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Abstract—Accurate models of robot dynamics are critical for
safe and stable control and generalization to novel operational
conditions. Hand-designed models, however, may be insufficiently
accurate, even after careful parameter tuning. This motivates
the use of machine learning techniques to approximate the
robot dynamics over a training set of state-control trajectories.
The dynamics of many robots are described in terms of their
generalized coordinates on a matrix Lie group, e.g. on SE(3) for
ground, aerial, and underwater vehicles, and generalized velocity,
and satisfy conservation of energy principles. This paper proposes
a port-Hamiltonian formulation over a Lie group of the structure
of a neural ordinary differential equation (ODE) network to
approximate the robot dynamics. In contrast to a black-box ODE
network, our formulation embeds energy conservation principle
and Lie group’s constraints in the dynamics model and explicitly
accounts for energy-dissipation effect such as friction and drag
forces in the dynamics model. We develop energy shaping and
damping injection control for the learned, potentially under-
actuated Hamiltonian dynamics to enable a unified approach
for stabilization and trajectory tracking with various robot
platforms.

Index Terms—Dynamics learning, Hamiltonian dynamics,
SE(3) manifold, neural ODE networks

SUPPLEMENTARY MATERIAL

Software and videos supplementing this paper:
https://thaipduong.github.io/LieGroupHamDL

I. INTRODUCTION

Motion planning and optimal control algorithms depend on
the availability of accurate system dynamics models. Models
obtained from first principles and calibrated over a small set
of parameters via system identification [1] are widely used for
unmanned ground vehicles (UGVs), unmanned aerial vehicles
(UAVs), and unmanned underwater vehicles (UUVs). Such
models may over-simplify or even incorrectly describe the
underlying structure of the dynamical system, leading to bias
and modeling errors that cannot be corrected by adjusting a
few parameters. Data-driven techniques [2]–[6] have emerged
as a powerful approach to approximate system dynamics with
an over-parameterized machine learning model, trained over
a dataset of system state and control trajectories. Neural
networks are expressive function approximation models, ca-
pable of identifying and generalizing interaction patterns from
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Fig. 1: Quadrotor trajectory tracking using a learned port-
Hamiltonian dynamics model.

the training data. Training neural network models, however,
typically requires large amounts of data and computation time,
which may be impractical in mobile robotics applications.
Recent works [7]–[14] have considered a hybrid (gray-box)
approach, where prior knowledge of the physics, governing
the system dynamics, is used to assist the learning process.
The dynamics of physical systems obey kinematic constraints
and energy conservation laws. These laws are known to be
universally true but a black-box machine learning model might
struggle to infer them from the training data, causing poor
generalization. Instead, prior knowledge may be encoded into
the learning model, e.g., using a prior distribution [3], a graph-
network forward kinematic model [15], or a network architec-
ture reflecting the structure of Lagrangian [16] or Hamiltonian
[10] mechanical systems. Moreover, many physical robot
platforms are composed of rigid-body interconnections and
their state evolution respects the structure of a Lie group
[17], e.g., the position and orientation kinematics of a rigid
body evolve on the SE(3) Lie group [18]. Existing works
[19]–[21] on Lie group neural ODEs networks for learning
dynamics and normalizing flows focus on preservation of the
Lie group structure during backpropagation using an adjoint
method, either via a higher-dimensional space [19], [20] or
local coordinates [21], [22].

The goal of this paper is to incorporate both the kinematic
structure and the energy conservation properties of physical
systems with Lie group states into the structure of a dynamics
learning model. We also aim to design a control approach that
achieves stabilization or trajectory tracking using the learned
model without requiring prior knowledge of its parameters. In
other words, the same control design should enable trajectory
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tracking for learned models of different rigid-body UGVs,
UAVs, or UUVs.

Lagrangian and Hamiltonian mechanics [23], [24] provide
physical system descriptions that can be integrated into the
structure of a neural network [10], [11], [25]–[28]. Prior
work, however, has only considered vector-valued states, when
designing Lagrangian- or Hamiltonian-structured neural net-
works. This limits the applicability of these techniques as
many common robot systems have states on a Lie group.
For example, Hamiltonian equations of motion are available
for orientation but existing formulations rely predominantly
on 3 dimensional vector parametrizations, such as Euler an-
gles [29], [30], which suffer from singularities. Similar to
[19], [20], our work embeds matrix Lie groups in a higher-
dimensional space Rn×n, allowing us to train the model via
the widely used neural ODE network on Euclidean space [31].
However, we focus on embedding the Hamiltonian formulation
of robot dynamics in the model and deriving a control policy
for trajectory tracking. Concurrently, Wotte et al. [22] offer
an exciting approach to learn SE(3) Hamiltonian dynamics
from data using a neural ODE on Lie group, trained via local
coordinates [21] with guarantees of satisfaction of Lie group
constraints. The authors designed an adjoint method on the
Lie algebra for neural ODE training, and a potential shaping
controller for stabilization of a fully actuated rigid body.

Our preliminary work [32] designed a neural ODE network
[31] to capture Hamiltonian dynamics on the SE(3) manifold
[33], and derived a trajectory tracking control policy for
potentially under-actuated systems. Our model is shown to
provide accurate long-term trajectory predictions, respecting
SE(3) constraints and conserve total energy with high pre-
cision. Inspired by [27], [34], we model kinetic energy and
potential energy by separate neural networks, each governed
by a set of Hamiltonian equations on SE(3). However, our
preliminary work [32] is developed specifically for the SE(3)
manifold and does not model dissipation elements that drain
energy from the system, such as friction or drag forces in
real robot systems. The Hamiltonian formulation of robot
dynamics can be generalized to port-Hamiltonian formulation,
where the dynamics are governed by energy exchange, i.e.,
the law of energy conservation, energy dissipation, e.g., from
friction, and energy injection, e.g., from control inputs. In
this paper, we generalize our dynamics learning and control
method in [32] using a port-Hamiltonian neural ODE network
to embed general matrix Lie group constraints and introduce
an energy dissipation term, represented by another neural
network, to model friction and air drag in physical systems.
We compensate for energy dissipation in the trajectory tracking
control design to provide accurate tracking performance. We
verify our approach extensively with simulated robot systems,
including a pendulum and a Crazyflie quadrotor, and with
several real quadrotor platforms. In summary, this paper makes
the following contributions.

• We design a neural ODE model that respects port-
Hamiltonian dynamics over a matrix Lie group to enable
data-driven learning of robot dynamics.

• We develop a unified control policy for port-Hamiltonian
dynamics on a Lie group that achieves trajectory tracking

if permissible by the system’s degree of underactuation.
• We demonstrate our dynamics learning and control ap-

proach extensively with simulated robot systems (a pen-
dulum and a quadrotor) and several real quadrotor robots.

II. RELATED WORK

Data-driven techniques [35]–[39] have shown impressive
results in learning robot dynamics models from state-control
trajectories. Neural networks offer especially expressive sys-
tem models but their training requires large amounts of data,
which may be impractical in mobile robot applications. Re-
cently, a hybrid approach [7]–[14], [28], [40]–[42] has been
considered where prior knowledge about a physical system is
integrated into the design of a machine learning model. Models
designed with structure respecting kinematic constraints [15],
symmetry [43], [44], Lagrangian mechanics [7]–[9], [12], [13],
[16], [45] or Hamiltonian mechanics [10], [11], [14], [25]–
[28], [46], [47] guarantee that the laws of physics are satisfied
by construction, regardless of the training data.

Sanchez-Gonzalez et al. [15] design graph neural networks
to represent the kinematic structure of complex dynamical
systems and demonstrate forward model learning and online
planning via gradient-based trajectory optimization. Ruthotto
et al. [43] propose a partial differential equation (PDE) in-
terpretation of convolutional neural networks and derive new
parabolic and hyperbolic ResNet architectures guided by PDE
theory. Wang et al. [44] design symmetry equivariant neural
network models, encoding rotation, scaling, and uniform mo-
tion, to learn physical dynamics that are robust to symmetry
group distributional shifts.

Lagrangian-based methods [7]–[9], [12], [13], [16], [45]
design neural network models for physical systems based
on the Euler-Lagrange differential equations of motion [23],
[24], in terms of generalized coordinates q, their velocity q̇
and a Lagrangian function L(q, q̇), defined as the difference
between the kinetic and potential energies. The energy terms
are modeled by neural networks, either separately [7], [16],
[45] or together [9].

Hamiltonian-based methods [10], [11], [14], [25]–[28] use
a Hamiltonian formulation [23], [24] of the system dynamics,
instead, in terms of generalized coordinates q, generalized
momenta p, and a Hamiltonian function, H(q,p), representing
the total energy of the system. Greydanus et al. [10] model the
Hamiltonian as a neural network and update its parameters by
minimizing the discrepancy between its symplectic gradients
and the time derivatives of the states (q,p). This approach,
however, requires that the state time derivatives are available
in the training data set. Chen et al. [11], Zhong et al. [27]
relax this assumption by using differentiable leapfrog integra-
tors [48] and differentiable ODE solvers [31], respectively.
The need for time derivatives of the states is eliminated by
back-propagating a loss function measuring state discrepancy
through the ODE solvers via the adjoint method. Our work
extends the approach in [27], [34] by formulating the Hamil-
tonian dynamics over a matrix Lie group, which enforces
kinematic constraints in the neural ODE network used to learn
the dynamics. Toth et al. [49] and Mason et al. [50] show that,
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instead of from state trajectories, the Hamiltonian function can
be learned from high-dimensional image observations. Finzi et
al. [26] show that using Cartesian coordinates with explicit
constraints improves both the accuracy and data efficiency
for the Lagrangian- and Hamiltonian-based approaches. In a
closely related work, Zhong et al. [34] showed that dissipating
elements, such as friction or air drag, can be incorporated
in a Hamiltonian-based neural ODE network by reformu-
lating the system dynamics in port-Hamiltonian form [51].
The continuous-time equations of motions in Lagrangian or
Hamiltonian dynamics can also be discretized using variational
integrators [52] to learn discrete-time Lagrangian and Hamil-
tonian systems [53]–[56] and provide long-term prediction
for control methods such as model predictive control [57].
This approach eliminates the need to use an ODE solver to
roll out the dynamics but its prediction accuracy depends on
the discretization time step. Meanwhile, our work encodes
not only the Hamiltonian structure but also the Lie group
constraints, satisfied by the states of rigid-body robot systems,
such as UGVs, UAVs and UUVs, in a neural ODE network
to learn robot dynamics from data.

