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Abstract— This paper focuses on real-time occupancy map-
ping and collision checking onboard an autonomous robot
navigating in an unknown environment. We propose a new map
representation, in which occupied and free space are separated
by the decision boundary of a kernel perceptron classifier. We
develop an online training algorithm that maintains a very
sparse set of support vectors to represent obstacle boundaries
in configuration space. We also derive conditions that allow
complete (without sampling) collision-checking for piecewise-
linear and piecewise-polynomial robot trajectories. We demon-
strate the effectiveness of our mapping and collision checking
algorithms for autonomous navigation of an Ackermann-drive
robot in unknown environments.

I. INTRODUCTION

Autonomous navigation in robotics involves localization,

mapping, motion planning, and control in a partially known

environment perceived through streaming data from onboard

sensors [1], [2]. In this paper, we focus on the mapping prob-

lem and, specifically, on enabling large-scale, yet compact,

representations and efficient collision checking to support

autonomous navigation. Existing work uses a variety of map

representations based on voxels [3], [4], [5], [6], surfels [7],

geometric primitives [8], objects [9], etc. We propose a novel

mapping method that uses a kernel perceptron model to

represent the occupied and free space of the environment.

The model uses a set of support vectors to represent obstacle

boundaries in configuration space. The complexity of this

representation scales with the complexity of the obstacle

boundaries rather than the environment size. We develop an

online training algorithm to update the support vectors in-

crementally as new depth observations of the local surround-

ings are provided by the robot’s sensors. To enable motion

planning in the new occupancy representation, we develop

an efficient collision checking algorithm for piecewise-linear

and piecewise-polynomial trajectories in configuration space.

Related Work. Occupancy grid mapping is a commonly

used approach for modeling the free and occupied space of

an environment. The space is discretized into a collection

of cells, whose occupancy probabilities are estimated on-

line using the robot’s sensory data. While early work [3]

assumes that the cells are independent, Gaussian process

(GP) occupancy mapping [10], [11], [12] uses a kernel

function to capture the correlation among grid cells and

predict the occupancy of unobserved cells. Online training
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of a Gaussian process model, however, does not scale well

as its computational complexity grows cubically with the

number of data points. Ramos et al. [13] improve on this

by projecting the data points into Hilbert space and training

a logistic regression model. Lopez and How [14] propose an

efficient determinstic alternative, which builds a k-d tree from

point clouds and queries the nearest obstacles for collision

checking. Using spatial partitioning similar to a k-d tree,

octree-based maps [4], [15] offer efficient map storage by

performing octree compression. Meanwhile, AtomMap [16]

stores a collection of spheres in a k-d tree as a way to avoid

grid cell discretization of the map.

Navigation in an unknown environment, requires the safety

of potential robot trajectory to be evaluated through a huge

amount of collision checks with respect to the map repre-

sentation [17], [18], [19]. Many works rely on sampling-

based collision checking, simplifying the safety verification

of continuous-time trajectories by evaluating only a finite

set of samples along the trajectory [20], [18]. This may

be undesirable in safety critical applications. Bialkowski et

al. [17] propose an efficient collision checking method using

safety certificates with respect to the nearest obstacles. Using

a different perspective, learning-based collision checking

methods [21], [22], [23], [24] sample data from the environ-

ment and train machine learning models to approximate the

obstacle boundaries. Pan et al. [22] propose an incremental

support vector machine model for pairs of obstacles but

train the models offline. Closely related to our work, Das

et al. [21], [25] develop an online training algorithm, called

Fastron, to train a kernel perceptron collision classifier. To

handle dynamic environments, Fastron actively resamples

the environment and updates the model globally. Geometry-

based collision checking methods, such as the Flexible Col-

lision Library (FCL) [26], are also related but rely on mesh

representations of the environment which may be inefficient

to generate from local observations.

Inspired by GP mapping techniques, we utilize a radial

basis function (RBF) kernel to capture occupancy corre-

lations but focus on a compact representation of obstacle

boundaries using kernel perceptron. Furthermore, motivated

by the safety certificates in [17], we derive our own safety

guarantees for efficient collision checking algorithms.

