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Abstract— Adaptive control is a critical component of
reliable robot autonomy in rapidly changing operational
conditions. Adaptive control designs benefit from a dis-
turbance model, which is often unavailable in practice.
This motivates the use of machine learning techniques to
learn disturbance features from training data offline, which
can subsequently be employed to compensate the distur-
bances online. This paper develops geometric adaptive
control with a learned disturbance model for rigid-body sys-
tems, such as ground, aerial, and underwater vehicles, that
satisfy Hamilton’s equations of motion over the SE(3) man-
ifold. Our design consists of an offline disturbance model
identification stage, using a Hamiltonian-based neural or-
dinary differential equation (ODE) network trained from
state-control trajectory data, and an online adaptive con-
trol stage, estimating and compensating the disturbances
based on geometric tracking errors. We demonstrate our
adaptive geometric controller in trajectory tracking sim-
ulations of fully-actuated pendulum and under-actuated
quadrotor systems.

Index Terms— Adaptive control, Identification for control,
Machine learning.

I. INTRODUCTION

AUTONOMOUS mobile robots assisting in transportation,
search and rescue, and environmental monitoring ap-

plications face complex and dynamic operational conditions.
Ensuring safe operation depends on the availability of accu-
rate system dynamics models, which can be obtained using
system identification [1] or machine learning techniques [2]–
[5]. When disturbances and system changes during online
operation bring about new out-of-distribution data, it is often
too slow to re-train the nominal dynamics model to support
real-time adaptation to environment changes. Instead, adaptive
control [6], [7] offers efficient tools to estimate and compen-
sate for disturbances and parameter variations online.

A key technical challenge in adaptive control is the design
of an adaptation law that estimates the disturbance online [6].
The disturbance can be non-parametric [8]–[12] or parametric
[13]–[16], e.g. a linear combinations of known nonlinear
features, and is updated based on the state errors with stability
obtained by sliding-mode theory [13]–[15], assuming zero-
state detectability [15], [16] or L1-adaptation [8]–[10]. If the
system evolves on a manifold (e.g., when the state contains
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orientation), an adaptation law is designed based on geometric
errors, derived from the manifold constraints [17], [18]. A
disturbance observer [11], [12] use the state errors introduced
by the disturbances to design an asymptotically stable observer
system that estimates the disturbance online. A disturbance
adaptation law is paired with a nominal controller, derived
using Lagrangian dynamics with feedback linearization [13],
[19], Hamiltonian dynamics with energy shaping [15], [20],
or model predictive control [10], [21].

Recently, there has been growing interest in applying ma-
chine learning techniques to design adaptive controllers. As
the nonlinear disturbance features are actually unknown in
practice, they can be estimated using Gaussian processes [9],
[22] or neural networks [23], [24]. The features can be learned
online in the control loop [9], [23], which is potentially slow
for real-time operation, or offline via meta-learning from past
state-control trajectories [25] or system dynamics simulation
[24]. Given the learned disturbance features, an adaptation law
is designed to estimate the disturbances online, e.g. using L1-
adaptation [9] or by updating the last layer of the feature neural
network [23], [24], [26].

This paper develops data-driven adaptive control for rigid-
body systems, such as unmanned ground vehicles (UGVs),
unmanned aerial vehicles (UAVs), or unmanned underwater
vehicles (UUVs), that satisfy Hamilton’s equations of motion
on position and orientation manifold SE(3). While adaptation
laws have been developed to work with non-parametric uncer-
tainties in the related work, we consider linearly parameterized
disturbances, i.e. linear combinations of unknown nonlinear
features. While recent techniques for disturbance feature learn-
ing and data-driven adaptive control are restricted to systems
whose states evolve in Euclidean space, a unique aspect of
our adaptive control design is the consideration of geometric
tracking errors on the SE(3) manifold. Compared to existing
SE(3) geometric adaptive controllers specifically designed for
quadrotors with a known disturbance model [17], [18], we
develop a general adaptation law that can be used for any
rigid-body robot, such as a UGV, UAV, or UUV, and learn
disturbance features from trajectory data instead of assuming
a known model. Specifically, given a dataset of state-control
trajectories with different disturbance realizations, we learn
nonlinear disturbance features using a Hamiltonian-based neu-
ral ODE network [5], where the disturbances are represented
by neural networks, connected in an architecture that respects
the Hamiltonian dynamics. We develop a geometric adaptation
law to estimate the disturbances online and compensate them
by a nonlinear energy-shaping tracking controller.