While most existing dynamics learning approaches focus on
Euclidean dynamics, many robot systems have states evolving
on a matrix Lie group. Recent works on neural ODE networks
[19]–[22] on Lie groups are classified into either extrinsic [19],
[20] or intrinsic methods [21], [22]. The extrinsic approach
[19], [20] embeds a Lie group in a higher-dimensional space
with Lie group constraints, enabling training with neural
ODEs on Euclidean space. Our work belongs to the extrinsic
approach by enforcing matrix Lie group constraints on its
embedding space Rn×n, but focuses on incorporating the law
of energy conservation, via a Hamiltonian formulation, in the
dynamics model and providing control design for trajectory
tracking. Meanwhile, the intrinsic approach [21], [22] develops
adjoint methods for training using local coordinates on the Lie
algebra, e.g. via local charts [21], and therefore, guarantees Lie
groups constraints by design. Concurrently to our work, Wotte
et al. [22] develop a neural ODE network on Lie group to learn
Hamiltonian dynamics on the SE(3) manifold by deriving
an adjoint method on the Lie algebra, offering an exciting
approach for learning structure-preserving dynamics model.

While few dynamics learning papers consider control design
based on the learned model, we develop a general trajectory
tracking controller for Lie group Hamiltonian dynamics. The
Hamiltonian formulation and its port-Hamiltonian generaliza-
tion [51] are built around the notion of system energy and,
hence, are naturally related to control techniques for stabiliza-
tion aiming to minimize the total energy. Since the minimum
point of the Hamiltonian might not correspond to a desired
regulation point, the control design needs to inject additional
energy to ensure that the minimum of the total energy is at
the desired equilibrium. For fully-actuated port-Hamiltonian
systems, it is sufficient to shape the potential energy only using
an energy-shaping and damping-injection (ES-DI) controller
[51]. For underactuated systems, both the kinetic and potential
energies needs to be shaped, e.g., via interconnection and
damping assignment passivity-based control (IDA-PBC) [51],
[58]–[60]. Wang and Goldsmith [61] extend the IDA-PBC

controller from stabilization to trajectory tracking. Closely
related to our controller design, Souza et. al. [62] apply this
technique to design a controller for an underactuated quadrotor
robot but use Euler angles as the orientation representation.
Port-Hamiltonian structure and energy-based control design
are also used to learn distributed control policies from state-
control trajectories [63]–[65].

We connect Hamiltonian-dynamics learning with the idea of
IDA-PBC control to allow stabilization of any rigid-body robot
without relying on its model parameters a priori. We design a
trajectory-tracking controller for underactuated systems, e.g.,
quadrotor robots, based on the IDA-PBC approach and show
how to construct desired pose and momentum trajectories
given only desired position and yaw. We demonstrate the tight
integration of dynamics learning and control to achieve closed-
loop trajectory tracking with underactuated quadrotor robots.

III. PROBLEM STATEMENT

Consider a robot with state x consisting of generalized
coordinates q evolving on a Lie group G and generalized
velocity ξ on the Lie algebra g of G. Let ẋ = f(x,u)
characterize the robot dynamics with control input u ∈ Rm.
For example, the state of rigid-body mobile robot, such as a
UGV or UAV, may be modeled by its pose on the SE(3)
group, consisting of position and orientation, and its twist on
the se(3) Lie algebra, consisting of linear and angular velocity.
The control input of an Ackermann-drive UGV may include
its linear acceleration and steering angle rate, and that of
a quadrotor UAV may include the total thrust and moment
generated by the propellers. See Sec. IV-C for more details.

We assume that the function f specifying the robot dy-
namics is unknown and aim to approximate it using a
dataset D of state and control trajectories. Specifically, let
D = {t(i)0:N ,x

(i)
0:N ,u

(i)}Di=1 consist of D state sequences x
(i)
0:N ,

obtained by applying a constant control input u(i) to the
system with initial condition x

(i)
0 at time t(i)0 and sampling its

state x(i)(t
(i)
n ) =: x

(i)
n at times t(i)0 < t

(i)
1 < . . . < t

(i)
N . Using

the dataset D, we aim to find a function f̄θ with parameters
θ that approximates the true dynamics f well. To optimize
θ, we roll out the approximate dynamics f̄θ with initial state
x
(i)
0 and constant control u(i) and minimize the discrepancy

between the computed state sequence x̄
(i)
1:N and the true state

sequence x
(i)
1:N in D.

Problem 1. Given a dataset D = {t(i)0:N ,x
(i)
0:N ,u

(i)}Di=1 and a
function f̄θ, find the parameters θ that minimize:

min
θ

D∑
i=1

N∑
n=1

ℓ(x(i)
n , x̄(i)

n )

s.t. ˙̄x(i)(t) = f̄θ(x̄
(i)(t),u(i)), x̄(i)(t0) = x

(i)
0 ,

x̄(i)
n = x̄(i)(tn), ∀n = 1, . . . , N, ∀i = 1, . . . , D,

(1)

where ℓ is a distance metric on the state space.

Further, we aim to design a feedback controller capable of
tracking a desired state trajectory x∗(t), t ≥ t0, for the learned
model f̄θ of the robot dynamics.
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Problem 2. Given an initial condition x0 at time t0, desired
state trajectory x∗(t), t ≥ t0, and learned dynamics f̄θ,
design a feedback control law u = π(x,θ,x∗(t)) such that
lim supt→∞ ℓ(x(t),x∗(t)) is bounded.

We consider robot kinematics on the Lie group G such
that when there is no control input, u = 0, the dynamics
f(x,u) respect the law of energy conservation. We embed
these constraints in the structure of the parametric function
f̄θ. We review matrix Lie groups, with the SE(3) manifold as
an example, and Hamiltonian dynamics equations next.

IV. PRELIMINARIES

A. Matrix Lie Groups

In this section, we cover the background needed to define
Hamiltonian dynamics on a Lie group. Please refer to [17],
[33], [66] for a more detailed overview of matrix Lie groups.

Definition 1 (Dot Product). The dot product ⟨·, ·⟩ between
two matrices ξ and ψ in Rn×m can be chosen as:

⟨ξ,ψ⟩ = tr(ξ⊤ψ). (2)

The dot product definition above is used to define the dual
maps in Def. 6 and 9, and loss functions in Sec. V-C and V-D.

Definition 2 (General Linear Group [17]). The general linear
group GL(n,R) is the group of n×n invertible real matrices.

Definition 3 (Matrix Lie Group [17]). A matrix Lie group G
is a subgroup of GL(n,R) with identity element e such that if
any sequence of matrices {An}∞n=0 in G converges to a matrix
A, then either A is in G or A is not invertible. A matrix Lie
group is also a smooth embedded submanifold on Rn×n.

Definition 4 (Tangent Space and Bundle). The tangent space
TqG is the set of all tangent vectors ξ to the manifold G at q.
The tangent bundle TG is the set of all the pairs (q, ξ) with
q ∈ G and ξ ∈ TqG.

Definition 5 (Lie Algebra and Lie Bracket). A Lie algebra is
a vector space g, equipped with a Lie bracket operator [·, ·] :
g× g → g that satisfies:

bilinearity: [aξ1 + bξ2, ξ3] = a[ξ1, ξ3] + b[ξ2, ξ3],

[ξ3, aξ1 + bξ2] = a[ξ3, ξ1] + b[ξ3, ξ2],

skew-symmetry: [ξ1, ξ2] = −[ξ2, ξ1],

Jacobi identity:
[ξ1, [ξ2, ξ3]] + [ξ2, [ξ3, ξ1]] + [ξ3, [ξ1, ξ2]] = 0.

Every matrix Lie group G is associated with a Lie algebra
g, which is the tangent space at the identity element TeG.
An element q ∈ G is linked with an element ξ ∈ g via the
exponential map expG : g → G and the logarithm map logG :
G → g [17]. Since tangent spaces of G, and in particular
the Lie algebra g, are isomorphic to Euclidean space, we can
define a linear mapping (·)∧ : Rn → g and its inverse (·)∨ :
g → Rn, where n is the dimension of G. Thus, we can map
between G and Rn using the compositions:

exp∧G = expG ◦ ∧, log∨G = ∨ ◦ logG . (3)

In this paper, we consider a matrix Lie group element q ∈ G
embedded in Rn×n, instead of its n-dimensional represen-
tations, e.g., log∨G q, due to potential issues of discontinuity
[67] and singularity [68], [69]. For example, Zhou. et al. [67]
show that higher-dimensional representations of rotations, e.g.,
(n2−n) dimensions for SO(n), are more suitable for learning
using neural networks because they ensure continuity.

Definition 6 (Left Translation and Invariant Vectors). The left
translation Lq : G → G with q ∈ G is defined as:

Lq(h) = qh. (4)

The left-invariant vector TeLq(ξ) is defined as the derivative
of the left translation Lq at h = e in the direction of ξ. This
vector describes the kinematics of the Lie group, which relates
the velocity ξ ∈ g to the change q̇ ∈ TqG of coordinates q:

q̇ = TeLq(ξ) = qξ. (5)

Given a pairing ⟨·, ·⟩ on g∗×g (e.g., Def. 1), the dual map
T∗
eLq of TeLq satisfies

⟨T∗
eLq(η), ξ⟩ = ⟨η,TeLq(ξ)⟩, (6)

for any η ∈ g∗ and ξ ∈ g.

Definition 7 (Adjoint Operator). For q ∈ G, the adjoint Adq :
g → g is defined as:

Adq(ψ) = qψq−1. (7)

The algebra adjoint adξ : g → g is the directional derivative
of Adq at q = e in the direction of ξ ∈ g:

adξ(ψ) =
d

dt
AdexpG(tξ)

(ψ)

∣∣∣∣
t=0

= [ξ,ψ]. (8)

Definition 8 (Cotangent Space and Bundle). The dual space of
the tangent space TqG, i.e., the space of all linear functionals
from TqG to R, is called the cotangent space T∗

qG. At the
identity e, the cotangent space of the Lie algebra g = TeG
is denoted g∗. The cotangent bundle T∗G is the set of all the
pairs (q,p) with q ∈ G and p ∈ T∗

qG.

Definition 9 (Coadjoint Operator). For q ∈ G, the coadjoint
Ad∗q : g∗ → g∗ is defined as ⟨Ad∗q(φ),ψ⟩ = ⟨φ,Adq(ψ)⟩,
where φ ∈ g∗, ψ ∈ g and ⟨·, ·⟩ is a pairing on g∗ × g. The
algebra coadjoint ad∗ξ : g∗ → g∗ is the dual map of adξ,
satisfying ⟨ad∗ξ(φ),ψ⟩ = ⟨φ, adξ(ψ)⟩.

