∈ P̄ i

t+1 do
10: Trit+1.insertAndSplit(pit+1, ζ̄

i
t+1(pt+1), m̄

i
t+1(pt+1))

11: end for

IV. EXPERIMENTAL RESULTS

We evaluate our algorithm on two public LiDAR datasets.
The first dataset is from the Robotics Data Set Repository
(Radish) [27], which contains LiDAR sequences and odome-
try recorded from different environments. The second dataset
is the North Campus Long-Term (NCLT) dataset [1], which
contains multiple long sessions for a single robot navigating
on University of Michigan’s campus. We show that using



(A) Centralized Estimator (B) Agent 1 (C) Agent 10

Fig. 4: TSDF estimates from the North-Campus Long-Term dataset [1].

the time-varying distributed mapping algorithm (Algorithm
1) the estimation of the TSDF by the distributed team of
robots converge to that of the centralized estimator, both
qualitatively and quantitatively.

To evaluate the accuracy of the TSDF mapping, we
evaluate the predictions of each individual agent with respect
to the prediction of the centralized estimator according to the
following metric:

RMSEi =

√∑
p∈X ,ẑ(p)∈(−h,h)(ŷ

i(p)− ẑ(p))2∑
p∈X 1(ẑ(p) ∈ (−h, h))

(14)

where ẑ(p) is the prediction of the centralized estimator, h
is the truncated distance, ŷi(p) is the prediction of the ith
agent, and X denotes the entire environment. To simulate the
neighborhood N i

t of the robot i, we compute the distance
between all pairs of robots at all t, and connect two robots
if the distance is lower than a threshold r.

A. Radish Datasets

For the Radish [27] datasets, we selected the following
three environments: Intel Research Lab, Orebro and MIT
CSAIL. A single sequence was recorded for each environ-
ment, and we divide each sequence into five disjoint sub-
sequences with equal length, and label them 1 . . . 5.

For each of the dataset, we set h = 0.5, and we assumed
initially the entire environment to be in free space, i.e. µ0 =
0.5. r = 20m is selected as the communication range based
on the size of the environments. We used a grid size of 0.1 for
all agents in each dataset, and used the following parameters
for the Gaussian Process: c = 1.0, l = 0.1, σ = 0.1. In
addition, we bound the max size of pseudo-points in each
Quadtree leaf node to be 50 for efficient insertion and update
of the pseudo-points. In Figure 5, we show the TSDF map of
the central estimator and agent 3 on MIT CSAIL, as well as
the estimated error with respect to the centralized estimator.
We refer the readers to Appendix I in [28] for a complete list
of our results of the agents, as well as on the other datasets.

B. NCLT Dataset

The North Campus Long Term Dataset [1] is a large-scale
dataset both spatially and temporally. It covers roughly a
square kilometer, includes challenging weather conditions
and moving objects, and is collected over the time span of
serveral months. The dataset provides 2D and 3D Lidar scans
of the robot, camera images, odometry readings, as well as
GPS positions of the robot. In our evaluation, we used the

(A) Centralized Estimator (B) Agent 3

(C) RMSE (D) Number of Pseudo-Points

Fig. 5: TSDF map and metrics for the MIT-CSAIL dataset
from the Radish repository [27]. As the robots explore new
parts of the environment, the centralized estimator accumu-
lates more information than the individual robots because
some newly acquired information is not passed to all robots
instantaneously. Hence, the RMSE goes up for some periods
of time. However, over the long-term run as information
propagates throughout the network the RMSE decreases.

GPS readings as the robot’s trajectory, and 2D Lidar scans as
observations. We selected 10 sequences from different dates
where a different trajectory and observations are collected.
For the Gaussian Process, the following GP parameters are
used: σ = 0.1, c = 1.0, l = 0.2. A grid size of 0.25 is used
as the space covered is large-scale. We use 5 meters as the
truncation value for TSDF, i.e. µ0 = h = 5.

We show the TSDF estimates of the centralized estimator,
and agent 1 and 10 in Fig. 4. The RMSE and number
of pseudo-points are shown in Fig. 6, with communication
range of 100m. The results for the rest of the agents are
similar, and are included in Appendix II in [28]. When the
robots are in isolated environments, the error with respect
to the centralized estimator stagnated. However, when the
robots are within communication range and exchange infor-
mation, the pseudo-point statistics are exchanged, and the
number of pseudo-points increase sharply, while the error



(A) RMSE (B) Number of Pseudo-Points

Fig. 6: Metrics over time for the NCLT dataset [1].

TABLE I: Distributed TSDF mapping performance for dif-
ferent communication range values. Each table entry shows
the mean and standard deviation computed over the 10 agents
at the end of the run on the NCLT dataset.

Range (m) RMSE (m) # Pseudo-points # Leaves
50 1.65± 0.17 627684± 26247 31372± 1036

100 0.74± 0.09 712459± 4777 34837± 166
200 0.10± 0.02 719725± 22 35056± 3.56

drops sharply at these rendezvous. During some parts of the
run the RMSE increases because the robot team continues
to explore the environment, and may not have neighbors to
exchange information. However, over the time-span T the
TSDF estimate of each individual agent continues getting
closer to that of the centralized estimator asymptotically.

In Table I, we show the statistics corresponding to different
values of r. Larger value of r corresponds to larger commu-
nication range, and hence higher likelihood a larger subset
of agents to exchange information with at each time t. As r
increases, the mean and std of the RMSE both decrease at
the end of the run. The number of pseudo-points and number
of leaves both increase, as each robot has received more
pseudo-points from a larger number of robots.

V. CONCLUSION

We developed a distributed, probabilistic, online and ef-
ficient algorithm for TSDF mapping using a robot team
with time-varying communication. We provided a theoretical
guarantee that the TSDF probability distributions maintained
by individual agents converge to a common distribution,
exactly equal to that obtained by centralized estimation.
Our approach showed excellent performance in large-scale
evaluation on two real-world datasets. Future work will
consider incorporating robot pose estimation to achieve a
fully distributed multi-agent SLAM algorithm. We also plan
to utilize the covariance of the GP estimates for down-stream
tasks, such as collision avoidance and motion planning.
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