
IEEE TRANSACTIONS ON ROBOTICS 1

Autonomous Navigation in Unknown Environments
with Sparse Bayesian Kernel-based Occupancy

Mapping
Thai Duong, Student Member, IEEE, Michael Yip, Senior Member, IEEE, and Nikolay Atanasov, Member, IEEE

Abstract—This paper focuses on online occupancy mapping
and real-time collision checking onboard an autonomous robot
navigating in a large unknown environment. Commonly used
voxel and octree map representations can be easily maintained
in a small environment but have increasing memory requirements
as the environment grows. We propose a fundamentally differ-
ent approach for occupancy mapping, in which the boundary
between occupied and free space is viewed as the decision
boundary of a machine learning classifier. This work generalizes
a kernel perceptron model which maintains a very sparse set
of support vectors to represent the environment boundaries
efficiently. We develop a probabilistic formulation based on
Relevance Vector Machines, handling measurement noise, and
probabilistic occupancy classification, supporting autonomous
navigation. We provide an online training algorithm, updating the
sparse Bayesian map incrementally from streaming range data,
and an efficient collision-checking method for general curves,
representing potential robot trajectories. The effectiveness of our
mapping and collision checking algorithms is evaluated in tasks
requiring autonomous robot navigation and active mapping in
unknown environments.

Index Terms—Sparse Bayesian Classification, Kernel-based
Occupancy Mapping, Relevance Vector Machine, Autonomous
Navigation, Collision Avoidance.

SUPPLEMENTARY MATERIAL

Software and videos supplementing this paper:
https://thaipduong.github.io/sbkm

I. INTRODUCTION

Autonomous navigation in robotics involves online local-
ization, mapping, motion planning, and control in partially
known environments perceived through streaming data from
onboard sensors [1], [2]. This paper focuses on the occupancy
mapping problem and, specifically, on enabling large-scale,
yet compact, representations and efficient collision checking
to support autonomous navigation. Occupancy mapping is a
well established and widely studied problem in robotics and
a variety of explicit and implicit map representations have
been proposed. Explicit maps model the obstacle surfaces
directly, e.g., via surfels [3]–[7], geometric primitives [8]–
[12], or polygonal meshes [13]–[15]. Implicit maps model the
obstacle surfaces as the level set of an occupancy [16]–[21]
or signed distance [22]–[26] or spatial function encoded via

We gratefully acknowledge support from ARL DCIST CRA W911NF-17-
2-0181 and ONR SAI N00014-18-1-2828.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California, San Diego, La Jolla, CA 92093 USA, email
{tduong, yip, natanasov}@ucsd.edu

Fig. 1: A ground robot in an unknown environment relying on
lidar scan data (red) for online occupancy mapping and collision-
free trajectory planning. Our mapping algorithm learns a sparse set
of occupied and free relevance vectors (light red and green dots,
respectively) that represents the environment based on the lidar scans.

voxels [25]–[27] or octrees [19]–[21]. The goal of this work is
to generate sparse probabilistic maps online, enabling large-
scale environment modeling, map uncertainty quantification,
and efficient collision checking.

Our preliminary work [28] develops a kernel perceptron
model for online occupancy mapping. The model uses support
vectors and a kernel function to represent obstacle boundaries
in configuration space. The number of support vectors scales
with the complexity of the obstacle boundaries rather than the
environment size. We develop an online training algorithm to
update the support vectors incrementally as new range obser-
vations of the local surroundings are provided by the robot’s
sensors. To enable motion planning in the new occupancy rep-
resentation, we develop efficient collision checking algorithms
for piecewise-linear and piecewise-polynomial trajectories in
configuration space. Our kernel perceptron model, however,
provides occupancy labels without a probability distribution,
making the classification accuracy susceptible to measurement
noise. Since unknown regions are frequently assumed free for
motion planning purposes, the lack of probabilistic information
also does not allow us to distinguish between well-observed
and unseen regions. This is especially important in active
exploration problems, where the robot autonomously chooses
the unknown regions to explore.

This paper develops a sparse Bayesian formulation of the
occupancy mapping problem and introduces an incremental
Relevance Vector Machine training algorithm to probabilisti-

IEEE TRANSACTIONS ON ROBOTICS 2

cally model the environment. To make our sparse Bayesian
kernel-based map compatible with motion planning algo-
rithms, we derive collision checking algorithms for linear and
general trajectories.

Contributions. This paper introduces a sparse Bayesian
kernel-based mapping method that:
• represents continuous-space probabilistic occupancy us-

ing a sparse set of relevance vectors stored in an R∗-tree
data structure (Sec. V and VIII-A),

• allows online map updates from streaming partial obser-
vations using an incremental Relevance Vector Machine
training algorithm with the predictive distribution mod-
eled by a probit function. (Sec. V-B), and

• provides efficient and complete (without sampling) colli-
sion checking for robot trajectories (Sec. VI and VIII-B).

II. RELATED WORK

Occupancy grid mapping is a commonly used approach for
modeling the free and occupied space of an environment.
The space is discretized into a collection of cells, whose
occupancy probabilities are estimated online using the robot’s
sensory data. While early work [29], [30] assumes that the
cells are independent, Gaussian process (GP) occupancy map-
ping [31]–[33] uses a kernel function to capture the correlation
among grid cells and predict the occupancy of unobserved
cells. Online training of a Gaussian process model, however,
does not scale well as its computational complexity grows
cubically with the number of data points. Ramos et al. [34]
improve on this by projecting the data points into Hilbert
space and training a logistic regression model. Senanayake
and Ramos [35] propose a Bayesian treatment of Hilbert maps,
called Sequential Bayesian Hilbert Map (SBHM), that updates
the map from sequential observations of the environment.
They achieve sparseness by calculating feature vectors based
on a sparse set of hinged points, e.g., on a coarse grid.
Instead of a fixed set of hinged points, localized automatic
relevance determination Hilbert maps (LARD-HM) [36] and
efficient Hilbert maps (EHM) [37] find the hinged points by
clustering the training data points using k-means algorithms
and calculate their kernel parameters using automatic rele-
vance determination. Meanwhile, Relevance Vector Machine
(RVM) [38]–[40] learns a sparse set of relevance vectors from
the training dataset. The original RVM work [38] initially
assumes that all data points are relevance vectors and prunes
them down, incurring high computation cost. Tipping and
Faul [40] derive a fast training algorithm that starts from
an empty set of relevance vectors and adds points to the
set gradually. Meanwhile, Lopez and How [41] propose an
efficient deterministic alternative, which builds a k-d tree from
point clouds and queries the nearest obstacles for collision
checking. Using spatial partitioning similar to a k-d tree,
octree-based maps [19], [42] offer efficient map storage by
performing octree compression, while AtomMap [43] stores
a collection of spheres in a k-d tree as a way to avoid grid
cell discretization of the map. Instead of storing occupancy
information, Voxblox [25] stores distance to obstacles in each
cell and builds an Euclidean Signed Distance Field, as a map
representation, online from streaming sensor data.

Navigation, in an unknown environment, requires the safety
of potential robot trajectories to be evaluated through a huge
amount of collision checks with respect to the map representa-
tion [44]–[46]. Many works rely on sampling-based collision
checking, simplifying the safety verification of continuous-
time trajectories by evaluating only a finite set of samples
along the trajectory [45], [47]. This may be undesirable in
safety critical applications. Bialkowski et al. [44] propose
an efficient collision checking method using safety certifi-
cates with respect to the nearest obstacles. Using a different
perspective, learning-based collision checking methods [48]–
[50] sample data from the environment and train machine
learning models to approximate the obstacle boundaries. Pan et
al. [49] propose an incremental support vector machine model
for pairs of obstacles but train the models offline. Closely
related to our work, Das et al. [48], [51] develop an online
training algorithm, called Fastron, to train a kernel perceptron
collision classifier. To handle dynamic environments, Fastron
actively resamples the environment and updates the model
globally. Geometry-based collision checking methods, such as
the Flexible Collision Library (FCL) [52], are also related but
rely on mesh representations of the environment which may
be inefficient to generate from local observations.