The next section describes the SE(3) Lie group to illus-
trate the definitions above. The SE(3) Lie group is used to
represent the position and orientation of a rigid body.

B. Example: SE(3) Manifold

Consider a fixed world inertial frame of reference and a
rigid body with a body-fixed frame attached to its center of
mass. The pose of the body-fixed frame in the world frame
is determined by the position p = [x, y, z]⊤ ∈ R3 of the
center of mass and the orientation of the body-fixed frame’s
coordinate axes:

R =
[
r1 r2 r3

]⊤ ∈ SO(3), (9)
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where r1, r2, r3 ∈ R3 are the rows of the rotation matrix R. A
rotation matrix is an element of the special orthogonal group:

SO(3) =
{
R ∈ R3×3 : R⊤R = I,det(R) = 1

}
. (10)

The rigid-body position and orientation can be combined in
a single pose matrix q ∈ SE(3), which is an element of the
special Euclidean group:

SE(3) =

{[
R p
0⊤ 1

]
∈ R4×4 : R ∈ SO(3),p ∈ R3

}
. (11)

The kinematic equations of motion of the rigid body are
determined by the linear velocity v ∈ R3 and angular velocity
ω ∈ R3 of the body-fixed frame with respect to the world
frame, expressed in body-frame coordinates. The generalized
velocity ζ = [v⊤, ω⊤]⊤ ∈ R6 determines the rate of change
of the rigid-body pose according to the SE(3) kinematics:

q̇ = qξ = qζ̂ =: q

[
ω̂ v
0⊤ 0

]
, (12)

where we overload ·̂ to denote the mapping from a vector
ζ ∈ R6 to a 4× 4 twist matrix ξ = ζ̂ in the Lie algebra se(3)
of SE(3) and from a vector ω ∈ R3 to a 3×3 skew-symmetric
matrix ω̂ in the Lie algebra so(3) of SO(3):

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (13)

Please refer to [68] for an excellent introduction to the use of
SE(3) in robot state estimation problems.

C. Hamiltonian Dynamics on Matrix Lie Groups

In this section, we describe Hamilton’s equations of motion
on a matrix Lie group [33], [66]. Our neural network archi-
tecture design in Sec. V is based on Lie group Hamiltonian
dynamics, which encode both kinematic constraints and energy
conservation.

Consider a system with generalized coordinates q in a
matrix Lie group G and generalized velocity q̇ ∈ TqG. The
dynamics of the state x = (q, q̇) ∈ TG satisfy:

q̇ = TeLq(ξ) = qξ, (14)

where ξ is a element in the Lie algebra g.
The Lagrangian on a Lie group L : G × g → R is defined

as the difference between the kinetic energy T : G × g → R
and the potential energy V : G → R:

L(q, ξ) = T (q, ξ)− V(q). (15)

The Hamiltonian is obtained using a Legendre transformation:

H(q,p) = p · ξ − L(q, ξ), (16)

where the momentum p is defined as:

p =
∂L(q, ξ)
∂ξ

. (17)

The state (q,p) ∈ T∗G evolves according to the Hamilto-
nian dynamics [33] as:

q̇ = TeLq

(
∂H(q,p)

∂p

)
, (18a)

ṗ = ad∗ξ(p)− T∗
eLq

(
∂H(q,p)

∂q

)
+B(q)u. (18b)

Obtaining explicit expressions for ad∗ξ(p) and T∗
eLq (η) with

q ∈ G, ξ ∈ g, and p,η ∈ g∗ depends on the structure of the
matrix Lie algebra g and the pairing ⟨·, ·⟩ on g∗×g. Appendix
IX-B provides details and an example for the SE(3) manifold.

By comparing (14) and (18), we have:

ξ =
∂H(q,p)

∂p
. (19)

Let η = ∂H(q,p)
∂q . When there is no control input, i.e., u = 0,

the conservation of energy is guaranteed as:

dH(q,p)

dt
= ⟨η, q̇⟩+ ⟨ξ, ṗ⟩,
= ⟨η,TeLq (ξ)⟩ − ⟨ξ,T∗

eLq (η)⟩+ ⟨ξ, ad∗ξ(p)⟩,
= 0, (20)

because of Eq. (6) and, by definition,

⟨ξ, ad∗ξ(p)⟩ = ⟨adξ(ξ),p⟩ = ⟨[ξ, ξ],p⟩ = 0. (21)

D. Reformulation as Port-Hamiltonian Dynamics

The notion of energy in dynamical systems is shared across
multiple domains, including mechanical, electrical, and ther-
mal. A port-Hamiltonian generalization [51] of Hamiltonian
mechanics is used to model systems with energy-storing ele-
ments (e.g., kinetic and potential energy), energy-dissipating
elements (e.g., friction or resistance), and external energy
sources (e.g., control inputs), connected via energy ports. An
input-state-output port-Hamiltonian system has the form:[

q̇
ṗ

]
= (J (q,p)−R(q,p))

[
∂H
∂q
∂H
∂p

]
+ G(q,p)u, (22)

where J (q,p) is a skew-symmetric interconnection matrix,
representing the energy-storing elements, R(q,p) ⪰ 0 is
a positive semi-definite dissipation matrix, representing the
energy-dissipating elements, and G(q,p) is an input matrix
such that G(q,p)u represents the external energy sources. In
the absence of energy-dissipating elements and external energy
sources, the skew-symmetry of J (q,p) guarantees the energy
conservation of the system.

To model energy dissipating elements such as friction or
drag forces, we reformulate the Hamiltonian dynamics on a
matrix Lie group (18) in port-Hamiltonian form (22). Such
elements are often modeled [70] as a linear transformation
D(q,p) ⪰ 0 of the velocity ξ and only affect the generalized
momenta p, i.e.,

R(q,p) =

[
0 0
0 D(q,p)

]
. (23)

The Hamiltonian dynamics (18) is a special case of (22), where
the dissipation matrix is D(q,p) = 0, the input matrix is
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G(q,p) =
[
0⊤ B(q)⊤

]⊤
and the interconnection matrix

J (q,p) can be obtained by rearranging (18) with u = 0
and is guaranteed to be skew-symmetric due to the energy
conservation (20). In an implementation, the coordinates q and
momentum p may be represented as vectors in Rn2

, leading
to an interconnection matrix J (q,p) ∈ R2n2×2n2

.

E. Example: Hamiltonian Dynamics on the SE(3) Manifold

In this section, we consider the generalized coordinate q of a
mobile robot consisting of its position p ∈ R3 and orientation
R ∈ SO(3). Let q = (p,R) be the generalized coordinates
and ζ = (v,ω) ∈ R6 be the generalized velocity, consisting
of the body-frame linear velocity v ∈ R3 and the body-frame
angular velocity ω ∈ R3. The coordinate q evolves on the Lie
group SE(3) while the generalized velocity satisfies q̇ = qξ,
where ξ = ζ̂ is a twist matrix in se(3), as shown in Eq. (12).

The isomorphism between se(3) and R6 via (12) simplifies
the Hamiltonian (18) and its port-Hamiltonian formulation
(22) as follows. The Lagrangian function on SE(3) can be
expressed in terms of q and ζ, instead of q and ξ:

L(q, ζ) = 1

2
ζ⊤M(q)ζ − V(q). (24)

The generalized mass matrix has a block-diagonal form when
the body frame is attached to the center of mass [33]:

M(q) =

[
Mv(q) 0

0 Mω(q)

]
∈ S6×6

≻0 , (25)

where Mv(q),Mω(q) ∈ S3×3
≻0 . The generalized momenta are

defined, as before, via the partial derivative of the Lagrangian
with respect to the twist:

p =

[
pv

pω

]
=
∂L(q, ζ)
∂ζ

= M(q)ζ ∈ R6. (26)

The Hamiltonian function of the system becomes:

H(q,p) = p · ζ − L(q, ζ) = 1

2
p⊤M−1(q)p+ V(q). (27)

By vectorizing the generalized coordinates
q = [p⊤ r⊤1 r⊤2 r⊤3 ]

⊤, the Hamiltonian dynamics
on SE(3) can be described in port-Hamiltonian form (22)
[33], [71], [72] with interconnection matrix:

J (q,p) =

[
0 q×

−q×⊤ p×

]
, p× =

[
0 p̂v

p̂v p̂ω

]
, (28)

and input matrix G(q,p) =
[
0⊤ B(q)⊤

]⊤
, where

q× =

[
R⊤ 0 0 0
0 r̂⊤1 r̂⊤2 r̂⊤3

]⊤
. Note that the kinematics con-

straints q̇ = qξ of the coordinates q on SE(3), which
guarantee that the coordinates q remain in SE(3), are not
affected by vectorization. The port-Hamiltonian formulation
allows us to model dissipation elements in the dynamics by
the dissipation matrix:

D(q,p) =

[
Dv(q,p) 0

0 Dω(q,p)

]
∈ S6×6

≻0 , (29)

where the components Dv(q,p) and Dω(q,p) correspond to
pv and pω , respectively. The equations of motions on the
SE(3) manifold are written in port-Hamiltonian form as:

ṗ = R
∂H(q,p)

∂pv

, (30a)

ṙi = ri ×
∂H(q,p)

∂pω

, i = 1, 2, 3 (30b)

ṗv = pv × ∂H(q,p)

∂pω

−R⊤ ∂H(q,p)

∂p
(30c)

− Dv(q,p)
∂H(q,p)

∂pv

+ bv(q)u,

ṗω = pω × ∂H(q,p)

∂pω

+ pv × ∂H(q,p)

∂pv

+ (30d)

3∑
i=1

ri ×
∂H(q,p)

∂ri
−Dω(q,p)

∂H(q,p)

∂pω

+ bω(q)u,

where the input matrix is B(q) =
[
bv(q)

⊤ bω(q)
⊤]⊤.