Contributions. This paper introduces a sparse kernel-

based mapping method that:

• represents continuous-space occupancy using a sparse

set of support vectors stored in an R∗-tree data struc-

ture, scaling efficiently with the complexity of obstacle

boundaries (Sec. IV),



• allows online map updates from streaming partial ob-

servations using our proposed incremental kernel per-

ceptron training built on the Fastron model (Sec. IV),

• provides efficient and complete (without sampling)

collision checking for piecewise-linear and piecewise-

polynomial trajectories with safety guarantees based on

nearest support vectors (Sec. V and VI).

II. PROBLEM FORMULATION

Consider a spherical robot with center s in a workspace

S := [0, 1]d and radius r ∈ R>0 navigating in an unknown

environment. Let Sobs and Sfree be the obstacle space and

free space in S , respectively. In configuration space (C-

space) C, the robot body becomes a point s, while the

obstacle space and free space are transformed as Cobs =
∪x∈Sobs

B(x, r), where B(x, r) = {x′ ∈ S : ‖x−x′‖2 ≤ r},

and Cfree = S \ Cobs. Assume that the robot position

stk ∈ C at time tk is known or provided by a localization

algorithm. Let stk+1
= f(stk ,ak) characterize the robot

dynamics for an action ak ∈ A. Applying ak at stk also

incurs a motion cost c(stk ,ak) (e.g., distance or energy). The

robot is equipped with a depth sensor that provides distance

measurements ztk to the obstacle space Sobs within its field

of view. Our objective is to construct an occupancy map

m̂tk : C → {−1, 1} of the C-space based on accumulated

observations zt0:k , where “-1” and “1” mean “free” and

“occupied”, respectively. Assuming unobserved regions are

free, we rely on m̂tk to plan a robot trajectory to a goal region

Cgoal ⊂ Cfree. As the robot is navigating, new sensor data is

used to update the map and recompute the motion plan. In

this online setting, the map update, m̂tk+1
= g(m̂tk , ztk), is

a function of the previous estimate m̂tk and the new data ztk .

Problem 1. Given a start state s0 ∈ Cfree and a goal region

Cgoal ⊂ Cfree, find a sequence of actions that leads the robot

to Cgoal safely, while minimizing the motion cost:

min
N,a0,...,aN

N−1
∑

k=0

c(stk ,ak) (1)

s.t. stk+1
= f(stk ,ak), m̂tk+1

= g(m̂tk , ztk),

stN ∈ Cgoal, m̂tk(stk) = −1, k = 0, . . . , N.

III. PRELIMINARIES

In this section, we provide a summary on kernel perceptron

and Fastron which is useful for our derivations in the next

sections. The kernel perceptron model is used to classify a

set of N labeled data points. For l = 1, . . . , N , a data point

xl with label yl ∈ {−1, 1} is assigned a weight αl ∈ R.

Training determines a set of M+ positive support vectors

and their weights Λ+ = {(xi, αi)} and a set of M− negative

support vectors and their weights Λ− = {(x−
j , α

−
j )}. The

decision boundary is represented by a score function,

F (x) =

M+

∑

i=1

α+
i k(x

+
i ,x)−

M−

∑

j=1

α−
j k(x

−
j ,x), (2)

where k(·, ·) is a kernel function and α−
j , α

+
i > 0. The sign

of F (x) is used to predict the class of a test point x.

Algorithm 1 Incremental Fastron Training with Local Data

Input: Sets Λ+ = {(x+

i , α+

i )} and Λ− = {(x−

j , α−

j )} of M+ positive

and M− negative support vectors stored in an R∗-tree; Local dataset
D = {(xl, yl)} generated from location st; ξ+, ξ− > 0; Nmax

Output: Updated Λ+,Λ−.
1: Get K+,K− nearest negative and positive support vectors.
2: for (xl, yl) in D do

3: Calculate Fl =
∑K+

i=1
α+

i k(x+

i ,xl)−
∑K−

j=1
α−

j k(x−

j ,xl)