In summary, our contribution is a learning-based adaptive
geometric control for SE(3) Hamiltonian dynamics that
• learns disturbance features offline from state-control tra-

jectories using an SE(3) Hamiltonian-based neural ODE
network, and

• employs energy-based tracking control with adaptive
disturbance compensation online based on the learned
disturbance model and the geometric tracking errors.

We verify our approach using simulated fully-actuated pen-
dulum and under-actuated quadrotor systems, and compare
with a disturbance observer method to highlight the benefit
of learning disturbance features from data.

II. PROBLEM STATEMENT

Consider a system modeled as a single rigid body with
position p ∈ R3, orientation R ∈ SO(3), body-frame linear
velocity v ∈ R3, and body-frame angular velocity ω ∈ R3.
Let q = [p> r>1 r>2 r>3 ]> ∈ SE(3) be the generalized
coordinates, where r1, r2, r3 are the rows of the rotation
matrix R. Let ζ = [v> ω>]> ∈ R6 be the generalized
velocity. The generalized momentum of the system is defined
as p = M(q)ζ ∈ R6, where M(q) ∈ R6×6 is the generalized
mass matrix. The state is defined as x = (q, p) and its
evolution is governed by the system dynamics:

ẋ = f(x,u,d), (1)

where u is the control input and d is a disturbance signal. The
disturbance d is modeled as a linear combination of nonlinear
features W(x) ∈ R6×p:

d(t) = W(x(t))a∗, (2)

where a∗ ∈ Rp are unknown feature weights.
A mechanical system obeys Hamilton’s equations of motion

[27, Chapter 7]. The Hamiltonian, H(q, p) = T (q, p) + V (q),
captures the total energy of the system as the sum of the kinetic
energy T (q, p) = 1

2p
>M(q)−1p and the potential energy

V (q). The dynamics in (1) are determined by the Hamiltonian
and re-formulated as a port-Hamiltonian system [5], [28]:[

q̇
ṗ

]
=

[
0 q×

−q×> p×

][∂H
∂q
∂H
∂p

]
+

[
0

g(q)

]
u +

[
0
d

]
, (3)

where g(q) is the input gain and the disturbance d appears as
an external force applied to the system. The operators q× and
p× are defined as:

q× =

[
R> 0 0 0
0 r̂>1 r̂>2 r̂>3

]>
, p× =

[
pv
pω

]×
=

[
0 p̂v
p̂v p̂ω

]
,

where the hat map (̂·) : R3 7→ so(3) constructs a skew-
symmetric matrix from a 3D vector. Note that the equation
q̇ = q× ∂H∂q in (3) exactly specifies the SE(3) kinematics,
ṗ = Rv and Ṙ = Rω̂, with the rotation part written row-by-
row.

Consider a collection D = {D1,D2, . . . ,DM} of system
state transitions Dj , each obtained under a different unknown
disturbance realization a∗j , for j = 1, . . . ,M . Each Dj =

{x(ij)
0 ,u(ij),x

(ij)
f , τ (ij)}Dj

i=1 consists of Dj state transitions,

each obtained by applying a constant control input u(ij) to
the system with initial condition x

(ij)
0 and sampling the state

x
(ij)
f := x(ij)(τ (ij)) at time τ (ij). Our objective is to approx-

imate the disturbance model in (2) by d̄θ(t) = Wθ(x(t))aj ,
where θ parameterizes the shared disturbance features and the
parameters {aj}Mj=1 model each disturbance realization. To
optimize θ, {aj}, we predict the dynamics evolution starting
from state x

(ij)
0 with control u(ij) and minimize the distance

between the predicted state x̄
(ij)
f and the true state x

(ij)
f from

Dj , for j = 1, . . . ,M . Since the approximated disturbance d̄θ
does not change if the features Wθ and the coefficients aj
are scaled by constants γ and 1/γ, respectively, we add the
norms of Wθ(x

(ij)
0 ) and {aj}Mj=1 to the objective function as

regularization terms.