F. Neural ODE Networks

In this section, we briefly describe neural ODE networks
[31], which approximate the closed-loop dynamics ẋ =
f(x,π(x)) of a system for some unknown control policy
u = π(x) by a neural network f̄θ(x). The parameters of
f̄θ(x) are trained using a dataset D = {t(i)0:N ,x

(i)
0:N}i of

state trajectory samples x
(i)
n = x(i)(t

(i)
n ) via forward and

backward passes through a differentiable ODE solver, where
the backward passes provide the gradient of the loss function.
Given an initial state x

(i)
0 at time t(i)0 , a forward pass returns

predicted states at times t(i)1 , . . . , t
(i)
N :

{x̄(i)
1 , . . . , x̄

(i)
N } = ODESolver(x(i)

0 , f̄θ, t
(i)
1 , . . . , t

(i)
N ). (31)

The gradient of a loss function,
∑D
i=1

∑N
j=1 ℓ(x

(i)
j , x̄

(i)
j ), is

back-propagated by solving another ODE with adjoint states.
The parameters θ are updated by gradient descent to minimize
the loss. For physical systems, Zhong et al. [27] extends the
neural ODE by integrating the Hamiltonian dynamics on Rn
into the neural network model f̄θ(x), and consider zero-order
hold control input u, leading to a neural ODE network with
the following approximated dynamics:[

ẋ
u̇

]
=

[
f̄θ(x,u)

0

]
. (32)

Recently, neural ODE networks have been extended from
Euclidean space to Lie groups [19]–[22], guaranteeing that the
Lie group constraints are satisfied by the predicted states by
design. While it is possible to train our Hamiltonian dynamics
model using a Lie group neural ODE network, we leave this
investigation for future work due to the lack of suitable open-
source software for Lie group ODE integration.

V. LEARNING LIE GROUP HAMILTONIAN DYNAMICS

We consider a Hamiltonian system with unknown kinetic
energy T (q), potential energy V(q), input matrix B(q), dis-
sipation matrix D(q,p), and design a structured neural ODE
network to learn these terms from state-control trajectories.
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Fig. 2: Architecture of port-Hamiltonian neural ODE network
on matrix Lie group. The trainable terms are shown in green.

A. Data Collection

We collect a data set D = {t(i)0:N ,x
(i)
0:N ,u

(i)}Di=1 consisting
of state sequences x

(i)
0:N , where x

(i)
n = [q

(i)⊤
n ξ(i)⊤n ]⊤

for n = 0, . . . , N . Such data are generated by applying a
constant control input u(i) to the system and sampling the
state x

(i)
n = x(i)(t

(i)
n ) at times t(i)n for n = 0, . . . , N . The

generalized coordinates q and velocity ξ may be obtained from
a state estimation algorithm, such as odometry algorithm for
mobile robots [73], [74], or from a motion capture system.
In physics-based simulation the data can be generated by ap-
plying random control inputs u(i). In real-world applications,
where safety is a concern, data may be collected by a human
operator manually controlling the robot.

B. Model Architecture

Since robots are physical systems, their dynamics f(x,u)
satisfy the Hamiltonian formulation (Sec. IV-C). To learn the
dynamics f(x,u) from a trajectory dataset D, we design a
neural ODE network (Sec. IV-F), approximating the dynamics
via a parametric function f̄θ(x,u) based on Eq. (18).

To integrate the Hamiltonian equations into the structure
of f̄θ(x,u), we use four neural networks with parameters
θ = (θT ,θV ,θD,θB) to approximate the kinetic energy by
Tθ(q, ξ), the potential energy by Vθ(q), the dissipation matrix
by Dθ(q,p), and the input matrix by Bθ(q), respectively.
Since the generalized momenta p are not directly available in
D, the time derivative of the generalized velocity ξ is obtained
from Eq. (19). The approximated dynamics function f̄θ(x,u)
is described with an internal state p as follows:

q̇ = TeLq

(
∂Hθ(q,p)

∂p

)
, (33a)

ṗ = ad∗ξ(p)−Dθ(q,p)
∂Hθ(q,p)

∂p

− T∗
eLq

(
∂Hθ(q,p)

∂q

)
+Bθ(q)u, (33b)

ξ̇ =
d

dt

∂Hθ(q,p)

∂p
, (33c)

where Hθ(q,p) = p·ξ−Lθ(q, ξ), and Lθ(q, ξ) = Tθ(q, ξ)−
Vθ(q). The time derivative d

dt
∂Hθ(q,p)

∂p is calculated using au-

tomatic differentiation, e.g. by Pytorch [75]. The approximated
dynamics function f̄θ(x,u) is implemented in a neural ODE
network architecture for training, shown in Fig. 2.

C. Training Process

Let x̄(i)(t) denote the state trajectory predicted with control
input u(i) by the approximate dynamics f̄θ initialized at
x̄(i)(t

(i)
0 ) = x

(i)
0 . For sequence i, forward passes through the

ODE solver in (31) return the predicted states x̄
(i)
0:N at times

t
(i)
0:N , where x̄

(i)
n = [q̄

(i)⊤
n ξ̄

(i)⊤
n ]⊤, for n = 1, . . . , N . The

predicted coordinates q̄
(i)
n and the ground-truth ones q

(i)
n are

used to calculate a loss on the Lie group manifold:

Lq(θ) =

D∑
i=1

N∑
n=1

∥∥∥∥log∨G (q̄(i)
n

(
q(i)
n

)−1
)∥∥∥∥2

2

. (34)

We use the squared Euclidean norm to calculate losses for the
generalized velocity terms:

Lξ(θ) =

D∑
i=1

N∑
n=1

∥ξ(i)n − ξ̄(i)n ∥22. (35)

The total loss L(θ) is defined as:

L(θ) = Lq(θ) + Lξ(θ). (36)

The gradient of the total loss function L(θ) is back-propagated
by solving an ODE with adjoint states [31]. Specifically, let
a = ∂L

∂x̄ be the adjoint state and s = (x̄,a, ∂L∂θ ) be the
augmented state. The augmented state dynamics are [31]:

ṡ = f̄s = (f̄θ,−a⊤
∂ f̄θ
∂x̄

,−a⊤
∂ f̄θ
∂θ

). (37)

The predicted state x̄, the adjoint state a, and the derivatives
∂L
∂θ can be obtained by a single call to a reverse-time ODE
solver starting from sN = s(tN ):

s0 =

(
x̄0,a0,

∂L
∂θ

)
= ODESolver(sN , f̄s, tN ), (38)

where at each time tk, k = 1, . . . , N , the adjoint state ak at
time tk is reset to ∂L

∂x̄k
. The resulting derivative ∂L

∂θ is used
to update the parameters θ using gradient descent. Note that
even though the Lie group and Hamiltonian structures are
preserved in the continuous-time dynamics function f̄ , the Lie
group constraints might still be violated by the predicted states
when the model is trained with a neural ODE network on the
embedding space Rn×n instead of on the matrix Lie group
[21], [22]. To prevent this, we use a high-order integrator, such
as 5th-order Runge-Kutta [76], in the Euclidean space neural
ODE, for which open-source software is available [31], [77].
Investigating how to train Hamiltonian models with a neural
ODE network defined directly on the Lie group [21], [22],
[78] is an interesting future direction. For example, the Lie
group neural ODE by Wotte et al. [22] offers an approach
to guarantee Lie group constraints in the dynamics model.
Closely related to this direction, Duruisseaux et al. [54] learn
discrete-time Hamiltonian dynamics while guaranteeing Lie
group constraints by design using variational integration.
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D. Application to SE(3) Hamiltonian Dynamics Learning

This section applies our Lie group Hamiltonian dynamics
learning approach to estimate mobile robot dynamics on the
SE(3) manifold (Sec. IV-E).

Neural ODE model architecture: When the Hamiltonian
dynamics in (18) are defined on the SE(3) manifold, the
equations of motion become (30). The neural ODE network
architecture in (33) is simplified as follows. We use five neural
networks with parameters θ = (θv,θω,θV ,θD,θB) to ap-
proximate the blocks M−1

v;θ(q), M
−1
ω;θ(q) of the inverse gener-

alized mass in (25), the potential energy Vθ(q), the dissipation
matrix Dθ(q,p), and the input matrix Bθ(q), respectively.
The approximated kinetic energy is calculated as Tθ(q,p) =
1
2p

⊤M−1
θ (q)p, where Mθ(q) = diag(Mv;θ(q),Mω;θ(q)).

Neural network design: In many applications, nominal
information is available about the generalized mass matrices
M−1

v;θ(q), M
−1
ω;θ(q), the potential energy Vθ(q), the dissipa-

tion matrix Dθ(q,p), and the input matrix Bθ(q), and can be
included in the neural network design.

Let M−1
v0 (q), M

−1
ω0(q), and D0(q,p) be the nominal values

of the generalized mass matrices M−1
v;θ(q), M

−1
ω;θ(q) and the

dissipation matrix Dθ(q,p) with Cholesky decomposition:

M−1
v0 (q) = Lv0(q)L

⊤
v0(q),

M−1
ω0(q) = Lω0(q)L

⊤
ω0(q),

D0(q) = LD0(q)L
⊤
D0(q).

(39)

The learned terms M−1
v;θ(q), M−1

ω;θ(q), and Dθ(q,p) are
obtained using Cholesky decomposition:

M−1
v;θ(q) = (Lv0(q) + Lv(q)) (Lv0(q) + Lv(q))

⊤
+ εvI,

M−1
ω;θ(q) = (Lω0(q) + Lω(q)) (Lω0(q) + Lω(q))

⊤
+ εωI,

Dθ(q,p) = (LD0(q,p)+LD(q,p)) (LD0(q,p)+LD(q,p))
⊤

(40)
where Lv(q), Lω(q), and LD(q,p) are lower-triangular ma-
trices implemented as three neural networks with parameters
θv, θω , and θD respectively, and εv, εω > 0.

The potential energy V(q) and the input matrix B(q)
are implemented with nominal values V0(q) and B0(q) as
follows:

Vθ(q) = V0(q) + LV(q),

Bθ(q) = B0(q) + LB(q),
(41)

where LV(q) and LB(q) are two neural networks with param-
eters θV and θB, respectively.

Loss function: The orientation loss is calculated as:

LR(θ) =

D∑
i=1

N∑
n=1

∥∥∥log∨SO(3)(R̄
(i)
n R(i)⊤

n )
∥∥∥2
2
, (42)

We use the squared Euclidean norm to calculate losses for the
position and generalized velocity terms:

Lp(θ) =

D∑
i=1

N∑
n=1

∥p(i)
n − p̄(i)

n ∥22,

Lζ(θ) =

D∑
i=1

N∑
n=1

∥ζ(i)n − ζ̄(i)n ∥22.
(43)

The total loss L(θ) is defined as:

L(θ) = LR(θ) + Lp(θ) + Lζ(θ). (44)

VI. ENERGY-BASED CONTROL DESIGN

The function f̄θ (33) learned in Sec. V satisfies the port-
Hamiltonian dynamics in Eq. (22) by design. This section
extends the interconnection and damping assignment passivity-
based control (IDA-PBC) approach [51], [61], [62] to Lie
groups to achieve trajectory tracking (Problem 2) based on
the learned port-Hamiltonian dynamics. We further derive a
tracking controller specifically for learned Hamiltonian dy-
namics on the SE(3) manifold in Sec. V-D. In the remainder
of the paper, we omit the subscript θ in the learned model for
readability.