Our preliminary work [28], summarized in Sec. IV, provides
an approach to online occupancy mapping that supports effi-
cient collision checking with guarantees. However, to handle
noisy measurements and probabilistically model well-observed
and unknown regions, we introduce a probabilistic formulation
based on RVM inference that enables online sparse Bayesian
kernel-based occupancy mapping. Inspired by GP mapping
techniques, we utilize a kernel function to capture occupancy
correlations but focus on a compact representation of obstacle
boundaries by building an RVM model, i.e. a sparse set of
relevance vectors, incrementally from streaming local sensor
data. Specifically, only a local subset of the relevance vectors
is updated each time using our incremental RVM training
algorithm. Furthermore, motivated by the collision checking
approach in [44], we derive our own efficient collision check-
ing algorithms for our map representation. We develop an “in-
flated boundary” of the obstacle boundary that enables closed-
form conditions for checking line segments and ellipsoids for
collision. These key conditions allow us to check potential
robot trajectories for motion planning purposes.

III. PROBLEM FORMULATION

Consider a robot with state s ∈ S, consisting of the robot’s
position p ∈ [0, 1]d and other variables such as orientation,
velocity, etc., navigating in an unknown environment (Fig. 1).
Let O ⊂ [0, 1]d be a closed set representing occupied space
and let F be its complement, representing free space. Assume
that the robot can be enclosed by a sphere of radius r ∈ R>0

centered at p. In configuration space (C-space), the robot body
becomes a point p, while the obstacle space and free space
are transformed as Ō = ∪x∈OB(x, r), where B(x, r) = {x′ ∈
[0, 1]d : ‖x − x′‖2 ≤ r}, and F̄ = [0, 1]d \ Ō. Let S̄ be the
subset of the robot state space that corresponds to the collision-
free robot positions F̄ .

IEEE TRANSACTIONS ON ROBOTICS 3

Let ṡ(t) = f(s(t),a(t)) characterize the continuous-time
robot dynamics with control input trajectory a(t) ∈ A. We
consider constant control inputs (zero-order hold) applied at
discrete time steps tk for k = 0, 1, . . . , N so that a(t) ≡ ak for
[tk, tk+1). We assume that the state s(t) is known or estimated
by a localization algorithm and let sk := s(tk).

The robot is equipped with a sensor, such as lidar or depth
camera, that provides distance measurements zk at time tk to
the obstacle space O within its field of view. Our objective is
to construct an occupancy map m̂k : [0, 1]d → {−1, 1} of the
C-space based on accumulated observations z0:k, where “−1”
and “1” mean “free” and “occupied”, respectively. As the robot
is navigating, new sensor data are used to update the map as a
function , m̂k+1 = g(m̂k, zk), of the previous estimate m̂k and
a newly received range observation zk. Assuming unobserved
regions are free, we rely on m̂k to plan a robot trajectory to
a goal region G ⊆ S̄ . Applying control action a at s incurs a
motion cost c(s,a), e.g., based on traveled distance or energy
expenditure, and we aim to minimize the cumulative cost of
navigating safely to the goal G.

Problem 1. Given a start state s0 ∈ S̄ and a goal region
G ⊆ S̄, find a sequence of control actions that leads the robot
to G safely, while minimizing the motion cost:

min
N,a0,...,aN

N−1∑
k=0

c(sk,ak) (1)

s.t. ṡ = f(s,a),a(t) = ak for t ∈ [tk, tk+1),

s(t0) = s0, sN ∈ G, m̂k+1 = g(m̂k, zk),

m̂k(s(t)) = −1 for t ∈ [tk, tk+1), k = 0, . . . , N.

We next develop a sparse Bayesian kernel-based map
representation, offering efficient collision checking for robot
trajectories, and propose a complete solution to Problem 1.

IV. A SPARSE KERNEL-BASED CLASSIFIER FOR
OCCUPANCY MAPPING

Our preliminary work [28] on sparse Kernel-based map
(SKM) develops a sparse kernel perceptron model for online
classification of occupied and free space in the environment.
The model uses a set of support vectors and a kernel func-
tion to represent the obstacle boundaries in configuration
space. The number of support vectors necessary for accu-
rate classification scales with the complexity of the obstacle
boundaries rather than the environment size. Our approach
extends the Fastron algorithm [48], [49], which efficiently
trains a kernel perceptron model using a training dataset
collected globally from the environment. We develop an online
training procedure (Alg. 1) that updates the support vectors
incrementally as new range observations zk of the local
surroundings arrive. Given a training dataset D = {(xl, yl)}
generated from zk (e.g. see Sec. VIII-A for details), Alg. 1
prioritizes updating misclassified points’ weight based on their
margins (lines 6 and 7) and remove the redundant support
vectors (line 8) without affecting the model. When the next
local dataset arrives, it looks for new misclassified points and
incrementally adds them to the set of support vectors. Alg. 1
returns a set of M+ positive support vectors and their weight

Algorithm 1 Incremental Kernel Perceptron Training [28]

Input: Support vectors Λ+ = {(x+
i , α

+
i)}i and Λ− = {(x−j , α

−
j)}j

stored in an R∗-tree; Local dataset D = {(xl, yl)}; ξ+, ξ− > 0; Nmax.
Output: Updated Λ+,Λ−.
1: Query K+,K− nearest negative and positive support vectors from an
R∗-tree data structure.

2: for (xl, yl) in D do
3: Calculate Fl =

∑K+

i=1 α
+
i k(x+

i ,xl)−
∑K−

j=1 α
−
j k(x−j ,xl)

4: for t = 1 to Nmax do
5: if ylFl > 0 ∀l then return Λ+,Λ−

6: m = argminlylFl
7: WEIGHT CORRECTION(Fm, ym,Λ+,Λ−, ξ+, ξ−)
8: REDUNDANCY REMOVAL(Λ+,Λ−,D)
9: return Λ+,Λ−

10: function WEIGHT CORRECTION(Fm, ym,Λ+,Λ−, ξ+, ξ−)
11: ξ = ξ+ if ym > 0; and ξ = ξ−, otherwise.
12: Calculate ∆α = ξym − Fm.
13: if ∃(xm, αm) ∈ Λ+ ∪ Λ− then
14: Update weights: αm+=ym∆α, Fl+=k(xl,xm)ym∆α, ∀l
15: else
16: Calculate αm = ym∆α
17: Add (xm, αm) to Λ+ if ym > 0 and Λ−, otherwise.
18: function REDUNDANCY REMOVAL(Λ+,Λ−,D)
19: for (xl, yl) ∈ D do
20: if ∃(xl, αl) ∈ Λ+ ∪ Λ− and yl(Fl − α+

l) > 0 then
21: Remove (xl, αl) from Λ+ or Λ−

22: Update Fn-= k(xl,xn)α+
l , ∀(xn, ·) ∈ D

Λ+ = {(x+
i , α

+
i)}i and a set of M− negative support vectors

and their weight Λ− = {(x−j , α−j)}j . The classifier decision
boundary is characterized by a score function:

F (x) =

M+∑
i=1

α+
i k(x+

i ,x)−
M−∑
j=1

α−j k(x−j ,x), (2)

where k(·, ·) is a kernel function and α−j , α
+
i > 0. The

occupancy of a query point x can be checked by evaluating the
score function F (x) in Eq. (2). Specifically, m̂t(x) = −1 if
F (x) < 0 and m̂t(x) = 1 if F (x) ≥ 0. The score calculation
becomes slower when the number of support vectors increases.
We improve on this by storing the support vectors in an R∗-
tree data structure and efficiently query K+ and K− nearest
positive and negative support vectors (line 1 in Alg. 1) from
the R∗-tree to approximate F (x).