Problem 1. Given D = {{x(ij)
0 ,u(ij),x

(ij)
f , τ (ij)}Dj

i=1}Mj=1,
find disturbance parameters θ, {aj}Mj=1 that minimize:

min
θ,{aj}

M∑
j=1

Dj∑
i=1

`(x
(ij)
f , x̄

(ij)
f )+

λθ

M∑
j=1

Dj∑
i=1

‖Wθ(x
(ij)
0 )‖2 + λa

M∑
j=1

‖aj‖2

s.t. ˙̄x(ij)(t) = f(x̄(ij)(t),u(ij), d̄
(ij)
θ (t)), (4)

d̄
(ij)
θ (t) = Wθ(x̄(ij)(t))aj ,

x̄(ij)(0) = x
(ij)
0 , x̄

(ij)
f = x̄(ij)(τ (ij)),

∀i = 1, . . . , Dj , ∀j = 1, . . . ,M,

where ` is a distance metric on the state space.

After the offline disturbance feature identification in Prob-
lem 1, we design a controller u = π(x,x∗,a;θ) that
tracks a desired state trajectory x∗(t), using the dynamics
f and the learned disturbance model Wθ(x). To handle a
disturbance signal d(t) = Wθ(x(t))a∗ with an unknown
realization a∗, we augment the tracking controller with an
adaptation law ȧ = ρ(x,x∗,a;θ), estimating a∗ online, so
that lim supt→∞ `(x(t),x∗(t)) is bounded.

III. TECHNICAL APPROACH

We present our approach in two stages: disturbance feature
learning to solve Problem 1 (Sec. III-A) and geometric adap-
tive control design for trajectory tracking (Sec. III-B).

A. SE(3) Hamiltonian-based disturbance feature learning

To address Problem 1, we use a neural ODE network
[29] whose structure respects Hamilton’s equations in (3)
with known generalized mass M(q), potential energy V (q)
and the input gain g(q). We introduce a disturbance model,
d = Wθ(q, p)a, where Wθ(q, p) is a neural network, and
estimate its parameters θ from disturbance-corrupted data.
The training data Dj = {x(ij)

0 ,u(ij),x
(ij)
f , τ (ij)}Dj

i=1 may be
obtained using an odometry algorithm [30] or a motion capture
system. The data collection can be performed using an existing
baseline controller or a human operator manually controlling



the system under different disturbance conditions (e.g., wind,
ground effect, etc. for a UAV).

We define the geometric distance metric ` in Problem 1 as
a sum of position, orientation, and momentum errors:

`(x, x̄) = `p(x, x̄) + `R(x, x̄) + `p(x, x̄), (5)

where `p(x, x̄) = ‖p − p̄‖22, `p(x, x̄) = ‖p − p̄‖22,
`R(x, x̄) = ‖

(
log(R̄R>)

)∨ ‖22, log : SE(3) 7→ so(3) is the
inverse of the exponential map, associating a rotation matrix
to a skew-symmetric matrix, and (·)∨ : so(3) 7→ R3 is the
inverse of the hat map (̂·). Let L(θ, {aj};D) be the total loss
in Problem 1. To calculate the loss, for each dataset Dj with
disturbance d̄

(ij)
θ (t) = Wθ(x̄(ij)(t))aj , we solve an ODE:

˙̄x(ij) = f(x̄(ij),u(ij), d̄
(ij)
θ ), x̄(ij)(0) = x

(ij)
0 , (6)

using an ODE solver. This generates a predicted state x̄
(ij)
f at

time τ (ij) for each i = 1, . . . , Dj and j = 1, . . . ,M :

x̄
(ij)
f = ODESolver

(
x

(ij)
0 , f , τ (ij);θ

)
, (7)

sufficient to compute L(θ, {aj};D). The parameters θ and
{aj} are updated using gradient descent by back-propagating
the loss through the neural ODE solver using adjoint states
y = ∂L