A. IDA-PBC Control Design for Trajectory Tracking

Consider a desired regulation point (q∗,p∗) ∈ T∗G that
the system should be stabilized to. The Hamiltonian function
H(q,p), representing the total energy of the system, generally
does not have a minimum at (q∗,p∗). An IDA-PBC con-
troller [51], [58], [61] is designed to inject additional energy
Ha(q,p) such that the desired total energy:

Hd(q,p) = H(q,p) +Ha(q,p) (45)

achieves its minimum at (q∗,p∗). In other words, the closed-
loop system obtained by applying the controller to the port-
Hamiltonian dynamics in (22) should have the form:[

q̇
ṗ

]
= (Jd(q,p)−Rd(q,p))

[
∂Hd

∂q
∂Hd

∂p

]
. (46)

to ensure that (q∗,p∗) is an equilibrium. The control input
u should be chosen so that (22) and (46) are equal. This
matching equation design does not directly apply to trajectory
tracking, especially for underactuated systems [61], [62].

Consider a desired trajectory (q∗(t),p∗(t)) that the sys-
tem should track. Let (qe(t),pe(t)) denote the error in the
generalized coordinates and momentum, respectively, where
qe = (q∗)−1q ∈ G and pe = p − p∗ ∈ T∗

qe
G. For trajectory

tracking, the desired total energy Hd(qe,pe) is defined in
terms of the error state, with desired closed-loop dynamics:[

q̇e
ṗe

]
= (Jd(qe,pe)−Rd(qe,pe))

[
∂Hd

∂qe
∂Hd

∂pe

]
. (47)

Matching (47) with (22) leads to the following requirement
for the control input:

G(q,p)u = (Jd(qe,pe)−Rd(qe,pe))

[
∂Hd

∂qe
∂Hd

∂pe

]
(48)

−(J (q,p)−R(q,p))

[
∂H
∂q
∂H
∂p

]
+

[
q̇
ṗ

]
−
[
q̇e
ṗe

]
.
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The control input can be obtained from (48) as the sum
u = uES + uDI of an energy-shaping component uES and a
damping-injection component uDI :

uES = G†(q,p)

(
(Jd(qe,pe))

[
∂Hd

∂qe
∂Hd

∂pe

]
−
[
q̇e
ṗe

]
(49a)

−(J (q,p)−R(q,p))

[
∂H
∂q
∂H
∂p

]
+

[
q̇
ṗ

])
,

uDI = −G†(q,p)Rd(qe,pe)

[
∂Hd

∂qe
∂Hd

∂pe

]
, (49b)

where G†(q,p) =
(
G⊤(q,p)G(q,p)

)−1 G⊤(q,p) is the
pseudo-inverse of G(q,p). The control input uES exists as
long as the desired interconnection matrix Jd, dissipation
matrix Rd, and total energy Hd satisfy the following matching
condition for all (q,p) ∈ T∗G and (qe,pe) ∈ T∗G:

G†(q,p)

(
Jd(qe,pe)−Rd(qe,pe))

[
∂Hd

∂qe
∂Hd

∂pe

]
(50)

− (J (q,p)−R(q,p))

[
∂H
∂q
∂H
∂p

]
+

[
q̇
ṗ

]
−
[
q̇e
ṗe

])
= 0.

where G⊥(q,p) is a maximal-rank left annihilator of G(q,p),
i.e., G⊥(q,p)G(q,p) = 0.

B. Tracking Control for Port-Hamiltonian Dynamics on the
SE(3) Manifold

Consider a desired state trajectory x∗(t) = (q∗(t), ζ∗(t))
that the system should track where q∗(t) ∈ SE(3) is the
desired pose and ζ∗(t) =

[
v∗(t)⊤ ω∗(t)⊤

]⊤
is the desired

generalized velocity expressed in the desired frame. Let p∗ =

M

[
R⊤R∗v∗

R⊤R∗ω∗

]
denote the desired momentum, defined based

on (26) with the desired velocity expressed in the body frame.
Let pe = p − p∗ and Re = R∗⊤R =

[
re1 re2 re3

]⊤
be the position error and rotation error between the current
orientation R and the desired one R∗, respectively. The
vectorized error qe in the generalized coordinates is:

qe =
[
p∗⊤
e r⊤e1 r⊤e2 r⊤e3

]⊤
. (51)

The error in the generalized momenta is pe = p − p∗,
described in the body frame. The desired total energy is
defined in terms of the error state as:

Hd(qe,pe) =
1

2
p⊤
e M

−1
d (qe)pe + Vd(qe), (52)

where Md(qe) and Vd(qe) are the desired generalized mass
and potential energy. Choosing the following desired inter-
connection matrix and dissipation matrix:

Jd(qe,pe) =
[

0 J1

−J⊤
1 J2

]
, Rd(qe,pe) =

[
0 0
0 Kd

]
,

(53)

and plugging J (q,p) and R(q,p) from (28) into the matching
equations in (48), leads to:

0 = J1
∂Hd

∂pe
− q× ∂H

∂p
+ q̇− q̇e, (54)

B(q)u = q×⊤ ∂H
∂q

− J⊤
1

∂Hd

∂qe
+ J2

∂Hd

∂pe
− p× ∂H

∂p

−Kd
∂Hd

∂pe
+D(q,p)

∂H
∂p

+ ṗ− ṗe. (55)

Assuming Md(qe) = M(q), (54) is satisfied if we choose

J1 =

[
R⊤ 0 0 0
0 r̂⊤e1 r̂⊤e2 r̂⊤e3

]⊤
. Indeed, we have q̇ = q× ∂H

∂p

(from (11) and (19)) and
∂Hd

∂pe
= M−1

d pe =

[
ve
ωe

]
=

[
v −R⊤R∗v∗

ω −R⊤R∗ω∗

]
.

The error dynamics becomes:

q̇e =


ṗ− ṗ∗

ṙe1
ṙe2
ṙe3

 =

[
R⊤ 0 0 0
0 r̂⊤e1 r̂⊤e2 r̂⊤e3

]⊤ [
ve
ωe

]
= J1

∂Hd

∂pe
,

(56)
since Ṙe =

d
dt (Re) = Reω̂e as shown in [79, Sec. III-A] and

ṗ− ṗ∗ = Rv −R∗v∗ = Rve.
The desired control input can be obtained from (55) as u =

uES + uDI with:

uES = B†(q)

(
q×⊤ ∂H

∂q
− J⊤

1

∂Hd

∂qe
+ J2

∂Hd

∂pe
(57a)

−p× ∂H
∂p

+D(q,p)
∂H
∂p

+ ṗ− ṗe

)
,

uDI = −B†(q)Kd
∂Hd

∂pe
, (57b)

where B†(q) =
(
B⊤(q)B(q)

)−1
B⊤(q) is the pseudo-

inverse of B(q). The matching condition (50) becomes:

B⊥(q)

(
q×⊤ ∂H

∂q
− J⊤

1

∂Hd

∂qe
+ J2

∂Hd

∂pe

− p× ∂H
∂p

+ ṗ− ṗe

)
= 0.

(58)

In this paper, we reshape the open-loop Hamiltonian H(q,p)
into the following desired total energy Hd(qe,pe), minimized
along the desired trajectory:

Hd(qe,pe) =
1

2
(p− p∗)⊤Kp(p− p∗) (59)

+
1

2
tr(KR(I−R∗⊤R)) +

1

2
(p− p∗)⊤M−1(q)(p− p∗),

where Kp,KR ≻ 0 are positive-definite matrices.
For an SE(3) rigid-body system with constant generalized

mass matrix Md = M and J2 = 0, which is a common
choice, the energy-shaping term in (57a) and the damping-
injection term in (57b) simplify as:

uES(q,p) = B†(q)

(
q×⊤ ∂V

∂q
−
(
p× −D(q,p)

)
M−1p

−e(q,q∗) + ṗ
∗
)
,

uDI(q,p) = −B†(q)KdM
−1(p− p∗), (60)
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where the generalized coordinate error between q and q∗ is:

e(q,q∗) := J⊤
1

∂Vd
∂qe

=

[
R⊤Kp(p− p∗)

1
2

(
KRR∗⊤R−R⊤R∗K⊤

R

)∨] ,
(61)

and the derivative of the desired momentum is:

ṗ
∗
= M

[
R⊤p̈∗ − ω̂R⊤ṗ∗

R⊤R∗ω̇∗ − ω̂eR⊤R∗ω∗

]
. (62)

By expanding the terms in (60), we have:

p×M−1p = p×ζ =

[
p̂vω

p̂ωω + p̂vv

]
, (63)

M−1(p− p∗) =

[
v −R⊤ṗ∗

ω −R⊤R∗ω∗

]
, (64)

q×⊤ ∂V
∂q

=

[
R⊤ ∂V(q)

∂p∑3
i=1 r̂i

∂V(q)
∂ri

]
. (65)

Theorem 1. Consider a port-Hamiltonian system on the
SE(3) manifold with dynamics (30). Assume that the matching
condition (58) is satisfied, the desired momentum’s deriva-
tive ṗ

∗ is bounded, and the matrices Kp, KR, and Kd

are positive-definite. The control policy in (57) leads to
closed-loop error dynamics in (47), (53). The tracking er-
ror (qe,pe) = ((pe,Re),pe) asymptotically stabilizes to
((0, I),0) with Lyapunov function given by the desired Hamil-
tonian Hd(qe,pe) in (59).

Proof. Since the matching condition is satisfied and the de-
sired momentum’s derivative ṗ

∗ is bounded, the control policy
in (57), (57b) exists and achieves the desired closed-loop error
dynamics: [

q̇e
ṗe

]
=

[
0 J1

−J⊤
1 J2 −Kd

][∂Hd

∂qe
∂Hd

∂pe

]
. (66)

We have tr
(
I−R∗⊤R

)
≥ 0, as all entries in Re ∈ SO(3)

are less than 1. Since M, Kp and KR are positive-definite
matrices, the desired Hamiltonian Hd is positive-definite, and
achieves minimum value 0 only at qe = (0, I) and pe =
0, i.e., no position, rotation and momentum errors. The time
derivative of Hd(qe,pe) can be computed as:

Ḣd(qe,pe) =
∂Hd

∂qe

⊤
q̇e +

∂Hd

∂pe

⊤
ṗe

= −p⊤
e M

−1(q)KdM
−1(q)pe.