Motivated by the use of piecewise-linear and piecewise-
polynomial trajectories in many robot motion planning and
control algorithms [53]–[55], we derive conditions to classify
lines and curves, i.e., to check if every point on the curve is
free using the trained model. Checking that a curve p(t) is
classified as free is equivalent to verifying that F (p(t)) < 0,
∀t ≥ 0. It is not possible to express this condition for t
explicitly due to the nonlinearity of F . In Prop. 1, we show
that an accurate upper bound F̄ (p(t)) on the score F (p(t))
exists and can be used to evaluate the condition F̄ (p(t)) < 0
explicitly in t. The upper bound provides a conservative
but fairly accurate “inflated boundary” and allows efficient
classifications of curves p(t), assuming a radial basis function
kernel k(x,x′) = η exp (−γ‖x− x′‖2) is used.

Proposition 1 ([28]). For any (x−j , α
−
j) ∈ Λ−, the score F (x)

is bounded above by F̄ (x) = k(x,x+
∗)
∑M+

i=1 α
+
i −k(x,x−j)α−j

where x+
∗ is the closest positive support vector to x.

IEEE TRANSACTIONS ON ROBOTICS 4

To check if a line p(t) collides with the inflated boundary,
we find the first time tu such that F̄ (p(tu)) ≥ 0. This means
that p(t) is classified as free for t ∈ [0, tu).

Proposition 2 ([28]). Consider a ray p(t) = p0 + tv, t ≥ 0
such that p0 is classified as free and v is constant. Let x+

i

and x−j be arbitrary positive and negative support vectors.
Any point p(t) with t ∈ [0, tu) ⊆ [0, t∗u) is free for

tu := min
i∈{1,...,M+}

ρ(p0,x
+
i ,x

−
j), (3)

t∗u := min
i∈{1,...,M+}

max
j∈{1,...,M−}

ρ(p0,x
+
i ,x

−
j), (4)

where β = 1
γ

(
log(α−j)− log(

∑M+

i=1 α
+
i)
)

and

ρ(p0,x
+
i ,x

−
j) =

+∞, if vT (x+
i − x−j) ≤ 0

β−‖p0−x−j ‖
2−‖p0+x+

i ‖
2

2vT (x−j −x+
i)

, if vT (x+
i − x−j) > 0

.

For a line segment (pA,pB), all points on the segment
can be expressed as p(tA) = pA + tAvA, vA = pB − pA,
0 ≤ tA ≤ 1 or p(tB) = pB + tBvB , vB = pA − pB ,
0 ≤ tB ≤ 1. Using the upper bound provided by Eq. (3) or
Eq. (4), we find the free regions [0, tuA) and [0, tuB) starting
from pA and pB , respectively. If the free regions overlap, the
segment is classified as free and vice versa.

We extend line segment classification to general curves by
finding a Euclidean ball B(p0, r) whose interior is free.

Corollary 1 ([28]). Let p0 ∈ C be such that F̄ (p0) < 0
and let x+

i and x−j be arbitrary positive and negative sup-
port vectors. Then, every point inside the Euclidean balls
B(p0, ru) ⊆ B(p0, r

∗
u) is free for:

ru := min
i∈{1,...,M+}

ρ̄(p0,x
+
i ,x

−
j), (5)

r∗u := min
i∈{1,...,M+}

max
j∈{1,...,M−}

ρ̄(p0,x
+
i ,x

−
j) (6)

where ρ̄(p0,x
+
i ,x

−
j) =

β−‖p0−x−j ‖
2+‖p0−x+

i ‖
2

2‖x−j −x+
i ‖

and β =

1
γ

(
log(α−j)− log(

∑M+

i=1 α
+
i)
)

.

Consider a polynomial p(t) = p0 +a1t+a2t
2 + . . .+adt

d,
t ∈ [0, tf] from p0 to pf := p(tf). Corollary 1 shows that all
points inside B(p0, r) are free for r = ru or r∗u. If we can find
the smallest positive t1 such that ‖p(t1) − p0‖ = r, then all
points on the curve p(t) for t ∈ [0, t1) are free. We classify
the polynomial curve by iteratively covering it by Euclidean
balls. If any ball’s radius is smaller than a threshold ε, the
curve is considered colliding. Otherwise, it is considered free.

The sparse kernel-based model [28] is accurate, updates
efficiently from streaming range data, and evaluates curves
p(t) for collisions without sampling. However, the model does
not provide occupancy probability, which is desirable in au-
tonomous navigation applications for distinguishing between
unknown and well-observed free regions and for identifying
map areas with large uncertainty. This observation motivates
us to develop a sparse probabilistic model for online occu-
pancy classification and efficient collision checking.

V. ONLINE PROBIT RVM TRAINING

In this section, we develop an online probit relevance vector
machine (RVM) training algorithm that builds a sparse prob-
abilistic model for online occupancy mapping from streaming
range observations.

A. Relevance Vector Machine Preliminaries

A relevance vector machine [40] is a sparse Bayesian
approach for classification. Given a training dataset of N
binary-labeled samples D = (X,y) = {(xl, yl)}l, where
yl ∈ {−1, 1}, an RVM model maintains a sparse set
of relevance vectors xm for m = 1, . . . ,M . The rele-
vance vectors map a point x to a feature vector Φx =
[k1(x), k2(x), . . . , kM (x)]> ∈ RM via a kernel function
km(x) := k(x,xm). The likelihood of label y at point x is
modeled by squashing a linear feature function:

F (x) := Φ>xw + b, (7)

with weights w ∈ RM and bias b ∈ R through a function
σ : R 7→ [0, 1]:

P(y = 1|x,w) = σ(F (x)),P(y = −1|x,w) = 1− σ(F (x)).

Note that Eq. (2) is a special case of (7) with b = 0.
Examples of σ are the logistic function σ(f) := 1

1+exp(−f)

and the probit function σ(f) :=
∫ f
−∞ ϕ(z)dz, where ϕ(z) :=

1√
2π

exp(−z2/2) is the standard normal probability density.
The data likelihood of the whole training set is:

p(y|X,w) =

N∏
l=1

σ(F (xl))
1+yl

2 (1− σ(F (xl)))
1−yl

2 . (8)

An RVM model imposes a Gaussian prior on each weight
wm with zero mean and precision ξm (i.e., variance 1/ξm):

p(w|ξ) = (2π)M/2
M∏
m=1

ξ1/2
m exp

(
−ξmw

2
m

2

)
. (9)

The weight posterior is obtained via Bayes’ rule:

p(w|y,X, ξ) =
p(y|X,w)p(w|ξ)

p(y|X, ξ)
. (10)

The precision ξ is determined via type-II maximum likelihood
estimation, i.e., by maximizing the marginal likelihood:

L(ξ) = log p(y|X, ξ) = log

∫
p(y|X,w)p(w|ξ)dw. (11)

Given a maximizer ξ, the posterior p(w|y,X, ξ) is gener-
ally intractable and approximated by a Gaussian distribution
p(w|y,X,µ,Σ) with mean µ and covariance Σ using Laplace
approximation [56]. Training consists in determining ξ, µ, Σ.