∂x̄ [29]. An augmented state s =
(
x̄,y, ∂L∂θ ,

{
∂L
∂aj

})
satisfies ṡ = fs =

(
f ,−y> ∂f∂x̄ ,−y> ∂f∂θ ,

{
−y> ∂f

∂aj

})
. The

gradients ∂L
∂θ and

{
∂L
∂aj

}
are obtained by a call to a reverse-

time ODE solver starting from sf = sf (τ (ij)) [29]:

s0 =

(
x̄0,a0,

∂L
∂θ

,

{
∂L
∂aj

})
= ODESolver(sf , fs, τ (ij)). (8)

B. Data-driven geometric adaptive control
Given the learned disturbance model Wθ(x) and a desired

trajectory x∗(t), we develop a trajectory tracking controller
u = π(x,x∗,a;θ) that compensates for disturbances and
an adaptation law ȧ = ρ(x,x∗,a;θ) that estimates the
disturbance realization online.

Our tracking controller for the Hamiltonian dynamics in (3)
is developed using interconnection and damping assignment
passivity-based control (IDA-PBC) [31]. Consider a desired
pose-velocity trajectory (q∗(t), ζ∗(t)). Since the momentum
p is defined in the body inertial frame, the desired momen-
tum p∗(t) should be computed by transforming the desired
velocity ζ∗ = [v∗> ω∗>]> to the body frame as p∗ =

M(q)

[
R>R∗v∗

R>R∗ω∗

]
. The Hamiltonian of the system (3) is not

necessarily minimized along x∗(t) = (q∗(t), p∗(t)). The key
idea of an IDA-PBC design is to choose the control input
u(t) so that the closed-loop system has a desired Hamiltonian
Hd(q, p), which is minimized along x∗(t). Using quadratic
errors in the position, orientation, and momentum, we design
the desired Hamiltonian:

Hd(q, p) =
1

2
kp(p− p∗)>(p− p∗) (9)

+
1

2
kR tr(I−R∗>R) +

1

2
(p− p∗)>M−1(q)(p− p∗),

where kp and kR are positive gains. We solve a set of matching
conditions, described in [5], [31], between the original dynam-
ics (3) with Hamiltonian H(q, p) and the desired dynamics
with Hamiltonian Hd(q, p) in (9) to arrive at a tracking
controller u = π(x,x∗,a;θ). The controller consists of an
energy-shaping term uES , a damping-injection term uDI , and
a disturbance compensation term uDC :

uES = g†(q)

(
q×>

∂V

∂q
− p×M−1(q)p− e(q, q∗) + ṗ∗

)
,

uDI = −Kdg†(q)M−1(q)(p− p∗), (10)

uDC = −g†(q)W(q, p)a,

where g†(q) =
(
g>(q)g(q)

)−1
g>(q) is the pseudo-inverse

of g(q) and Kd = diag(kvI, kωI) is a damping gain with
positive terms kv, kω . The controller utilizes a generalized
coordinate error between q and q∗:

e(q, q∗) =

[
ep(q, q∗)
eR(q, q∗)

]
=

[
kpR>(p− p∗)

1
2kR

(
R∗>R−R>R∗

)∨] (11)

and a generalized momentum error pe = p− p∗:

pe = M(q)

[
ev(x,x∗)
eω(x,x∗)

]
= M(q)

[
v −R>R∗v∗

ω −R>R∗ω∗

]
. (12)

Please refer to [5] for a detailed derivation of uES and uDI .
The disturbance compensation term uDC in (10) requires

online estimation of the disturbance feature weights a. Inspired
by [17], we design an adaptation law which utilizes the
geometric errors (11), (12) to update the weights a:

ȧ = ρ(x,x∗,a;θ)

= W>
θ (q, p)

[
cpep(q, q∗) + cvev(x,x∗)
cReR(q, q∗) + cωeω(x,x∗)

]
,

(13)

where cp, cv, cR, cω are positive coefficients. The stability
of our adaptive controller (π,ρ) is shown in Theorem 1,
under the assumption that the learned disturbance features Wθ

converge to the true ones W(q, p) after the training process.