(67)

As Kd and M(q) are positive-definite, we have Ḣd(qe,pe) ≤
0 for all (qe,pe) and equality holds at ((0, I),0). By LaSalle’s
invariance principle [80], the tracking errors (qe,pe) asymp-
totically converge to ((0, I),0).

Without requiring a priori knowledge of the system parame-
ters, the control design in (57) offers a unified control approach
for SE(3) Hamiltonian systems that achieves trajectory track-
ing, if permissible by the system’s degree of underactuation.
Thus, our control design solves Problem 2 for rigid-body robot
systems, such as UGVs, UAVs, and UUVs, with tracking
performance guaranteed by Theorem 1.

VII. EVALUATION

We verify the effectiveness of our port-Hamiltonian neural
ODE network for dynamics learning and control on matrix
Lie groups using a simulated pendulum, a simulated Crazyflie
quadrotor, and a real PX4 quadrotor platform, whose states
evolve on the SE(3) manifold. The implementation details
for the experiments are provided in Appendix IX-A.

A. Pendulum

In this section, we verify our port-Hamiltonian dynamics
learning and control approach on the SO(3) manifold. We
consider a pendulum with the following dynamics:

φ̈ = −15 sinφ+ 3u− 0.2φ̇, (68)

where φ is the angle of the pendulum with respect to its
vertically-downward position and u is a scalar control input.
The ground-truth mass, potential energy, friction coefficient,
and the input gain are: m = 1/3, V(φ) = 5(1 − cosφ),
D(φ) = 0.2/3, and B(φ) = 1, respectively. We collected
data of the form {(cosφ, sinφ, φ̇)} from an OpenAI Gym
environment, provided by [27], with the dynamics in (68). To
illustrate our Lie group neural ODE learning, we represent the
angle φ as a rotation matrix:

R =

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

 , (69)

representing the pendulum orientation. We let ω = [0, 0, φ̇]
and remove position p and linear velocity v from the Hamil-
tonian dynamics in (30), restricting the system to the SO(3)
manifold with generalized coordinates q = [r⊤1 r⊤2 r⊤3 ]

⊤.
As described in Sec. V-D, control inputs u(i) were sampled

randomly and applied to the pendulum for five time intervals

of 0.05s, forming a dataset D =
{
t
(i)
0:N ,q

(i)
0:N ,ω

(i)
0:N ,u

(i))
}D
i=1

with N = 5 and D = 5120. We trained an SO(3) port-
Hamiltonian neural ODE network as described in Sec. V-D for
5000 iterations without any nominal model, i.e., M−1

ω0(q) = 0,
Dω0(q,p) = 0, V0(q) = 0 and B0(q) = 0.

As noted in [27], [32], since the generalized momenta p
are not available in the dataset, the dynamics of q in (68)
do not change if p is scaled by a factor β > 0. This is also
true in our formulation as scaling p leaves the dynamics of
q in (30) unchanged. To emphasize this scale-invariance, let
Mβ(q) = βM(q), Vβ(q) = βV(q), Dβ(q,p) = βD(q,p)
Bβ(q) = βB(q), and:

pβ = Mβ(q)ω = βp, ṗβ = βṗ,

Hβ(q,p) =
1

2
p⊤
βM

−1
β (q)pβ + Vβ(q) = βH(q,p),

∂Hβ(q,p)

∂pβ
= M−1

β (q)pβ =
∂H(q,p)

∂p
,

(70)

guaranteeing that the equations of motions (30) still hold.
Fig. 3 shows the training and testing behavior of our SO(3)

Hamiltonian ODE network. Fig. 3a and 3c show that the[
M(q)−1

]
3,3

entry of the mass inverse and the [B(q)]3 entry
of the input matrix with scaling factor β = 1.33 are close
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Fig. 3: Pendulum dynamics estimation using an SO(3) port-
Hamiltonian neural ODE network with scale factor β = 1.33.

to their correct values of 3 and 1, respectively, while the
other entries are close to zero. Fig. 3b indicates a constant
gap between the learned and the ground-truth potential energy,
which can be explained by the relativity of potential energy.

We tested stabilization of the pendulum based on the learned
dynamics to the unstable equilibrium at the upward position
φ = π, with zero velocity. Since the pendulum is a fully-
actuated system, the energy-based controller in (60) exists and
is obtained by removing the position error from the desired
energy:

Hd(qe,pe) =
1

2
tr(KR(I−R∗⊤R)) +

1

2
p⊤
ωM

−1(q)pω.

(71)
The controlled angle φ and angular velocity φ̇ as well as the
control inputs u with gains KR = 2I and Kd = I are shown
over time in Fig. 3e and 3f. We can see that the controller was
able to smoothly drive the pendulum from ϕ = 0 to ϕ = π,
relying only on the learned dynamics.

B. Omnidirectional Ground Vehicle
In this section, we verify our port-Hamiltonian dynamics

learning and control approach on a simulated omnidirectional
ground vehicle, whose states evolve on the SE(2) manifold.
The ground-truth dynamics of the vehicle can be obtained from
(30) by keeping only the components x and y in the position p
and the yaw angle of the rotation matrix, leading to an SO(2)
rotation matrix:

R =

[
cosφ − sinφ
sinφ cosφ

]
, (72)
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Fig. 4: Evaluation of SE(2) port-Hamiltonian neural ODE
network on a simulated omnidirectional ground vehicle with
scale factor β = 7.1.

where φ is the vehicle’s yaw angle. The vehicle moves on
a flat ground with potential energy V(q) = c, where c is a
constant, and has ground-truth mass Mv(q) = I ∈ S2×2

≻0 and
inertia Mω(q) = 0.05 ∈ R>0. It is fully-actuated with control
input u = [fx, fy, τφ], where fx and fy are forces along the
x and y axes of the body frame and τφ is the yaw torque,
generated by the motors.

To collect training data, the vehicle was controlled from
a random initial point to 9 different desired positions and
yaw angles using a PID controller, providing 9 one-second
trajectories. The trajectories were used to generate a dataset
D = {t(i)0:N ,q

(i)
0:N , ζ

(i)
0:N ,u

(i))}Di=1 with N = 5 and D = 432.
The SE(2) port-Hamiltonian ODE network was formulated,
as described in Sec. V-D, by ignoring the z component
of the position p, and the pitch and roll components of
the rotation R. The model was trained for 8000 iterations
without a nominal model, i.e., M−1

v0 (q) = 0, M−1
ω0(q) = 0,

Dv0(q,p) = 0, Dω0(q,p) = 0, V0(q) = 0 and B0(q) = 0.
We did not consider energy dissipation such as friction in the
simulation, and we omitted the dissipation matrix Dθ(q,p) in
the model.

Fig. 4 shows the training results for the SE(2) Hamiltonian
ODE network. Fig. 4b and 4d show that the mass inverse and
the input gain matrix with scaling factor β = 7.1 are close
to their correct values: Mv(q)

−1 ≈ I,Mω(q)
−1 ≈ 20 and

B(q) ≈ I. Fig. 4c shows a constant learned potential energy
as expected.
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(a) Tracking performance with a lemniscate trajectory.
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Fig. 5: Trajectories (blue) of omnidirectional ground vehicle
tracking desired trajectories (orange) with our learned SE(2)
port-Hamiltonian dynamics and IDA-PBC control design.

We verified our energy-based control design in Sec. VI by
controlling the ground robot to track horizontal lemniscate
and piecewise-linear trajectories. Fig. 5b demonstrates that the
omnidirectional ground vehicle controlled by our energy-based
controller achieves successful trajectory tracking. The control
gains were chosen as: Kp = 0.72I, Kv = 0.8I,KR = 9.1I,
Kω = 3.6. Fig. 5a plots the tracking errors in the position,
yaw angles, linear velocity, and angular velocity.

C. Crazyflie Quadrotor

In this section, we demonstrate that our SE(3) dynamics
learning and control approach can achieve trajectory track-
ing for an underactuated system. We consider a Crazyflie
quadrotor, shown in Fig. 8a, simulated in the physics-based
simulator PyBullet [81]. The control input u = [f, τ ] includes
a thrust f ∈ R≥0 and a torque vector τ ∈ R3 generated
by the 4 rotors. The generalized coordinates and velocity are
q = [p⊤ r⊤1 r⊤2 r⊤3 ]

⊤ and ζ = [v⊤ ω⊤]⊤ as before.
The quadrotor was controlled from a random starting point

to 18 different desired poses using a PID controller [81],
providing 18 2.5-second trajectories. The trajectories were
used to generate a dataset D = {t(i)0:N ,q

(i)
0:N , ζ

(i)
0:N ,u

(i))}Di=1

with N = 5 and D = 1080. The SE(3) port-Hamiltonian
ODE network was trained, as described in Sec. V-D, for
500 iterations without a nominal model, i.e., M−1

v0 (q) = 0,
M−1

ω0(q) = 0, Dv0(q,p) = 0, Dω0(q,p) = 0, V0(q) = 0
and B0(q) = 0. We did not consider energy dissipation such
as drag effect in the PyBullet simulator, and we omitted the
dissipation matrix Dθ(q,p) in the model design.
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Fig. 6: SE(3) port-Hamiltonian neural ODE network on a
Crazyflie quadrotor in the PyBullet simulator [81].

The training and test results are shown in Fig. 6. The learned
generalized mass and inertia converged to constant diagonal
matrices: M−1

v (q) ≈ 27.5I, M−1
ω (q) ≈ diag([351, 340, 181]).

The input matrix Bv(q) converged to a constant matrix with[
Bv(q)

]
2,0

≈ 1.32 while the other entries were closed to 0,
consistent with the fact that the quadrotor thrust only affects
the linear velocity along the z axis in the body-fixed frame.
The input matrix Bω(q) converged to ∼ 76I as the motor
torques affects all components of the angular velocity ω. The
learned potential energy V(q) was linear in the height z,
agreeing with the gravitational potential.