4: for t = 1 to Nmax do

5: if ylFl > 0 ∀l then return Λ+,Λ− ⊲ Margin-based priotization

6: m = argminlylFl

7: if ym > 0 then ∆α = ξ+ym −Fm ⊲ One-step weight correction
8: else ∆α = ξ−ym − Fm

9: if ∃(xm, α+
m) ∈ Λ+ then α+

m+=∆α, Fl+=k(xl,xm)∆α, ∀l
10: else if ∃(xm, α−

m) ∈ Λ− then α−

m-=∆α, Fl-=k(xl,xm)∆α, ∀l
11: else if ym > 0 then α+

m = ∆α, Λ+ = Λ+ ∪ {(xm, α+
m)}

12: else α−

m = −∆α, Λ− = Λ− ∪ {(xm, α−

m)}

13: for (xl, yl) ∈ D do ⊲ Remove redundant support vectors

14: if ∃(xl, α
+

l
) ∈ Λ+ and yl(Fl − α+

l
) > 0 then

15: Λ+= Λ+\{(xl, α
+

l
)}, Fn-= k(xl,xn)α

+

l
, ∀(xn, ·) ∈ D

16: if ∃(xl, α
−

l
) ∈ Λ− and yl(Fl + α−

l
) > 0 then

17: Λ−= Λ− \{(xl, α
−

l
)}, Fn+= k(xl,xn)α

−

l
, ∀(xn, ·)∈ D

18: return Λ+,Λ−

Fastron [21], [25] is an efficient training algorithm

for the kernel perceptron model. It prioritizes updating

misclassified points based on their margins instead of

random selection as in the original kernel perceptron

training. Our previous work [21], [25] shows that if

αl = ξyl − (
∑

i 6=l α
+
i k(x

+
i ,xl) −

∑

j 6=l α
−
j k(x

−
j ,xl)) for

some ξ > 0, then xl is correctly classified with label yl.
Based on this fact, Fastron utilizes one-step weight correction

∆α = ξyl − (
∑

α+
i k(x

+
i ,xl)−

∑

α−
j k(x

−
j ,xl)) where

ξ = ξ+ if yl = 1 and ξ = ξ− if yl = −1.

IV. SPARSE KERNEL-BASED OCCUPANCY MAPPING

We propose a new version of the Fastron algorithm,

utilizing only local streaming data, to achieve real-time

sparse kernel-based occupancy mapping. For online learning,

Fastron resamples a global training dataset around the current

support vectors and updates the support vectors. In our

setting, only local data in the robot’s vicinity is available

from the onboard sensors. We propose an incremental version

of Fastron in Alg. 1 such that: 1) training is performed with

local data Dt generated from a depth measurement zt at a

time t and 2) the support vectors are stored in an R∗-tree data

structure, enabling efficient score function (2) computations.

Data Generation. Fig. 1a illustrates a lidar scan zt

obtained by the robot at time t. In configuration space, each

laser ray end point corresponds to a ball-shaped obstacle,

while the robot body becomes a point as shown in Fig. 1b.

To generate local training data Dt, the occupied and free

C-space areas observed by the lidar are sampled (e.g., on a

regular grid). As shown in Fig. 1c, this generates a set D̄t of

points with label “1” (occupied) in the ball-shaped occupied

areas and with label “-1” (free), outside. As unobserved areas

are assumed free, neighboring points to the occupied samples

in D̄t that are not already in D̄t or in the support vectors

are added to an augmented set D̃t with label “-1”. Adding

the neighboring points is enough to maintain good decision

boundaries for the obstacles. The augmented dataset D̃t is
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Fig. 1: Example of our mapping method: (a) scan in work space; (b) scan in C-space; (c) samples from scan; (d) augmented free points
(e) training data D from one lidar scan; (f) the exact decision boundary generated by the score F (x) and the inflated boundary generated
by the upper bound U(x); F (x) and U(x) along two rays: (g) one that enters the occupied space and (h) one that remains obstacle-free.

illustrated in Fig. 1d assuming the set of support vectors

is empty. The local data Dt = D̄t ∪ D̃t (Fig. 1e) is used

in our Incremental Fastron Algorithm to update the support

vectors (Fig. 1f). Storing the sets of support vectors Λ+,

Λ− over time requires significantly less memory than storing

the training data ∪tDt. The occupancy of a query point x

can be estimated from the support vectors by evaluating the

score function F (x) in Eq. (2). Specifically, m̂t(x) = −1 if

F (x) < 0 and m̂t(x) = 1 if F (x) ≥ 0. Fig. 1f illustrates

the boundaries generated by Alg. 1.