Theorem 1. Consider the Hamiltonian dynamics in (3) with
disturbance model in (2). Suppose that the parameters g(q),
M(q), V (q) and W(q, p) are known but the disturbance
feature weights a∗ are unknown. Let x∗(t) be a desired
state trajectory with bounded angular velocity, ‖ω∗(t)‖ ≤ γ.
Assume that the initial system state lies in the domain T =
{x ∈ T ∗SE(3) | Ψ(R,R∗) < α < 2, ‖eω(x,x∗)‖ < β} for
some positive constants α and β, where Ψ(R,R∗) = 1

2 tr(I−
R∗>R). Consider the tracking controller in (10) with adapta-
tion law in (13). Then, there exist positive constants kp, kR,
kv, kω , cp = cR = c1, cv = cω = c2 such that the tracking
errors e(q, q∗) and pe defined in (11) and (12) converge to
zero. Also, the estimation error ea = a − a∗ is stable in the
sense of Lyapunov and uniformly bounded. An estimate of the
region of attraction is R = {x ∈ T | V(x) ≤ δ}, where:

V(q, p) = Hd(q, p) +
c1
c2

e>pe +
1

2c2
‖ea‖22 (14)

and δ < λmin(Q1) min(α(2− α)k2
R, β

2λ2
min(M(q)))/2 for

Q1 =

[
min

{
k−1
p , k−1

R

}
−c1/c2

−c1/c2 λmin(M−1(q))

]
. (15)



0 2 4 6 8 10
t(s)

−0.8

−0.6

−0.4

−0.2

0.0

zero

ϕ− ϕ∗ (no adaptation)

ϕ− ϕ∗ (our adaptation)

ϕ− ϕ∗ (disturbance observer)

(a)

0 2 4 6 8 10
t(s)

−0.6

−0.4

−0.2

0.0

0.2

zero

ϕ̇− ϕ̇∗ (no adaptation)

ϕ̇− ϕ̇∗ (our adaptation)

ϕ̇− ϕ̇∗ (disturbance observer)

(b)

0 2 4 6 8 10
t(s)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
d− dgt (our adaptation)

d− dgt (disturbance observer)

zero

(c)

Fig. 1: Comparison of our learned adaptive controller and a disturbance observer method on a pendulum: (a) the angle error ϕ − ϕ∗; (b)
velocity error ϕ̇− ϕ̇∗; and (c) the disturbance error d− dgt with the ground-truth disturbance dgt = −2.5ϕ̇.

Proof. We drop function parameters to simplify the notation.
The derivative of the generalized coordinate error satisfies:

ė =

[
ėp

ėR

]
=

[
−ω̂ep + kpev

kRE(R,R∗)eω

]
= −

[
ω̂ 0
0 0

]
e +

[
kpI 0
0 kRE(R,R∗)

]
M−1pe,

(16)

where E(R,R∗) = 1
2

(
tr(R>R∗)I−R>R∗

)
satisfies

‖E(R,R∗)‖ ≤ 1. By construction of the IDA-PBC controller
[5]:

ṗe = −e−KdM
−1pe −Wea. (17)

Consider the adaptation law ȧ = c1W
>e + c2W

>M−1pe in
(13) with c1 = cp = cR and c2 = cv = cω . In the domain
T , Ψ(R,R∗) < α < 2 and k−2

R

2 ‖eR‖22 ≤ Ψ(R,R∗) ≤
k−2
R

2−α‖eR‖22 by [17, Prop. 1]. For z := [‖e‖ ‖pe‖]> ∈ R2,
the Lyapunov function candidate V in (14) is bounded as:

1

2
z>Q1z +

1

2c2
‖ea‖22 ≤ V ≤

1

2
z>Q2z +

1

2c2
‖ea‖22, (18)

where the matrix Q1 is specified in (15) and Q2 is:

Q2 =

[
max

{
k−1
p ,

2k−1
R

2−α

}
c1/c2

c1/c2 λmax(M−1)

]
. (19)

The time derivative of the Lyapunov candidate satisfies:

V̇ = p>e M−1ṗe + e>M−1pe +
c1e
>ṗe
c2

+
c1ė
>pe
c2

+
e>a ȧ

c2

= −p>e M−1KdM−1pe −
c1
c2

e>e

− c1
c2

e>KdM−1pe +
c1
c2

e>
[
êω 0
0 0

]
pe

+
c1
c2

e>
[
R>R∗ω̂∗R∗>R 0

0 0

]
pe

+
c1
c2

p>e M−1

[
kpI 0
0 kRE(R,R∗)

]
pe,

where we use (16), (17), and that ω = eω + R>R∗ω∗ by
definition of eω . Hence, in the domain T , we have:

d

dt
V ≤ −z>Q3z = −z>

[
q1 q2

q2 q3

]
z, (20)

where q1 = c1
c2

, q2 = − c1c2
(
λmax(KdM−1) + β + γ

)
, and

q3 = λmin(M−1KdM−1)− c1
c2

max {kp, kR}λmax(M−1).
Since Kd = diag(kvI, kωI) can be chosen arbitrarily large

and c1/c2 can be chosen arbitrarily small, there exists a

TABLE I: Tracking errors and disturbance estimation error per
time step (mean ± standard deviation) with our adaptive controller,
with disturbance observer (DOB), and without adaptation for 100
experiments of 10-second pendulum angle tracking.

Approach No adaptation Our adaptation DOB
Angle error 0.35± 0.14 0.04 ± 0.02 0.08± 0.02
Disturbance error 0.67± 0.27 0.06 ± 0.03 0.10± 0.04

choice of constants that ensures that the matrices Q1, Q2,
and Q3 are positive definite. Consider the sub-level set of
the Lyapunov function R = {x ∈ T |V(x) ≤ δ} where
δ < λmin(Q1) min(α(2−α)k2

R, β
2λ2

min(M))/2. For x0 ∈ R,
we have Ψ(R,R∗) ≤ k−2

R ‖eR‖22
(2−α) ≤ 2δk−2

R

(2−α)λmin(Q1) < α, and
‖eω(x,x∗)‖2 ≤ 2δ

λmin(Q1)λ2
min(M)

≤ β2 for all x(t), t > 0, i.e.,
dV/dt ≤ 0 for all t > 0 and R is a positively invariant set.
Therefore, for any system trajectory starting in R, the tracking
errors e, pe are asymptotically stable, while the estimation
error ea is stable and uniformly bounded, by the LaSalle-
Yoshizawa theorem [6, Thm. A.8].

IV. EVALUATION

We evaluate our data-driven geometric adaptive controller
on a fully-actuated pendulum and under-actuated quadrotor.

A. Pendulum
Consider a pendulum with angle ϕ, scalar control input u,

and dynamics mϕ̈ = −5 sinϕ + u + d, where the mass is
m = 1/3, the potential energy is V (ϕ) = 5(1 − cosϕ), the
input gain is g(ϕ) = 1, and the disturbance d = −µϕ̇ models a
friction force with unknown friction coefficient µ. To illustrate
our approach, we consider ϕ as a yaw angle specifying a rota-
tion R around the z axis, with angular velocity ω = [0, 0, ϕ̇].
We remove the position p and linear velocity v terms from
Hamilton’s equations in (3) to obtain the pendulum dynamics.

To learn the disturbance features, we consider M = 11 real-
izations of the disturbance dj = −µjϕ̇ with friction coefficient
µj = 0.05(j − 1) ∈ [0, 0.5] for j = 1, . . . ,M . For each value
µj , we collect transitions Dj = {x(ij)

0 ,u(ij),x
(ij)
f , τ (ij)}1024

i=1

by applying 1024 random control inputs to the pendulum for
a time interval of τ (ij) = 0.01 s. We train the disturbance
model (Sec. III-A) for 4000 iterations with learning rate 10−4.