We also verified our energy-based control design in Sec.
VI by controlling the quadrotor to track a desired trajectory
based on the learned dynamics model. Given desired position
p∗ and heading ψ∗ (yaw angle), we construct an appropriate
R∗ and p∗ to be used with the energy-based controller in (60).
By expanding the terms in (60) and choosing the control gain

Kd of the form Kd =

[
Kv 0
0 Kω

]
, the control input can be
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Fig. 7: Crazyflie quadrotor trajectory (blue) tracking a desired
diamond-shaped trajectory (orange) shown in Fig. 8.
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Fig. 8: Trajectory tracking experiment with a Crazyflie quadro-
tor in the PyBullet simulator [81].

written explicitly as

u = B†(q)

[
τv

τω

]
, (73)

where

τv = R⊤ ∂V(q)
∂p

− p̂vω −R⊤Kp(p− p∗)

−Kv(v −R⊤ṗ∗) +M1(R
⊤p̈∗ − ω̂R⊤ṗ∗), (74)

τω =

3∑
i=1

r̂i
∂V(q)
∂ri

−Kω(ω −R⊤R∗ω∗)

−(p̂ωω + p̂vv)−
1

2

(
KRR∗⊤R−R⊤R∗K⊤

R

)∨
+M2(R

⊤R∗ω̇∗ − ω̂eR⊤R∗ω∗). (75)

Note that τv ∈ R3 is the desired thrust in the body frame
and depends only on the desired position p∗ and the current
pose. The desired thrust is transformed to the world frame
as Rτv. Inspired by [79], the vector Rτv should be along
the z axis of the body frame, i.e., the third column r∗3 of
the desired rotation matrix R∗. The second column r∗2 of the
desired rotation matrix R∗ can be chosen so that it has the
desired yaw angle ψ∗ and is perpendicular to r∗3. This can be

done by projecting the second column of the yaw’s rotation
matrix rψ2 = [− sinψ, cosψ, 0] onto the plane perpendicular
to r∗3. We have R∗ = [r∗1 r∗2 r∗3] where:

r∗3 =
Rτv

∥Rτv∥
, r∗1 =

rψ2 × r∗3

∥rψ2 × r∗3∥
, r∗2 = r∗3 × r∗1, (76)

and ω̂∗ = R∗⊤Ṙ∗. The derivative Ṙ∗ is calculated as follows:

ṙ∗3 = r∗3 ×
˙Rτv

∥Rτv∥
× r∗3, (77)

ṙ∗1 = r∗1 ×
ṙψ2 × r∗3 + rψ2 × ṙ∗3

∥rψ2 × r∗3∥
× r∗1, (78)

ṙ∗2 = ṙ∗3 × r∗1 + r∗3 × ṙ∗1. (79)

Plugging R∗ and ω∗ back in τω , we obtain the complete
control input u in (73).

Fig. 8b shows qualitatively that the quadrotor controlled
by our energy-based controller achieves successful trajec-
tory tracking. The control gains were chosen as: Kp =
diag([0.8, 0.8, 3.9]), Kv = 0.23I,KR = diag([3.6, 3.6, 6.9]),
Kω = diag([0.3, 0.3, 0.6]). Fig. 6 shows quantitatively the
tracking errors in the position, yaw angles, linear velocity,
and angular velocity. On an Intel i9 3.1 GHz CPU with
32GB RAM, our controller’s computation time in Python 3.7
was about 2.5 ms per control input, including forward passes
through the neural networks, showing that it is suitable for fast
real-time applications.

D. Comparison to Unstructured Neural ODE Models

In this section, we show the benefits of our neural ODE ar-
chitecture by comparing 1) our structured Hamiltonian model,
2) a black-box model, i.e., the approximated dynamics f is
represented by a multilayer perceptron network, and 3) an un-
structured Hamiltonian model, i.e., the Hamiltonian function
is represented by a multilayer perceptron network instead of
using the structure in Eq. (27), in terms of training convergence
rates, satisfaction of energy conservation principle, and Lie
group constraints. To verify energy conservation, we rolled
out the learned dynamics and calculated the Hamiltonian via
(27) along the predicted trajectories for (1) the black-box
model using ground-truth mass and potential energy with the
predicted states; (2) the unstructured Hamiltonian model using
the output of the multilayer perceptron Hamiltonian network;
and (3) the structured Hamiltonian model using the learned
mass and potential energy networks. We check the SO(3)
constraints by verifying that two quantities |detR − 1| and
∥RR⊤ − I∥ remain small along the predicted trajectories.

We first use a pendulum as described in Sec. VII-A without
energy dissipation. The models are trained for 5000 iterations
from 512 0.2-second state-control trajectories and rolled out
for a significantly longer horizon of 50 seconds. Fig. 9 plots
the training loss, the phase portraits, the SO(3) constraints
and the total energy (Hamiltonian) of the learned models for
a pendulum system. As the Hamiltonian structure is imposed
in the neural ODE network architecture, our model is able
to converge faster with lower loss (Fig. 9a and Table I),
preserves the phase portraits for state predictions (Fig. 9b), and
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Fig. 9: Comparison of different neural network architectures to learn pendulum dynamics: 1) black-box, i.e., the dynamics
function f is represented by a multilayer perceptron network; 2) unstructured Hamiltonian, i.e., the Hamiltonian function is
represented by a multilayer perceptron network instead of the sum of kinetic and potential energy as shown in Eq. (27); 3)
structured Hamiltonian, i.e., the Hamiltonian function has the form of Eq. (27). Initialized at ϕ = π/2, the learned pendulum
dynamics are rolled out, showing that our approach with structured Hamiltonian preserves the phase portraits, SO(3) constraints,
and the conservation of energy better than the other models.
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Fig. 10: Comparison of different neural network architectures to learn quadrotor dynamics: 1) black-box, i.e., the dynamics
function f is represented by a multilayer perceptron network; 2) unstructured Hamiltonian, i.e., the Hamiltonian function is
represented by a multilayer perceptron network instead of the sum of kinetic and potential energy as shown in Eq. (27); 3)
structured Hamiltonian, i.e., the Hamiltonian function has the form of Eq. (27). Initialized at a random pose and twist, the
learned quadrotor dynamics are rolled out, showing that our approach with structured Hamiltonian preserves SO(3) constraints
and the conservation of energy better than the other models, and provides better state predictions.

achieves the lowest angle prediction error in in Table I. Fig. 9c
and Table I show that the SO(3) constraints are satisfied by
our structured and unstructured Hamiltonian models as their
values of |detR − 1| and ∥RR⊤ − I∥ remain small along
a 50-second trajectory rollout initialized at ϕ = π/2. The
constant Hamiltonian in Fig. 9d of our structured Hamiltonian
with lowest standard derivation value in Table I verifies that
our model obeys the energy conservation law with high
precision, given no control input and no energy dissipation.
The Hamiltonian of the black-box model increases along the
trajectory while that of the unstructured Hamiltonian model
fluctuates and slightly decreases over time.

We also tested the models using the simulated Crazyflie
quadtoror with the same dataset D of 18 trajectories as
described in Sec. VII-C. The SE(3) port-Hamiltonian ODE
network was trained, as described in Sec. V-D, for 500
iterations. Our structured Hamiltonian model converges faster
with significantly lower loss as seen in Fig. 10a and in Table
I. We verified that the predicted orientation trajectories from
our learned models satisfy the SO(3) constraints. Fig. 10b
and Table I show two near-zero quantities |detR − 1| and
∥RR⊤− I∥, obtained by rolling out our learned dynamics for
5 seconds, while the learned black-box model significantly
violates the constraints after a very short time. Fig. 10c shows

TABLE I: Comparison of different neural network architec-
tures for pendulum and quadrotor dynamics learning.

Metrics Platform Black-box Unstructured Structured
Hamiltonian Hamiltonian

Training loss Pendulum 0.037 6.3× 10−5 2.3× 10−7

∥det(R)− 1∥ (avg.) Pendulum 1888752 1.4× 10−3 1.4× 10−3

∥RR⊤ − I∥ (avg.) Pendulum 267971.6 2.1× 10−3 2.1× 10−3

Total energy (std.) Pendulum 13557.1 0.163 0.003
Prediction error (avg.) Pendulum 1.02 (rad) 0.08 (rad) 0.008 (rad)

Training loss Quadrotor 2.2× 10−3 6.4× 10−4 3.92× 10−6

∥det(R)− 1∥ (avg.) Pendulum 3741 2.9× 10−6 2.6× 10−7

∥RR⊤ − I∥ (avg.) Quadrotor 29336.7 7.6× 10−6 1.3× 10−6

Total energy (std.) Quadrotor 18.1 0.074 1.64× 10−6

Prediction error (avg.) Quadrotor 0.49 (m) 0.46 (m) 0.02 (m)

a constant total energy along the predicted trajectory, i.e.,
lowest standard derivation value in Table I, from our struc-
tured Hamiltonian model without control input and dissipation
networks, verifying that the learned model obeys the law of
energy conservation. Fig. 10d and the prediction error in Table
I show that our structured Hamiltonian model provides better
trajectory predictions compared to the other methods.

E. Real Quadrotor Experiments

In this section, we verify our approach using a real quadrotor
robot, equipped with an onboard i7 Intel NUC computer and
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(a) RaspberryPi drone (b) Intel NUC drone (c) Intel NUC drone with payload

Fig. 11: Quadrotor robots used in the experiments: (a) RaspberryPi quadrotor whose mass and inertia matrix serve as nominal
values for our learning framework, (b) Intel NUC quadrotor with a different frame, and (c) Intel NUC quadrotor carrying a
coffee can as payload.
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Fig. 12: Trajectory tracking with real quadrotors: (a) vertical circle, (b) vertical lemniscate, (c) piecewise linear trajectory.

TABLE II: Position tracking errors using nominal and learned
quadrotor models with and without payload.

Model Train Test Circle Lemniscate Piecewise-
with with linear

payload payload
Nominal - No 0.26 (m) 0.52 (m) 0.62 (m)
Learned No No 0.13(m) 0.14(m) 0.22(m)
Learned No Yes 0.20 (m) 0.40 (m) 0.30 (m)
Learned Yes Yes 0.13 (m) 0.12 (m) 0.21 (m)

a PX4 flight controller (see Fig. 11b). The quadrotor’s pose
and twist were provided by a motion capture system.