At test time, due to the Laplace approximation, the predic-
tive distribution of a query point x becomes:

p(y|x, ξ) ≈
∫
p(y|x,w)p(w|y,X,µ,Σ)dw. (12)

The usual formulation of RVM [40] uses a logistic function for
σ, requiring additional approximations to the integral in (12).

IEEE TRANSACTIONS ON ROBOTICS 5

We emphasize that using a probit function, instead, enables a
closed-form for the predictive distribution:

p(y|x, ξ) ≈
∫
σ(y(Φ>xw + b))p(w|y,X,µ,Σ)dw

= σ

(
y(Φ>xµ+ b)√
1 + Φ>x ΣΦx

)
. (13)

This expression enables our results on closed-form classifica-
tion of curves in Sec. VI.

We review the details of RVM training and then propose an
online training algorithm that handles streaming training data.

1) Laplace approximation: Approximation of the weight
posterior p(w|y,X, ξ) is performed by fitting a Gaussian
density function around its mode µ, the maximizer of

L(w) := log(p(y|X,w)p(w|ξ)). (14)

Substituting (8) and (9) in (14), we can obtain the gradient
and Hessian of L(w) for the probit function σ:

∇L(w) = Φ>δ −Aw, ∇2L(w) = −Φ>BΦ−A, (15)

where Φ ∈ RN×M is the feature matrix with entries Φi,j :=

kj(xi), δ ∈ RN is a vector with entries δl := ϕ(ylF (xl))
σ(ylF (xl))

yl,
A := diag(ξ) ∈ RM×M , B := diag(DΦ>w + bδ + Dδ) ∈
RN×N , and D := diag(δ) ∈ RN×N . The Hessian is negative
semi-definite and, hence, L(w) is concave. Setting L(w) = 0,
we obtain a Gaussian approximation p(w|y,X,µ,Σ) with:

Σ = (Φ>BΦ + A)−1, (16)

µ = ΣΦ>B
(
Φµ+ B−1δ

)
, (17)

where µ is defined implicitly and is obtained via first- or
second-order ascent in practice [57]. Laplace approximation
provides a closed-form approximated posterior, which enables
efficient classifications of points, line segments and curves,
as shown in Sec. VI. When the true posterior is multi-modal,
Laplace approximation might not provide sufficient accuracy
because it captures only one of the modes.

2) Sequential RVM training: To the determine the precision
ξ of the weight prior in (9), Tipping and Faul [40] proposed a
sequential training algorithm that starts from an empty set of
relevance vectors, i.e., ξl = ∞, and incrementally introduces
new vectors to maximize the marginal likelihood in (11):

L(ξ) ≈ −1

2

(
N log 2π + log det C + t̂

>
C−1t̂

)
(18)

where t̂ := Φµ+ B−1δ and C := B + ΦA−1Φ>. For each
(xl, yl) in the training set D, define θl = q2

l − sl as follows:

sl :=

{
ξlSl

ξl−Sl
, if ξl <∞

Sl, else
ql :=

{
ξlQl

ξl−Sl
, if ξl <∞

Ql, else
(19)

where Sl = Φ>l C
−1Φl, Ql = Φ>l C

−1t̂, and Φl is the l-th
row of Φ. If θl > 0, the point xl is updated (if ξl < ∞) or
added (if ξl = ∞) as a relevance vector with ξl =

s2l
q2l−sl

. If
θl ≤ 0 and ξl < ∞, the point xl is removed from the RVM
model. These steps are shown in lines 8-12 of Alg. 2.

Algorithm 2 Online Probit RVM Training.

Input: Relevance vectors Λk = {(x(k)
i , y

(k)
i , ξ

(k)
i)}; training set Dk+1 =

{(xl, yl)}l; number of nearest relevance vectors to use K (optional)
Output: Relevance vectors Λk+1 = {(x(k+1)

i , y
(k+1)
i , ξ

(k+1)
i)}; weight

posterior mean µ and covariance Σ
1: Initialize Λk+1 = Λk .
2: if K is defined then Λlocal = K nearest relevance vectors from Λk
3: else Λlocal = Λk .
4: Φ = FEATUREMATRIX(Λlocal,Dk+1)
5: ξl =∞ for each (xl, yl) in Dk+1

6: Σ,µ = LAPLACEAPPROXIMATION(Λlocal,Dk+1).
7: while not converged and max number iterations not reached do
8: Pick a candidate (xm, ym) from Dk+1.
9: Calculate Sm, Qm, sm, qm, θm.

10: If θm > 0 and ξm =∞, add (xm, ym, ξm) to Λlocal.
11: If θm ≤ 0 and ξm <∞, remove (xm, ym, ξm) from Λlocal.

12: If θm > 0 and ξm <∞, re-estimate ξm =
s2m

q2m−sm
in Λlocal.

13: Σ,µ = LAPLACEAPPROXIMATION(Λlocal,Dk+1).
14: Λk+1 = Λk+1 ∪ Λlocal.
15: Σ,µ = GLOBALPOSTERIORAPPROXIMATION(Λk+1)
16: return Λk+1, Σ, µ
17:
18: function FEATUREMATRIX (Λ,D)
19: Calculate Φi,j = k(xi,xj) for all xj ∈ Λ and all xi ∈ D
20: return Φ
21: function LAPLACEAPPROXIMATION(Λ,D)
22: Calculate Σ, µ for relevance vectors Λ using D (Eq. (16) and (17)).
23: return Σ,µ.
24: function GLOBALPOSTERIORAPPROXIMATION(Λ)
25: return LAPLACEAPPROXIMATION(Λ,Λ).

B. Online RVM Training using Streaming Data

Existing techniques for RVM training assume that all data
is available a priori. In this section, we develop an online
RVM training algorithm (Alg. 2) that updates the set of rel-
evance vectors Λk = {x(k)

i , y
(k)
i , ξ

(k)
i)}i incrementally using

streaming data. Suppose that Λk has been obtained based on
prior data D0, . . . ,Dk. At time k + 1, a new training set
Dk+1 is received. The training set generation depends on the
application. We construct Dk+1 using a lidar scan zk+1 of an
unknown environment as detailed in Sec. VIII-A. Relevance
vectors are added or removed from Λk to correctly classify the
latest changes, e.g., new or disappearing obstacles, in training
set Dk+1 without affecting the accuracy of the classification
on the prior data and maintaining the sparsity of the model.

Alg. 2 presents our online probit RVM training approach.
The algorithm starts with the existing set of relevance vectors
Λk and adds new relevance vectors based on the samples in
Dk+1 using the sequential training approach in Sec. V-A.
Instead of using the feature matrix Φ (line 4) associated
with all prior relevance vectors, we use a feature matrix
approximation based on a local set Λlocal of K nearest
relevance vectors (line 2). Sec. VII provides a discussion on
the computational improvements and assumptions of the score
function approximation resulting from using Λlocal instead
of Λk. For test time classification, we compute the mean
µ and covariance Σ of the Laplace approximation to the
weight posterior according to Eq. (17) and (16). Laplace
approximation requires all data D = ∪k+1

i=1Di, used for training
up to time k+ 1 but only the local dataset Dk+1 is available.
Interestingly, the set Λk+1 of relevance vectors itself globally
and sparsely represents all the data used for training and,

IEEE TRANSACTIONS ON ROBOTICS 6

(a)

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

10

12

free

occupied

(b)

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

10

12

occupied

free

(c)

−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

pos. relevant vec.

neg. relevant vec.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d)

−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
pos. vec.

neg. vec.

G1(x) = 0

G2(x) = 0

G3(x) = 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(e)

−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
pos. vec.

neg. vec.