Score Approximation. As the robot explores the environ-

ment, the number of support vectors required to represent the

obstacle boundaries increases. Since the score function (2)

depends on all support vectors, the time to train the kernel

perceptron model online would increase as well. We propose

an approximation to the score function F (x) under the as-

sumption that the kernel function k(xi,xj) is radial (depends

only on ‖xi − xj‖) and monotone (its value decreases as

‖xi − xj‖ increases). To keep the presentation specific, we

make the following assumption in the remainder of the paper.

Assumption. k(xi,xj) := η exp
(

−γ‖xi − xj‖
2
)

The kernel parameters η, γ ∈ R>0 can be optimized

offline via automatic relevance determination [27] using

training data from known occupancy maps. The assumption

implies that the value of F (x) is not affected significantly

by support vectors far from x. We introduce an R∗-tree data

structure constructed from the sets of positive and negative

support vectors Λ+, Λ− to allow efficient K nearest-neighbor

lookup. The K nearest support vectors, consisting of K+

and K− positive and negative support vectors, are used to

approximate the score F (x) (Lines 1-3 in Alg. 1).

V. COLLISION CHECKING WITH KERNEL-BASED MAPS

A map representation is useful for navigation only if it

allows checking a potential robot trajectory s(t) over time

t for collisions. We derive conditions for complete (without

sampling) collision-checking of continuous-time trajectories

s(t) in our sparse kernel-based occupancy map representa-

tion. Checking that a curve s(t) is collision-free is equivalent

to verifying that F (s(t)) < 0, ∀t ≥ 0. It is not possible to

express this condition for t explicitly due to the nonlinearity

of F . Instead, in Prop. 1, we show that an accurate upper

bound U(s(t)) of the score F (s(t)) exists and can be used to

evaluate the condition U(s(t)) < 0 explicitly in terms of t.

Proposition 1. For any (x−
j , α

−
j ) ∈ Λ−, the score F (x) is

bounded above by U(x) = k(x,x+
∗ )

∑M+

i=1 α+
i −k(x,x

−
j )α

−
j

where x
+
∗ is the closest positive support vector to x.

Proof. The proposition holds because k(x,x+
i ) ≤ k(x,x+

∗ ),

∀x+
i and

∑M−

j=1 α
−
j k(x,x

−
j ) ≥ α−

j k(x,x
−
j ), ∀x

−
j .

Fig. 1f, 1g, 1h illustrate the exact decision boundary

F (x) = 0 and the accuracy of the upper bound U(s(t)) along

two lines s(t) in C-space. The upper bound U(s(t)) is loose

in the occupied space but remains close to the score F (s(t))
in the free space since the RBF kernel k(x,x′) is negligible

away from the obstacle’s boundary. As a result, the boundary

U(x) = 0 remains close to the true decision boundary.

The upper bound provides a conservative but fairly accurate

“inflated boundary”, allowing efficient collision checking for

line segments and polynomial curves as shown next.

A. Collision Checking for Line Segments

Suppose that the robot’s path is described by a ray s(t) =
s0 + tv, t ≥ 0 such that s0 is obstacle-free, i.e., U(s0) < 0,



and v is constant. To check if s(t) collides with the inflated

boundary, we find the first time tu such that U(s(tu)) ≥ 0.

This means that s(t) is collision-free for t ∈ [0, tu).