We verify our adaptive controller (π,ρ) in Sec. III-B with
the task of tracking a desired angle ϕ∗(t) = πt/5 + πt2/50.
We simplify the controller π in (10) and the adaptation
law ρ in (13) by removing the position and linear velocity
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Fig. 2: Tracking spiral and diamond-shaped trajectories with a PyBullet Crazyflie quadrotor [32] under an external wind
dw = [0.075 0.075 0] and two rotors turning defective from the beginning (scenario 1) and after 8s (scenario 2) both with
(δ1, δ2) = (80%, 80%): (a) robot states in scenario 1, (b) tracking errors in scenario 1, (c) tracking errors in scenario 2.
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Fig. 3: Tracking visualization for scenarios 1 (left) and 2 (right).

components. The controller gains are: kR = 1, kd = 2,
cR = 75, cω = 10. We compare our approach with a
disturbance observer method [11], [12] for the pendulum. As
the disturbance features in (2) are unknown, we design an
observer to estimate d online. Let z be the observer state with
dynamics mż = −l(ϕ̇)z − l(ϕ̇) (r(ϕ̇)− 5 sin(ϕ) + u), where
l(ϕ̇) = ∂r(ϕ̇)

∂ϕ̇ for some function r(ϕ̇). The disturbance d is
estimated as d̂ = z + r(ϕ̇). The disturbance estimation error
is ed = d̂ − d satisfying ėd = ż + ∂r(ϕ̇)

∂ϕ̇ ϕ̈ = −l(ϕ̇)ed/m.
We choose r(ϕ̇) = ϕ̇ so that the disturbance estimation errors
converges to 0 asymptotically. While it is hard to provide a
fair comparison between controllers, e.g. different control gain
tuning, we try our best to match the experiment settings. For
example, we use the same tracking controller π in (10) to
compensate the estimated disturbance.

We run the experiments 100 times with a friction coefficient
µ uniformly sampled from the range [0.5, 3]. Table I shows the
angle tracking errors and the disturbance estimation errors with
our adaptive controller, with the disturbance observer (DOB),
and without adaptation. Our adaptive controller achieves better
tracking error and disturbance estimation error than the DOB
approach. Fig. 1 plots the tracking errors and disturbance esti-
mation error with µ = 2.5, showing that we achieve the desired
angle ϕ∗(t) and are able to converge to the state-dependent
ground-truth disturbance dgt = −2.5ϕ̇. Without knowing the
disturbance features, the DOB method lags behind the changes
in ground-truth disturbances caused by the velocity ϕ̇. This

TABLE II: Tracking errors per time step (mean ± standard deviation)
for 100 experiments of quadrotor trajectory tracking.

Experiments Diamond-shaped Spiral
Scenario 1 (without adaptation) 0.71± 0.15 0.55± 0.13
Scenario 1 (with adaptation) 0.12 ± 0.02 0.13 ± 0.01
Scenario 2 (without adaptation) 0.62± 0.13 0.64± 0.10
Scenario 2 (with adaptation) 0.12 ± 0.02 0.16 ± 0.02

illustrates the benefit of our approach – the learned disturbance
features improve the performance of the adaptive controller.

B. Crazyflie Quadrotor
Next, we consider a Crazyflie quadrotor, simulated using

the PyBullet physics engine [32], with control input u = [f, τ ]
including the thrust f ∈ R≥0 and torque τ ∈ R3 generated by
the 4 rotors. The mass of the quadrotor is m = 0.027 kg and
the inertia matrix is J = 10−5 diag([1.4, 1.4, 2.2]), leading to
the generalized mass matrix M(q) = diag(mI,J). The poten-
tial energy is V (q) = mg

[
0 0 1

]
p with g ≈ 9.8 ms−2,

where p is the position of the quadrotor. We consider distur-
bances from three sources: 1) horizontal wind, simulated as
an external force dw =

[
wx wy 0

]> ∈ R3 in the world
frame, i.e., R>dw in the body frame; 2) two defective rotors
1 and 2, generating δ1 and δ2 percents of the nominal thrust,
respectively; and 3) near-ground, drag, and downwash effects
in the PyBullet simulated quadrotor.