G1(x) = 0, true boundary

G3(x) = 0, n1 = 5, n2 = 1

G3(x) = 0, n1 = 1, n2 = 1

G3(x) = 0, n1 = 1, n2 = 1.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f)

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

10

12

occupied

free

(g)

−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

pos. relevant vec.

neg. relevant vec.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(h)

Fig. 2: Example of our mapping method: (a) a robot observing the environment via a laser scan (magenta); (b) work-space samples generated
from the laser scan zk; (c) configuration-space samples used as a training set at time k; (d) exact decision boundary with bias b = −0.05 and
classification threshold e = −0.01, ē = 0.494; (e) inflated boundaries (c.f. Sec. VI) generated by G1(x), G2(x), G3(x) with n1 = n2 = 1;
(f) inflated boundary G3(x) = 0 with various n1, n2. Example of map updates with changes in the environment: (g) configuration-space
samples from a second laser scan where part of the obstacles in the first scan disappears and a new obstacle appears; (h) our updated RVM
model reflecting the latest changes.

therefore, can be used for Laplace approximation (line 15).
If additional computation for Laplace approximation is not
feasible, one might directly store the weight mean µ and
covariance Σ (line 15) over time. The memory requirements
for either case are discussed in Sec. VII.

Fig. 2a depicts a ground robot equipped with a lidar scanner
whose goal is to build an occupancy map of the environment.
Fig. 2c plots the training set D1 generated from the first
lidar scan z1, assuming the current set of relevance vectors
Λk is empty. Fig. 2d shows the trained RVM model as a
sparse set of relevance vectors, serving as a sparse probabilistic
occupancy map of the environment, incrementally updated via
the streaming lidar scans. To illustrate map updates based on
the latest depth measurements, we consider a second scan
where part of the obstacles in the first scan disappears and a
new obstacle appears in the second scan (Fig. 2g). The RVM
model, trained with the first laser scan, is updated with the
second scan using our online RVM training algorithm (Alg. 2),
reflecting the obstacle changes in the environment as plotted
in Fig. 2h. A map representation is useful for autonomous
navigation (Problem 1) only if it allows checking potential
robot trajectories s(t) for collisions. We propose classification
methods for points, line segments, and general curves next.

VI. RVM CLASSIFICATION OF POINTS, LINES, AND
CURVES

This section discusses classification using the predictive
distribution in Eq. (13) and makes a connection with our
preliminaries results in [28]. Commonly, machine learning
models are only able to classify point queries but applications,
such as robot trajectory planning, may requires classification
of general curves. This can be done by successively checking
a dense set of points, sampled along the curve. However, we

show that under certain assumptions on the kernel function and
the decision threshold, line and general curve classification
based on the RVM decision boundary can be performed
directly and efficiently, based on the closed-form of the
predictive distribution in Eq. (13), without the need to sample.

A. RVM Classification of Points

Consider a set Λ of M relevance vectors with prior weight
precision ξ and mean µ and covariance Σ of the approximate
weight posterior p(w|y,X,µ,Σ). To classify a query point
x using the RVM model, we place a threshold ē = σ(e) on
the probability P(y = 1|x, ξ) (Def. 1). Fig. 2d illustrates the
decision boundary defined by Def. 1 with ē = σ(e) = 0.494,
i.e., e = −0.01.

Definition 1. Let ē ∈ [0, 1] and e := σ−1(ē). A point x is
classified as “-1” (free) if

P(y = 1|x, ξ) = σ

(
Φ>xµ+ b√
1 + Φ>x ΣΦx

)
≤ ē, (20)

or, equivalently, if

G1(x) := Φ>xµ+ b− e
√

1 + Φ>x ΣΦx ≤ 0. (21)

The condition in Eq. (21) can be verified for a given point
but it is challenging to obtain an explicit expression in terms
of x. If, instead of a point x, we consider a time-parameterized
curve p(t), then Eq. (21) becomes a nonlinear programming
feasibility problem in t. To avoid nonlinear programming, we
develop a series of upper bounds for G1(x) that make the
condition for classifying a point as free (i.e., y = −1) more
conservative but with a simpler dependence on x.

IEEE TRANSACTIONS ON ROBOTICS 7

Proposition 3. For a non-negative kernel function km(x) :=
k(x,xm), a point x is classified as “-1” if

G2(x) :=

M∑
m=1

(µm−e1{e≤0}
√
λmax)km(x)+b−e ≤ 0, (22)

where λmax ≥ 0 is the largest eigenvalue of the covariance
Σ, µm is the mth element of the mean µ, and 1{e≤0} is an
indicator function which equals 1 if e ≤ 0 and 0, otherwise.

Proof. Please refer to Appendix A.

The relaxed condition in Eq. (22) adjusts the weights of the
relevance vectors by an amount of δµ = −e1{e≤0}λmax ≥ 0.
Intuitively, this increases the effect of the positive relevance
vectors, leading to a more conservative condition than Def. 1.
Prop. 3 also allows us to use only the largest eigenvalue λmax
of Σ for point classification, which is easier to obtain and store
than the whole covariance matrix Σ. Methods for computing
λmax are discussed in Sec. VII-A.

To simplify the notation, let νm := µm − e1{e≤0}λmax be
the corrected relevance vector weights and split Λ into M+

positive relevance vectors Λ+ = {(x+
m, ν

+
m)} and M− nega-

tive relevance vectors Λ− = {(x−m, ν−m)}, where ν+
m = νm if

νm > 0 and ν−m = −νm if νm < 0. Now, Eq. (22) can be
re-written as:

G2(x) =

M+∑
i=1

ν+
i k(x,x+

i)−
M−∑
j=1

ν−j k(x,x−j)+b−e ≤ 0. (23)

Hence, Prop. 3 allows us to make an important connection
between sparse kernel classification with a ‘hard’ decision
threshold (Sec. IV) and its Bayesian counterpart (Sec. V-B).
Specifically, after the relevance vector weight correction,
Eq. (22) is equivalent to the kernel perceptron score in Eq. (2)
except for the bias term b− e.

1) The role of the bias term: One of the motivations for
developing a Bayesian map representation is to distinguish
between observed and unobserved regions in the environment.
Intuitively, as a query point x is chosen further away from
“observed” regions, where training data has been obtained,
its correlation with existing relevance vectors, measured by
k(x,xm), decreases. To capture and exploit this property, we
assume that the kernel has a common radial basis function
structure that depends only on a quadratic norm ‖Γ(x−xm)‖.
Assumption 1. Let k(x,xm) := η exp

(
−‖Γ(x− xm)‖2

)
with parameters η > 0 and Γ ∈ Rd×d.

In our application, the kernel parameters η and Γ may be
optimized offline via automatic relevance determination [58]
using training data from known occupancy maps. Under this
assumption, the feature vector Φx tends to 0 as x goes
towards unobserved regions and the occupancy probability
P(y = 1|x, ξ) tends to σ(b) in Eq. (20). Therefore, the
value of σ(b) represents the occupancy probability of points
in the unknown regions. In other words, σ(b) specifies how
much we trust that unknown regions are occupied and should
be a constant. For this reason, the bias b is fixed in our
online RVM training algorithm. If we are optimistic about
the unknown regions, the parameter b can be set to a large

negative number, i.e. σ(b) ≈ 0, and the decision boundary
shrinks towards the occupied regions. If we want the robot
to be cautious about the unknown regions, the parameter b
can be set to a large positive number, i.e. σ(b) ≈ 1, and
the decision boundary expands towards the unknown regions.
A common assumption in motion planning [59] is to treat
unknown regions as free in order to allow trajectory planning
to goals in the unknown space. In the context of this paper,
this means that the occupancy probability of points in unknown
regions, σ(b), should be lower than or equal to the decision
threshold ē = σ(e) in Def. 1.