Proposition 2. Consider a ray s(t) = s0 + tv, t ≥ 0 with

U(s0) < 0. Let x+
i and x

−
j be arbitrary positive and negative

support vectors. Then, any point s(t) is free as long as:

t < tu := min
i∈{1,...,M+}

ρ(s0,x
+
i ,x

−
j ) (3)

where β = 1
γ

(

log(α−
j )− log(

∑M+

i=1 α+
i )

)

and

ρ(s0,x
+
i ,x

−
j ) =







+∞, if vT (x+
i − x

−
j ) ≤ 0

β−‖s0−x
−

j
‖2−‖s0+x

+

i
‖2

2vT (x−

j
−x

+

i
)

, if vT (x+
i − x

−
j ) > 0

.

Proof. From Prop. 1, a point s(t) is free if U(s(t)) < 0 or

t < ρ(s0,x
+
∗ ,x

−
j ) (4)

Since x+
∗ varies with t but belongs to a finite set, U(s(t)) < 0

if we take the minimum of ρ(s0,x
+
i ,x

−
j ) over all x+

i .

Prop. 1 and 2 hold for any negative support vector x
−
j .

Since x
−
j belongs to a finite set, we can take the best bound

on t over the set of negative support vectors.

Corollary 1. Consider a ray s(t) = s0 + tv, t ≥ 0 with

U(s0) < 0. Let x+
i and x

−
j be arbitrary positive and negative

support vectors, respectively. A point s(t) is free as long as:

t < t∗u := min
i∈{1,...,M+}

max
j∈{1,...,M−}

ρ(s0,x
+
i ,x

−
j ). (5)

The computational complexities of calculating tu and t∗u
are O(M) and O(M2), respectively, where M = M++M−.

Note that since often the robot’s movement is limited to

the neighborhood of its current position, tu can reasonably

approximate t∗u if x
−
j is chosen as the negative support

vector, closest to s0. Calculation of tu in Eq. (3) is efficient in

the sense that it has the same complexity as checking a point

for collision (O(M)), yet it can evaluate the collision status

for an entire line segment for t ∈ [0, tu) without sampling.

Collision checking becomes slower when the number of

support vectors M increases. We improve this further by

using K+ and K− nearest positive and negative support

vectors instead of M+ and M−, respectively. Assuming

K+ and K− are constant, the computational complexities

of calculating tu and t∗u reduce to O(logM) which is the

complexity of an R∗-tree lookup.

In path planning, one often performs collision checking for

a line segment (sA, sB). All points on the segment can be

expressed as s(tA) = sA+tAvA, vA = sB−sA, 0 ≤ tA ≤ 1.

Using the upper bound tuA on tA provided by Eq. (3) or

Eq. (5), we find the free region on (sA, sB) starting from sA.

Similarly, we calculate tuB which specifies the free region

from sB . If tuA + tuB > 1, the entire line segment is free;

otherwise the segment is considered colliding. The proposed

approach is summarized in Alg. 2 and illustrated in Fig. 2.

B. Collision Checking for Polynomial Curves

In the previous section, v was a constant velocity rep-

resenting the direction of motion of the robot. In general,

the velocity might be time varying leading to trajectories

Algorithm 2 Line segment collision check

Input: Line segment (sA, sB); support vectors Λ+ = {(x+

i , α+

i )} and

Λ− = {(x−

j , α−

j )}
1: vA = sB − sA, vB = sA − sB

2: Calculate tuA and tuB using Eq. (3) or Eq. (5)
3: if tuA + tuB > 1 then return True (Free)
4: else return False (Colliding)
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Fig. 2: Collision checking for line segments (left), with bounds tuA
and tuB obtained from Eq. (5), and for second-order polynomial
curves (right) using Euclidean balls.

Algorithm 3 Polynomial curve collision check

Input: Polynomial curve s(t), t ∈ [0, tf ]; threshold ε; support vectors

Λ+ = {(x+

i , α+

i )} and Λ− = {(x−

j , α−

j )}, k = 0, t0 = 0
while True do

Calculate rk using Eq. (6) or Eq. (7).
if rk < ε then return False (Colliding)

Solve ‖s(t)− s(tk)‖ = rk for tk+1 ≥ tk
if tk+1 ≥ tf then return True (Free)

described by polynomial curves [28]. We extend the collision

checking algorithm by finding an Euclidean ball B(s0, r)
around s0 whose interior is free of obstacles.