As described in Sec. III-A, we learn the disturbance features
Wθ(q, p) from a dataset D of transitions using a Hamiltonian-
based neural ODE network. We collect a dataset D = {Dj}Mj=1

with M = 8 realizations of the disturbances dwj , δ1j ,
and δ2j . Specifically, the wind components wxj , wyj are
chosen from the set {±0.025,±0.05}, while the values of
δ1j and δ2j are sampled from the range [94%, 98%]. For
each disturbance realization, a PID controller provided by
[32] is used to drive the quadrotor from a random start-
ing point to 9 different desired poses, providing transitions
Dj = {x(ij)

0 ,u(ij),x
(ij)
f , τ (ij)}1080

i=1 with τ (ij) = 1/240 s.
We verify our geometric adaptive controller with learned

disturbance features by having the quadrotor track pre-defined
trajectories in the presence of the aforementioned disturbances.



The desired trajectory is specified by the desired position p∗(t)
and the desired heading ψ∗(t). We construct an appropriate
choice of R∗ and ω∗ from ψ∗(t), as described in [5], [17], to
be used with the adaptive controller. The tracking controller
in (10) with gains kp = 0.135, kv = 0.0675, kR = 1.0,
and kω = 0.08, is used to obtain the control input u that
compensates for the disturbances. The disturbances d are
estimated by updating the weights a using the adaptation law
(13) with gains cp = cR = 0.08, cv = cω = 0.04.

We test the controller with wind dw, rotors 1 and 2 that
become defective from the beginning (scenario 1) or during
flight at t = 8 s (scenario 2), and near-ground, drag, and
downwash effects enabled in PyBullet. We track diamond-
shaped and spiral trajectories 100 times with wx and wy uni-
formly sampled from [0, 0.075] and δ1 and δ2 drawn uniformly
from [80%, 99%]. Table II shows the mean and standard
deviation of the tracking errors with and without adaptation
from the 100 flights. The errors with adaptation are ∼ 5 times
lower than without adaptation, illustrating the benefit of our
adaptive control design. For dw =

[
0.075 0.075 0

]
and

(δ1, δ2) = (80%, 80%), the quadrotor in scenario 1 without
adaptation drifts while our adaptive controller estimates the
disturbances online after a few seconds and successfully tracks
the trajectory as seen in Fig. 2a, 2b and 3 (left). For the same
wind, the quadrotor in scenario 2 with our controller starts to
track the trajectory, then drops down at t = 8 s, due to the
rotors becoming defective, but recovers as our adaptation law
updates the disturbances accordingly, as seen in Fig. 2c and
3 (right). The velocity error spikes in Fig. 2c are caused by
sharp turns in the diamond-shaped trajectory and the defective
rotors at t = 8 s. Without adaptation, the quadrotor drops to
the ground at t ≈ 12.5 s, shown in Fig. 3 (right). In Fig. 2 and
3, the tracking errors with adaptation stabilize close to but not
exactly 0 because of the disturbance feature approximation
gap between Wθ(q, p) and W(q, p), and the control input
discretization in time.

V. CONCLUSION

This paper introduced a neural ODE network for distur-
bance feature learning using disturbance-corrupted trajectory
data from a rigid-body system with Hamiltonian dynamics.
To enable trajectory tracking with online disturbance com-
pensation, we designed a passivity-based tracking controller
and augmented it with an adaptation law that compensates
disturbances relying on the learned features and geometric
tracking errors. Our evaluation showed that our adaptive con-
troller quickly estimates disturbances online and successfully
tracks desired trajectories, outperforming adaptation methods
without learned disturbance features. Future work will focus
on deploying the proposed controller on real robot systems.
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