Assumption 2. Assume that e ≥ b and, hence, ē ≥ σ(b).

2) RVM Classification with e = b: A natural choice for
the occupancy probability of unknown regions, σ(b), is to set
it exactly equal to the decision threshold between free and
occupied space, i.e., e = b. While the sparse kernel-based
map (SKM) in our preliminary work [28] does not have either
the bias parameter b and the threshold e in its model, Eq. (23)
have the same form as Eq. (2) when b = e, and are exactly
equivalent when b = e = 0. Therefore, all results in Sec. IV
for classification of points, lines, and curves can be reused.

Corollary 2. If the bias b in Eq. (7) is used as the decision
threshold for classification in Def. 1, i.e., e = b, then, by
Prop. 3 and Eq. (23), a point x is classified as “-1” if:

M+∑
i=1

ν+
i k(x,x+

i)−
M−∑
j=1

ν−j k(x,x−j) ≤ 0. (24)

Hence, Prop. 2 and Corollary 1 hold for line and curve
classification using a Relevance Vector Machine model.

3) RVM Classification with e ≥ b: For a general decision
threshold, e ≥ b, and a kernel function km(x) satisfying
Assumption 1, we develop an explicit condition for classifying
a point x as free.

Proposition 4. For integers n1, n2 ≥ 1, define ρ(a, b) :=

(n1 + n2)
(
a
n1

) n1
n1+n2

(
b
n2

) n2
n1+n2 . A point x is classified as

“-1” if

G3(x) :=

(M+∑
i=1

ν+
i

)
k(x,x+

∗)− ρ(e− b, ν−j k(x,x−j)) ≤ 0, (25)

where x+
∗ is the closest positive relevance vector to x and x−j

is any negative relevance vector.

Proof. Please refer to Appendix B.

Fig. 2e illustrates the exact RVM decision boundary from
Eq. (21), G1(x) = 0, and the boundaries G2(x) = 0 and
G3(x) = 0 resulting from the upper bounds in Prop. 3
and Prop. 4. Note that the boundary generated by G2(x)
is very close to the true boundary from G1(x), empirically
showing that the bound G2(x) is tight. The upper bound
G3(x) provides a conservative “inflated boundary”, whose
accuracy can be controlled via the integers n1, n2 in Prop. 4.
Note that G3(x) is inaccurate mainly in the unknown regions
because the Arithmetic Mean-Geometric Mean inequality used

IEEE TRANSACTIONS ON ROBOTICS 8

in Prop. 4’s proof (Appendix B) effectively replaces the kernel
function k(x,x−j) by a slower decaying one k(x,x−j)

n2
n1+n2 .

This suits the intuition that unknown regions should be catego-
rized as free more cautiously. Fig. 2f shows that increasing the
ratio n2/n1 makes the “inflated boundary” closer to the true
decision boundary in the unknown regions but slightly looser
in the well-observed regions and vice versa. Next, based on
Prop. 4, we develop conditions for classification of lines and
curves when e ≥ b without the need for sampling.

B. RVM Classification of Lines

Consider a linear trajectory described by a ray p(t) = p0 +
tv, t ≥ 0 such that p0 is obstacle-free according to Prop. 4,
i.e., G3(p0) ≤ 0, and v is a constant. To check if p(t) collides
with the inflated boundary G3(x) = 0, we find a time tu such
that any point p(t) is classified free for t ∈ [0, tu).

Proposition 5. Consider a ray p(t) = p0 + tv, t ≥ 0. Let x+
i

and x−j be arbitrary positive and negative relevance vectors.
Then, any point p(t) with t ∈ [0, tu) ⊆ [0, t∗u) is free for:

tu := min
i=1,...,M+

τ(p0,x
+
i ,x

−
j) (26)

t∗u := min
i=1,...,M+

max
j=1,...,M−

τ(p0,x
+
i ,x

−
j), (27)

where τ(p0,x
+
i ,x

−
j)

=

+∞, if V (t,x+

i ,x
−
j) has less than 2 roots

+∞, if V (t,x+
i ,x

−
j) has 2 roots t1 < t2 ≤ 0

t1 if V (t,x+
i ,x

−
j) has 2 roots 0 ≤ t1 < t2

0 if V (t,x+
i ,x

−
j) has 2 roots t1 ≤ 0 ≤ t2

.

and V (t,x+
i ,x

−
j) = at2 + b(x+

i ,x
−
j)t+ c(x+

i ,x
−
j) with

a := −n1‖Γv‖2,
b(x+

i ,x
−
j) := −2v>Γ>Γ(n1p0 − (n1 + n2)x+

i + n2x
−
j),

c(x+
i ,x

−
j) := −(n1+n2)‖Γ(p0 − x+

i)‖2+n2‖Γ(p0 − x−j)‖2

−(n1 + n2) log
ρ(e− b, ν−j)

η
n1

n1+n2
∑M+

i=1 ν
+
i

.

Proof. Please refer to Appendix C.

For a line segment (pA,pB), all points on the segment
can be expressed as p(tA) = pA + tAvA, vA = pB − pA,
0 ≤ tA ≤ 1 or p(tB) = pB + tBvB , vB = pA − pB ,
0 ≤ tB ≤ 1. Using the upper bound tuA on tA provided by
Eq. (26) or Eq. (27), we find the free region on (pA,pB)
starting from pA. Likewise, we calculate tuB which specifies
the free region from pB . If tuA + tuB > 1, the entire line
segment is free, otherwise the segment is considered colliding.
The proposed approach is summarized in Alg. 3 and illustrated
in Fig. 3a for the trained RVM model in Fig. 2.

C. RVM Classification of Curves

Instead of a constant velocity v representing the direction
of motion, we can define a general curve p(t) by considering
a time-varying term v(t). We extend the collision checking
conditions in Prop. 5 by finding an ellipsoid E(p0, r) :=

Algorithm 3 RVM Line Classification

Input: Line segment (pA,pB); relevance vectors Λ = {(xi, yi, ξi)};
weight posterior mean µ and max covariance eigenvalue λmax

1: vA = pB − pA, vB = pA − pB
2: Calculate tuA and tuB using Eq. (26) or Eq. (27).
3: if tuA + tuB > 1 then return True (Free)
4: else return False (Colliding)

{x : ‖Γ(x − p0)‖ ≤ r} around p0 whose interior is free
of obstacles, where Γ is the kernel parameter defined in
Assumption 1. This specific form of the ellipsoid leads a
closed-conditions as shown in the Prop. 6.

Proposition 6. Let p0 be such that G3(p0) < 0 and let x+
i

and x−j be arbitrary positive and negative support vectors.
Then, every point inside the ellipsoids E(p0, ru) ⊆ E(p0, r

∗
u)

is free for:

ru = min
i=1,...,M+

r(p0,x
+
i ,x

−
j) (28)

r∗u = min
i=1,...,M+

max
j=1,...,M−

r(p0,x
+
i ,x

−
j). (29)

where r(p0,x
+
i ,x

−
j)

=

+∞, if V̄ (t,x+

i ,x
−
j) has less than 2 roots

+∞, if V̄ (t,x+
i ,x

−
j) has 2 roots t1 < t2 ≤ 0

t1 if V̄ (t,x+
i ,x

−
j) has 2 roots 0 ≤ t1 < t2

0 if V̄ (t,x+
i ,x

−
j) has 2 roots t1 ≤ 0 ≤ t2

,

and V̄ (t,x+
i ,x

−
j) = āt2 + b̄(x+

i ,x
−
j)t+ c̄(x+

i ,x
−
j) with

ā := −n1,

b̄(x+
i ,x

−
j) := 2‖Γ(n1p0 − (n1 + n2)x+

i + n2x
−
j)‖,

c̄(x+
i ,x

−
j) := c(x+

i ,x
−
j).