Corollary 2. Let s0 ∈ C be such that U(s0) < 0 and let x+
i

and x
−
j be arbitrary positive and negative support vectors.

Then, every point inside the Euclidean balls B(s0, ru) ⊆
B(s0, r

∗
u) is free for:

ru := min
i∈{1,...,M+}

ρ̄(s0,x
+
i ,x

−
j ) (6)

r∗u := min
i∈{1,...,M+}

max
j∈{1,...,M−}

ρ̄(s0,x
+
i ,x

−
j ) (7)

where ρ̄(s0,x
+
i ,x

−
j ) =

β−‖s0−x
−

j
‖2+‖s0−x

+

i
‖2

2‖x−

j
−x

+

i
‖

and β =

1
γ

(

log(α−
j )− log(

∑M+

i=1 α+
i )

)

.

Proof. Directly follows from Prop. 2 by using the Cauchy-

Schwarz inequality to bound v
T (x−

j − x
+
∗ ) ≤ ‖(x−

j − x
+
∗ )‖

for any unit vector v (i.e. ‖v‖ = 1).

Consider a polynomial s(t) = s0+a1t+a2t
2+ . . .+adt

d,

t ∈ [0, tf ] from s0 to sf := s(tf ). Collorary 2 shows that

all points inside B(s0, r) are free for r = ru or r∗u. If we

can find the smallest positive t1 such that ‖s(t1)− s0‖ = r,

then all points on the curve s(t) for t ∈ [0, t1) are free. This

is equivalent to finding the smallest non-negative root of a

2d-order polynomial. Note that, if d ≤ 2, there is a closed-

form solution for t1. For higher order polynomials, one can

use a root-finding algorithm to obtain t1 numerically. We

perform collision checking by iteratively covering the curve

by Euclidean balls. If the radius of any ball is smaller than



a threshold ε, the curve is considered colliding. Otherwise,

the curve is considered free. The collision checking process

for d-order polynomial curves is shown in Alg. 3 and Fig. 2.

VI. AUTONOMOUS NAVIGATION

Finally, we present a complete online mapping and naviga-

tion approach that solves Problem 1. Given the kernel-based

map m̂tk proposed in Sec. IV, a motion planning algorithm

such as A∗ [29] may be used with our collision-checking

algorithms to generate a path that solves the autonomous

navigation problem [28]. The robot follows the path for

some time and updates the map estimate m̂tk+1
with new

observations. Using the updated map, the robot re-plans the

path and follows the new path instead. This is repeated until

the goal is reached or a time limit is exceeded (Alg. 4). Note

that as we use an inflated boundary for collision checking,

our planning algorithm is not complete.

We consider robots with two different motion models. In

simulation, we use a first-order fully actuated robot, ṡ = v,

with piecewise-constant velocity v(t) ≡ vk ∈ V for t ∈
[tk, tk+1), leading to piecewise-linear trajectories:

s(t) = sk + (t− tk)vk, t ∈ [tk, tk+1), (8)

where sk := s(tk). In real experiments, we consider a ground

wheeled Ackermann-drive robot:

ṡ = v

[

cos(θ)
sin(θ)

]

, θ̇ =
v

ℓ
tanφ, (9)

where s ∈ R
2 is the position, θ ∈ R is the orientation,

v ∈ R is the linear velocity, φ ∈ R is the steering angle, and

ℓ is the distance between the front and back wheels. The

nonlinear car dynamics can be transformed into a 2nd-order

fully actuated system s̈ = a via feedback linearization [30],

[31]. Using piecewise-constant acceleration a(t) ≡ ak ∈ A
for t ∈ [tk, tk+1) leads to piecewise-2nd-order-polynomial

trajectories s(t) = sk + (t − tk)vk

[

cos(θk)
sin(θk)

]

+ (t−tk)
2

2 ak.

where sk := s(tk), θk := θ(tk), vk := v(tk). To apply A∗ to

these models, we restrict the input sets V and A to be finite.