1) Learning quadrotor dynamics after upgrade: We con-
sider a scenario in which the quadrotor is upgraded with a
new frame and a new onboard computer, leading to changes
in the robot dynamics that we aim to learn from data. The
nominal model was obtained from a computer-aided design
(CAD) model of another much lighter-weight Raspberry Pi
quadrotor with a Raspberry Pi computer and an F450 frame
(Fig. 11a), which is less accurate and far from the unknown
ground-truth model of our upgraded quadrotors. Specifically,
the nominal mass and inertia matrix are Mv0 = 1.3I and
Mω0 = diag([0.12, 0.12, 0.2]), respectively, for the upgraded
quadrotor in Fig. 11b. The other nominal matrices were set
to zero: Dv0(q,p) = 0, Dω0(q,p) = 0, V0(q) = 0
and B0(q) = 0. We modified the PX4 firmware [82] to

expose the normalized thrust and torque being sent to the
motors. The firmware’s normalization of thrust and torque
is unknown and, in fact, is learned from data via the input
gain matrix B(q). We collected 12 state-control trajectories
by flying the quadrotor from a starting pose to 12 different
poses using a PID controller provided by the PX4 flight
controller [82]. The trajectories were used to generate a
dataset D = {t(i)0:N ,q

(i)
0:N , ζ

(i)
0:N ,u

(i))}Di=1 with N = 1 and
D = 10000. We trained our model as described in Sec. V-D
for 5000 steps.

The trained model was used with the control policy in Sec.
VII-C to track different trajectories: a verticle circle, a vertical
lemniscate, and a 3D piecewise-linear trajectories. Fig. 12 and
13 show that we achieve better tracking performance using our
learned dynamics model and energy-based control compared
to the nominal model and the geometric controller in [79]. The
tracking errors of our controller with a learned model improve
by 2− 4 times compared to those of geometric control based
on the nominal model, as shown in Table II.

2) Learning quadrotor dynamics with extra payload: In
this section, we demonstrate that after our dynamics model
is trained, if there is a change in the quadrotor dynamics,
e.g., an extra payload is added, we are able to update the
dynamics quickly starting from the previously trained model.
We attached a coffee can to the quadrotor frame (Fig. 11c)
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Fig. 13: Real quadrotor trajectory using our learned model and controller (blue) and using a nominal model and a geometric
controller [79] (green) tracking a desired trajectory.

to change the mass and inertia matrix of the robot. We, then,
collected a new dataset by driving the quadrotor to 12 different
poses, and trained our dynamics model for only 100 steps,
initialized with the trained model in Sec. VII-E1.

In the presence of the coffee can payload, the tracking
performance of the controller with the previously learned
model degrades as shown in Fig. 14 and 15. Meanwhile,
after a quick model update, the robot is able to track desired
trajectories accurately again. Table II shows that our updated
model improves the tracking errors by 1.5–4 times compared
to the previously learned model.

VIII. CONCLUSION

This paper proposed a neural ODE network design for
robot dynamics learning that captures Lie group kinematics,
e.g. SE(3), and port-Hamiltonian dynamics constraints by
construction. It also developed a general control approach

for trajectory tracking based on the learned Lie group port-
Hamiltonian dynamics. The learning and control designs are
not system-specific and, thus, can be applied to different types
of robots whose states evolve on Lie group. These techniques
have the potential to enable robots to quickly adapt their
models online, in response to changing operational conditions
or structural damage, and continue to maintain stability during
autonomous operation. Future work will focus on extending
our formulation to allow learning multi-rigid-body dynamics,
handling contact, and online adaptation to disturbances and
structural changes in the dynamics.

IX. APPENDIX

A. Implementation Details

We used fully-connected neural networks whose architec-
ture is shown below. The first number is the input dimension
while the last number is the output dimension. The numbers
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Fig. 14: Quadrotor trajectory tracking experiment with extra payload: vertical circle (a), vertical lemniscate (b), piecewise linear
trajectory (c).
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Fig. 15: Tracking a piecewise-linear trajectory with extra
payload using our previously learned and updated models.

in between are the hidden layers’ dimensions and activation
functions. The value of εv and εω in (40) is set to 0.01.

1) Pendulum:
• Input dimension: 9. Action dimension: 1.
• L(q):

9 - 300 Tanh - 300 Tanh - 300 Tanh - 300 Linear - 6.
• Vθ(q): 9 - 50 Tanh - 50 Tanh - 50 Linear - 1.
• Bθ(q): 9 - 300 Tanh - 300 Tanh - 300 Linear - 3.

2) Pybullet quadrotor:
• Input dimension: 12. Action dimension: 4.
• Lv(q) only takes the position p ∈ R3 as input:

3 - 400 Tanh - 400 Tanh - 400 Tanh - 400 Linear - 6.
• Lω(q) only takes the rotation matrix R ∈ R3×3 as

input:
9 - 400 Tanh - 400 Tanh - 400 Tanh - 400 Linear - 6.

• Vθ(q): 12 - 400 Tanh - 400 Tanh - 400 Linear - 1.
• Bθ(q): 12 - 400 Tanh - 400 Tanh - 400 Linear - 24.

3) Real PX4 quadrotor:
• Input dimension: 12. Action dimension: 4.
• Lv(q) only takes the position p ∈ R3 as input:

3 - 20 Tanh - 20 Tanh - 20 Tanh - 20 Linear - 6.
• Lω(q) only takes the rotation matrix R ∈ R3×3 as

input:
9 - 20 Tanh - 20 Tanh - 20 Tanh - 20 Linear - 6.

• Dv;θ(q) only takes the position p ∈ R3 as input:
3 - 20 Tanh - 20 Tanh - 20 Tanh - 20 Linear - 6.

• Dω;θ(q) only takes the rotation matrix R ∈ R3×3 as
input:
9 - 20 Tanh - 20 Tanh - 20 Tanh - 20 Linear - 6.

• V (q): 12 - 20 Tanh - 20 Tanh - 20 Linear - 1.
• Bθ(q): 12 - 20 Tanh - 20 Tanh - 20 Linear - 24.

B. Derivation of Hamiltonian Dynamics on SE(3) from Hamil-
tonian Dynamics on a Matrix Lie Group

The Hamiltonian dynamics on SE(3) in (30) can be obtained
from the general matrix Lie group Hamiltonian dynamics in
(18) by computing explicit expressions for the terms ad∗ξ(p)

and T∗
eLq (η) with η = ∂H(q,p)

∂q .
To obtain an explicit expression for T∗

eLq (η), we use (6)
and the pairing in Def. 1:

⟨T∗
eLq(η), ξ⟩ = ⟨η,TeLq(ξ)⟩ = ⟨η,qξ⟩

= tr(η⊤qξ) = ⟨q⊤η, ξ⟩. (80)

Thus, T∗
eLq(η) = Pg∗(q⊤η), where Pg∗ is an orthogonal

projector on g∗ [83, Def. 3.60], which depends on the specific
matrix Lie group. For example, on SE(3) [84] with A ∈ R3×3,
a,b ∈ R3, and c ∈ R:

Pg∗

([
A a
b⊤ c

])
=

[
1
2 (A−A⊤) a

0⊤ 0

]
. (81)

To obtain an explicit expression for ad∗ξ(p), we use Def. 9
and the pairing in Def. 1:

⟨ad∗ξ(p),ψ⟩ = ⟨p, adξ(ψ)⟩ = ⟨p, [ξ,ψ]⟩
= tr(p⊤(ξψ −ψξ)) = ⟨[ξ⊤,p],ψ⟩.

(82)

Thus, ad∗ξ(p) = Pg∗([ξ⊤,p]).
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1) Expression for T∗
eLq(η) on SE(3): On SE(3), we have:

q =

[
R p
0⊤ 1

]
, ξ =

[
ω̂ v
0⊤ 0

]
, η =

[
ηR ηp

0⊤ 0

]
, (83)

and
⟨η,qξ⟩ = ⟨ηR,Rω̂⟩+ ⟨ηp,Rv⟩

= ⟨1
2
(R⊤ηR − η⊤

RR), ω̂⟩+ ⟨R⊤ηp,v⟩

=

〈[
1
2 (R

⊤ηR − η⊤
RR) R⊤ηp

0⊤ 0

]
,

[
ω̂ v
0⊤ 0

]〉
= ⟨T∗

eLq(η), ξ⟩,

(84)

where we used the properties tr(AB) = tr(BA) and
tr(x̂A) = 1

2 tr(x̂(A − A⊤)) of the hat map in the second
equality.

2) Expression for ad∗ξ(p) on SE(3): On se(3), we have:

p =

[
â b
0⊤ 0

]
, ξ =

[
ω̂ v
0⊤ 0

]
, ψ =

[
ĉ d
0⊤ 0

]
, (85)

and

⟨p,[ξ,ψ]⟩ =
〈[

â b
0⊤ 0

]
,

[
[ω̂, ĉ] ω̂d+ v̂c
0 0

]〉
= ⟨â, [ω̂, ĉ]⟩+ ⟨b, ω̂d+ v̂c⟩
= ⟨[â, ω̂], ĉ⟩+ ⟨b, v̂c⟩+ ⟨b, ω̂d⟩
= ⟨[â, ω̂], ĉ⟩ − tr(vb⊤ĉ) + ⟨ω̂⊤b,d⟩

= ⟨[â, ω̂], ĉ⟩+ ⟨1
2
(vb⊤ − bv⊤), ĉ⟩+ ⟨b̂ω,d⟩

= ⟨[â, ω̂] + 1

2
[b̂, v̂], ĉ⟩+ ⟨b̂ω,d⟩

=

〈[
[â, ω̂] + 1

2 [b̂, v̂] b̂ω
0⊤ 0

]
,

[
ĉ d
0⊤ 0

]〉
= ⟨ad∗ξ(p),ψ⟩,

(86)

where we used the hat map properties x̂⊤ = −x̂, x̂y = −ŷx,
and tr(x̂A) = 1

2 tr(x̂(A−A⊤)).
3) Consistency Between Hamiltonian Dynamics on a Ma-

trix Lie Group and on SE(3): Denote the momentum in (17)

as pξ =

[
pω̂ pv

0⊤ 0

]
and the momentum in (26) as pζ =

[
pω

pv

]
,

where ξ = ζ̂. Let pω̂ = ∂L
∂ω̂ = µ̂. By the chain rule, we have:

pωi
=

∂L
∂ωi

=

〈
µ̂,

∂ω̂

∂ωi

〉
= 2µi, (87)

where ω = [ω1 ω2 ω3]
⊤, µ = [µ1 µ2 µ3]

⊤ or

pω̂ =
1

2
p̂ω (88)

Therefore, we have:

pξ =

[
1
2 p̂ω pv

0⊤ 0

]
, i.e., a =

1

2
p̂ω,b = pv, (89)

leading to:

ad∗ξ(pξ) =

[(
1
2 p̂ωω + 1

2 p̂vv
)∧

p̂vω
0⊤ 0

]
, (90)

By plugging in (89), (90), (84) in the matrix Lie group Hamil-
tonian dynamics (18), we obtain the Hamiltonian dynamics on
SE(3) in (30).
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