Proof. Please refer to Appendix D.

Consider a general time-parameterized curve p(t), t ∈
[0, tf] from p0 := p(0) to pf := p(tf). Prop. 6 shows that all
points inside the ellipsoid E(p0, r) are free for r = ru ≤ r∗u.
If we can find the smallest positive t1 such that

‖Γ(p(t1)− p0)‖ = r, (30)

then all points on the curve p(t) for t ∈ [0, t1) are free. This
is equivalent to finding the smallest positive solution of Eq.
(30). We perform curve classification by iteratively covering
the curve by free ellipsoids. If the value of r is smaller than
a threshold ε, the curve is considered colliding. Otherwise,
it is considered free. The classification process for curves is
shown in Alg. 4 and illustrated in Fig. 3b and 3c for the trained
RVM model in Fig. 2 for a colliding curve and a free curve,
respectively.

In Prop. 5 and 6, calculating tu and ru takes O(M) time,
while the computational complexity of calculating t∗u and r∗u
are O(M2), where M = M+ +M−. If the line segments or
curves are limited to the neighborhood of the starting point
p0, the bound tu and ru can reasonably approximate t∗u and
r∗u, respectively, if x−j is chosen as the negative support vector,
closest to p0. Calculation of tu and ru in Prop. 5 and 6
is efficient in the sense that it has the same complexity as
classifying a point, yet it can classify an entire line segment
for t ∈ [0, tu) and an entire ellipsoid E(p0, ru), respectively.

IEEE TRANSACTIONS ON ROBOTICS 9

−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
G1(x) = 0

G3(x) = 0

line segments

intersection

(a) Checking line segments.

−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
G1(x) = 0

G2(x) = 0

G3(x) = 0

colliding curve

(b) Checking a colliding curve.

−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
G1(x) = 0

G2(x) = 0

G3(x) = 0

free curve

(c) Checking a free curve.

Fig. 3: Illustration of our classification algorithms for the trained RVM model in Fig. 2 with b = −0.05, e = −0.01, and n1 = n2 = 1.

Algorithm 4 RVM Curve Classification

Input: Curve p(t), t ∈ [0, tf]; threshold ε; relevance vectors Λ =
{(xi, yi, ξi)}; weight posterior mean µ and max covariance eigenvalue
λmax
while True do

Calculate rk using Eq. (28) or Eq. (29).
if rk < ε then return False (Colliding)
Solve ‖Γ(p(t)− p(tk))‖ = rk for tk+1 ≥ tk
if tk+1 ≥ tf then return True (Free)

VII. COMPUTATIONAL AND STORAGE IMPROVEMENTS

A. Computational Improvements

In the context of autonomous navigation, as a robot explores
new regions of its environment, the number of relevance
vectors required to represent the obstacle boundaries increases.
Since the score function in Eq. (7) depends on all relevance
vectors, the training time (Alg. 2) and the classification time
(Def. 1 for points, Alg. 3 for lines, and Alg. 4 for curves)
increase as well. We propose an approximation to the score
function F (x) for the radial basis kernel in Assumption
1. Since k(x,xm) approaches zero rapidly as the distance
between x and xm increases, the value of F (x) is not affected
significantly by relevance vectors far from x. We use R∗-tree
data structures constructed from the relevance vectors Λ+,
Λ− to allow efficient lookup of the nearest K+ and K−

positive and negative relevance vectors. Approximating the
score function F (x) using the nearest K+ and K− relevance
vectors improves its computational complexity from O(M) to
O(logM). To classify a point x, the M -dimensional feature
vector Φx is approximated by a K-dimensional one using
the K relevance vectors closest to x. Classification of a line
segment or a curve in Prop. 5 and 6 can be approximated by
using the K+ and K− nearest positive and negative relevance
vectors. The computational complexities of Eq. (26), (27),
(28), and (29) improve from O(M) and O(M2) to O(logM).

The line and curve classification algorithms depend on
Prop. 3 which requires the largest eigenvalue λmax of the
weight posterior covariance matrix Σ. Obtaining λmax from
Σ can be expensive as the number of relevance vectors grows.
Under Assumption 1, the entries in the feature matrix Φ for
relevance vectors that are far from each other go to 0 quickly
and can be set to zero, e.g., using a cut-off threshold for the

kernel values or only keeping the kernel values for the K
nearest relevance vectors. This leads to sparse matrices Φ and
Σ−1 in Eq. (16) whose smallest eigenvalue 1/λmax can be
approximated efficiently (e.g. [60]).

B. Storage Improvements

Alg. 2 returns a set of M relevance vectors xm with labels
ym and weight prior precision ξm. This set represents the RVM
model parameters and its memory requirements are linear in
M . However, the predictive distribution in Eq. (13) needs to
be obtained via Laplace approximation (Eq. (17) and (16))
when the RVM model is used for classification. If additional
computation for Laplace approximation is not feasible during
test time, the weight posterior mean µ and covariance Σ may
be stored also but Σ requires O(M2) storage. Fortunately, the
approximate decision boundary G2(x) = 0 in Prop. 3 used for
point, line, and curve classification only requires the largest
eigenvalue λmax of Σ. Hence, only the value of λmax needs
to be stored in addition to the relevance vectors xm, labels ym,
and weight mean µm. In this case, line 15 in Alg. 2 returns
the weight posterior mean µ and λmax instead of µ and Σ.

VIII. APPLICATION TO OCCUPANCY MAPPING AND
AUTONOMOUS NAVIGATION

A. Online Mapping

We consider a robot placed in an unknown environment
at time tk as illustrated in Fig. 1. It is equipped with a
lidar scanner measuring distances to nearby obstacles. Samples
generated from the lidar range scan zk are shown in Fig. 2b.
Since the robot body is bounded by a sphere of radius r, each
laser ray end point in configuration space becomes a ball-
shaped obstacle, while the robot body becomes a point. To
generate local training data, the occupied and free C-space
areas observed by the lidar are sampled (e.g., on a regular
grid). As shown in Fig. 2c, this generates a set D̄k of points
with label “1” (occupied) in the ball-shaped occupied areas and
with label “-1” (free) between the robot position and each laser
end point. To accelerate training, only the difference between
two consecutive local datasets Dk = D̄k \ D̄k−1 is used in
our online RVM training algorithm (Alg. 2). Storing the sets
of relevance vectors Λk over time requires significantly less

IEEE TRANSACTIONS ON ROBOTICS 10

Algorithm 5 GETSUCCESSORS and OBSTACLEFREE subroutines in
A∗[61] and RRT ∗ [62], respectively

Input: Current position pk; set of relevance vectors Λ = {(xi, yi, ξi)}
with posterior weight mean µ and covariance Σ; set N (pk) of potential
reference trajectories p(t− tk) with p(tk) = pk .

Output: Set of collision-free trajectories S.
S ← ∅;.
for p′ in N (pk) do

if p′ is a line and CHECKLINE(pk,p′,Λ) then . Alg. 3
S ← S ∪ {p′}

if p′ is a curve and CHECKCURVE(pk,p′,Λ) then . Alg. 4
S ← S ∪ {p′}

return S

memory than storing the training data ∪kDk. The occupancy
of a query point x can be estimated from the relevance vectors
by evaluating the function G1(x) in Eq. (21). Specifically,
m̂k(x) = −1 if G1(x) ≤ 0 and m̂k(x) = 1 if G1(x) > 0.
Fig. 2d illustrates the boundaries generated by Alg. 2.