VII. EXPERIMENTAL RESULTS

This section presents an evaluation of Alg. 4 using a fully

actuated robot (8) in simulation and a car-like robot (Fig. 4)

with Ackermann-drive dynamics (9) in real experiments. We

use an RBF kernel with parameters η = 1, γ = 2.5 and

an R∗-tree approximation of the score F (x) with K+ +
K− = 200 nearest support vectors around the robot location

sk for map updating. The online training data (Sec. IV) were

generated from a grid with resolution 0.25m. Timing results

are reported from an Intel i7 2.2 GHz CPU with 16GB RAM.

A. Simulations

The accuracy and memory consumption of our sparse

kernel-based map was compared with OctoMap [4] in a

warehouse environment shown in Fig. 3. As the ground-truth

map represents the work space instead of C-space, a point

robot (r = 0) was used for an accurate comparison. Lidar

scan measurements were simulated along a robot trajectory

Algorithm 4 Autonomous Mapping and Navigation with a Sparse
Kernel-based Occupancy Map

Input: Initial position s0 ∈ Cfree; goal region Cgoal; time limit T ; prior

support vectors Λ+

0
and Λ−

0
, t = 0

1: while st /∈ Cgoal and t < T do

2: zt ← New Depth Sensor Observation

3: D ← Training Data Generation(zt,Λ
+
t ,Λ−

t ) ⊲ Sec. IV

4: Λ+

t+1
,Λ−

t+1
← Incremental Fastron(Λ+

t ,Λ−

t ,D, st) ⊲ Alg. 1

5: Path Planning(Λ+

t+1
,Λ−

t+1
, st, Cgoal) ⊲ Replan via A∗ (Alg. 2&3)

6: st+1 = f(st,at) ⊲ Move to the first position along the path

KM KM-SA IM IM-SA OM

Accuracy 98.5% 98.5% 83.8% 83.2% 96.1%

Recall 97.4% 97.3% 99.0% 98.9% 96.8%

Vectors/Nodes 1947 2721 1947 2721 12372

Storage 15.6kB 21.7kB 15.6kB 21.7kB 24.7kB

TABLE I: Comparison among our kernel-based map (KM), KM
map with score approximation (KM-SA), our inflated map (IM), IM
map with score approximation (IM-SA) and OctoMap (OM) [4].

shown in Fig. 3 and used to build our map and OctoMap

simultaneously. OctoMap’s resolution was also set to 0.25m
to match that of grid used to sample our training data from.

Furthermore, since our map does not provide occupancy

probability, OctoMap’s binary map was used as the baseline.

Table I compares the accuracy and the memory consump-

tion of OctoMap’s binary map versus our kernel-based map

and inflated map (using the upper bound in Prop. 1) with

and without score approximation (Sec. IV). The kernel-based

and inflated maps (with score approximation) are shown in

Fig. 3. The kernel-based maps and OctoMap’s binary map

lead to similar accuracy of ∼ 96 − 98% compared to the

ground truth map. OctoMap required a compressed octree

with 12372 non-leaf nodes with 2 bytes per node, leading to

a memory requirement of ∼ 24.7kB. As the memory con-

sumption depends on the computer architecture and how the

information on the support vectors is compressed, we provide

only a rough estimate to show that our map’s memory

requirements are at least comparable to those of OctoMap.

We stored an integer representing a support vector’s location

on the underlying grid and a float representing its weight.

This requires 8 bytes on a 32-bit architecture per support

vector. Our maps contained 1947 and 2721 support vectors

with and without score approximation, leading to memory

requirements of 15.6kB and 21.7kB, respectively. The recall

(true positive rate) reported in Table I demonstrates the safety

guarantee provided by our inflated map as ∼ 99% of the

occupied cells are correctly classified.

We also compared the average collision checking time

over 1000000 random line segments using our complete

method (Alg. 2 with Eq. (5) and K+ = K− = 10 for score

approximation) and sampling-based methods with different

sampling resolutions using the ground truth map. Fig. 6

shows that the time for sampling-based collision checking

increased as the line length increased or the sampling reso-

lution decreased. Meanwhile, our method’s time was stable at

∼ 15µs suggesting its suitability for real-time applications.

B. Real Robot Experiments

Real experiments were carried out on an 1/10th scale

Racecar robot (Fig. 4) equipped with a Hokuyo UST-10LX
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Fig. 3: Ground truth map and robot trajectory (left) used to generate simulated lidar scans, the occupancy map generated from our sparse
kernel-based representation (middle) and the inflated map from the upper bound U(x) proposed in Prop. 1 (right).

Fig. 4: Third person views of the autonomous Racecar robot navigating in an unknown environment with moving obstacles.
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Fig. 5: Final 1762 support vectors (left), kernel-based map (middle), and inflated map (right) obtained from the real experiments.

0 2 4 6 8 10
Length(m)

0

10

20

30

40

50

60

70

tim
e(
μs

)

Δ = 0.002m
Δ = 0.003m
Δ = 0.005m
Δ = 0.01m
Δ = 0.05m
Δ = 0.1m
KM-SA

10 20 30 40 50 60 70
time(s)

101

102

103

104

105

tim
e(
μs
)

KM-SA
KM

0 20 40 60 80
time(s)

0.05

0.10

0.15

0.20

tim
e(

s)

Map update time

Fig. 6: Checking line segments in simulation (left): comparison between our method with score approximation (KM-SA) and a sampling-
based method with different sampling resolution ∆. Planning time per motion primitive in the real experiment (middle): comparison
between our method with (KM) and without score approximation (KM-SA). Map update time for the real experiment (right).

Lidar and Nvidia TX2 computer. The robot body was mod-

eled by a ball of radius r = 0.25m. Second-order polynomial

motion primitives were generated with time discretization of

τ = 1s as described in Sec. VI. The motion cost was defined

as c(s,a) := (‖a‖2 + 2)τ to encourage both smooth and

fast motion [28]. Alg. 3 with Eq. (7), ε = 0.2, and score

approximation with K+ = K− = 2 was used for collision

checking. The trajectory generated by an A∗ motion planner

was tracked using a closed-loop controller [32]. The robot

navigated in an unknown hallway with moving obstacles to

destinations randomly chosen by a human operator. Fig. 5

shows the support vectors, the kernel-based map, and the

inflated map with score approximation for the experiment.

We observed that kernel-based mapping is susceptible to

noise since the support vectors are quickly updated with

newly observed data, even though it is noisy and affected by

localization errors. This is caused by the kernel perceptron

model not maintaining occupancy probabilities. Future work

will focus on sparse generative models for occupancy maps.

The map update time taken by Alg. 1 from one lidar

scan and the A∗ replanning time per motion primitive with

and without score approximation are shown in Fig. 6. Map

updates implemented in Python took 0.11s on average, and

increased as the car moved into unseen regions. To evaluate

collision checking time, the A∗ replanning time was normal-

ized by the number of motion primitives being checked to

account for differences in planning to nearby and far goals.

Without score approximation, the planning time per motion

primitive was in the order of milliseconds and increased

over time as more support vectors were added. With score

approximation, it was stable at ∼ 40µs illustrating the

benefits of our R∗-tree data structure.

VIII. CONCLUSION

This paper proposes a sparse kernel-based mapping

method for a robot navigating in unknown environments.

The method offers efficient map storage that scales with

obstacle complexity rather than environment size. We de-

veloped efficient and complete collision checking for linear

and polynomial trajectories in this new map representation.

The experiments show the potential of our approach to

provide compressed, yet accurate, occupancy representations

of large environments. The mapping and collision checking

algorithms offer a promising avenue for safe, real-time, long-

term autonomous navigation in unpredictable and rapidly

changing environments. Future work will explore simultane-

ous localization and mapping, sparse probablistic models for

mapping, active exploration and map uncertainty reduction.
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