B. Autonomous Navigation

Finally, we present a complete online mapping and nav-
igation approach that solves Problem 1. Given the sparse
Bayesian kernel-based map m̂k proposed in Sec. VIII-A, a
motion planning algorithm such as A∗ [61] or RRT ∗ [62] may
be used with our collision-checking algorithms to generate a
path that solves the autonomous navigation problem (Alg. 5).
The robot follows the path for some time and updates the map
estimate m̂k+1 with new observations. Using the updated map,
the robot re-plans the path and follows the new path instead.
This process is repeated until the goal is reached or a time
limit is exceeded (Alg. 6).

The use of the “inflated boundary” G3(x) = 0 from Prop. 4
for collision checking might block the motion planning task
if it is not tight enough in certain regions of the environment
(e.g., unobserved regions as discussed in Sec. VI-A). For such
regions, a different ratio of n2/n1 can be used in Prop. 4
to achieve a tighter bound G3(x). Increasing the decision
threshold ē (Def. 1) can also improve the accuracy of G3(x)
if a trade-off with robot safety is allowed. Another resort is to
use sampling-based collision checking, selecting points along
the curve p(t) and using Def. 1.

We consider robots with two different motion models. In
simulation, we use a first-order fully actuated robot, ṗ = v,
where the state s is the robot position p ∈ [0, 1]3, with
piecewise-constant velocity v(t) ≡ vk ∈ V for t ∈ [tk, tk+1),
leading to piecewise-linear trajectories:

p(t) = pk + (t− tk)vk, t ∈ [tk, tk+1), (31)

where pk := p(tk). In this case, the classification algorithm
for line segments (Alg. 3) is used during motion planning.

In the real experiments, we consider a ground wheeled
Ackermann-drive robot with dynamics model:

ṗ = v

[
cos(θ)
sin(θ)

]
, θ̇ =

v

`
tanφ, (32)

where the state s consists of the position p ∈ R2 and
orientation θ ∈ R, the control input u consists of the
linear velocity v ∈ R and the steering angle φ ∈ R, and

Algorithm 6 Autonomous Mapping and Navigation with a Sparse
Bayesian Kernel-based Map

Input: Initial state s0 ∈ S̄; goal region G; prior relevance vectors Λ0.
1: for k = 0, 1, . . . do
2: if sk ∈ G then break
3: zk ← new range sensor observation
4: Dk ← Training Data Generation(zk, sk) . Sec. VIII-A
5: Λk+1 ← Online RVM Training(Λk,Dk) . Alg. 2
6: Path Planning(Λk+1, sk,G) . Alg. 5
7: Move to the first state sk+1 along the path

` is the distance between the front and back wheels. The
nonlinear car dynamics can be transformed into a 2nd-order
fully actuated system p̈ = a via feedback linearization [54],
[55]. Using piecewise-constant acceleration a(t) ≡ ak ∈ A
for t ∈ [tk, tk+1) leads to piecewise-polynomial trajectories:

p(t) = pk + (t− tk)vk

[
cos(θk)
sin(θk)

]
+

(t− tk)2

2
ak, (33)

where pk := p(tk), θk := θ(tk), vk := v(tk). In our
experiments, the input set A is finite and the classification
algorithm for curves (Alg. 4) is used to get successor nodes
in an A∗ motion planning algorithm.

IX. EXPERIMENTAL RESULTS

This section presents an evaluation of our autonomous map-
ping and navigation method using a fully actuated robot (31)
in a simulated environment (Sec. IX-A), the Intel Research
Lab dataset [63] (Sec. IX-B), and a car-like robot (Fig. 1)
with Ackermann-drive dynamics (32) in real experiments (Sec.
IX-D). We examined the obstacle boundary with respect to the
bias parameter b and the threshold e in Sec. IX-C and carried
out an active mapping experiment using our map uncertainty
in Sec. IX-E. We used a radial basis function (RBF) kernel
with parameters η = 1 and Γ =

√
γI. The bias parameter b is

set to −0.05 in Sec. IX-A, Sec. IX-D and Sec. IX-E, and 0.0
in Sec. IX-B. Timing results are reported from an Intel i9 3.1
GHz CPU with 32GB RAM.

A. Comparison with binary map representation

In this section, we compared the accuracy, the recall and
storage requirements of our sparse Bayesian kernel-based map
(SBKM) with those of the non-Bayesian sparse kernel-based
map (SKM) from our preliminary work [28], the popular oc-
cupancy mapping algorithm OctoMap [19], and the sequential
Bayesian Hilbert map (SBHM) [35]. Since SKM only provides
binary maps, binary maps are used to calculate accuracy and
recall. As the ground-truth map (Fig. 4a) represents the work
space instead of C-space, a point robot (r = 0) was used
for an accurate comparison. Lidar scans were simulated along
the robot trajectory shown in Fig. 4a and used to build our
sparse Bayesian kernel-based map (SBKM), the non-Bayesian
sparse kernel-based map (SKM) [28], OctoMap, and sequen-
tial Bayesian Hilbert map (SBHM). An R∗-tree approximation
of the score F (x) was used with K+ + K− = 200 nearest
support vectors around the robot location pk for map updating
and with K+ +K− = 10 nearest support vectors for collision
checking. OctoMap’s resolution was set to 0.25 m to match

IEEE TRANSACTIONS ON ROBOTICS 11

−10 0 10 20 30 40 50 60
−5

0

5

10

15

20

25

(a) Ground truth map and robot trajectory.

−20 −10 0 10 20 30 40 50 60
−5

0

5

10

15

20

25

(b) Set of 2141 relevance vectors.

−10 0 10 20 30 40 50 60
−5

0

5

10

15

20

25

0.08

0.24

0.40

0.56

0.72

0.88

(c) The final SBKM map.

Fig. 4: Sparse map representation (with η = 1,Γ =
√
γI, γ = 3.0) built from local streaming laser scans along the robot trajectory.

TABLE I: Comparison among our sparse Bayesian kernel-based map (SBKM), our sparse kernel-based map (SKM) [28], OctoMap (OM) [19],
and sequential Bayesian Hilbert map (SBHM) [35]. An RBF kernel with η = 1,Γ =

√
γI was used for SBHM map and our SBKM and SKM

maps. †The storage requirements for SBKM are calculated for two storing approaches mentioned in Sec. VII: 1) with Laplace approximation
at test time, i.e., storing the relevance vectors’ location with their label and precision ξ; 2) without Laplace approximation at test time, i.e.,
storing the relevance vectors’ location with their label and weight’s mean µ, and the largest eigenvalue of the covariance matrix λmax. As
we only need an extra float to store λmax, both approaches offer similar storage requirements. ‡ The storage requirements for SBHM are
calculated as if the hinge points are stored using our storing approach.

Methods Kernel param. γ Threshold ē Accuracy Recall Vectors/Nodes Storage

SBKM 1.0 0.5 97.8% 97.9% 1115 9 kB†

SBKM 2.0 0.5 99.0% 99.3% 1642 13 kB†

SBKM 3.0 0.45 99.2% 99.7% 2141 17 kB†

SBKM 3.0 0.5 99.3% 99.4% 2141 17 kB†

SBKM 3.0 0.55 99.5% 98.7% 2141 17 kB†

SKM 3.0 - 99.9% 99.0% 2463 20 kB
SKM 2.0 - 99.8% 98.3% 2613 21 kB
SKM 1.0 - 99.8% 98.5% 3064 25 kB
OM - 0.5 99.9% 99.7% 12432 non-leafs & 34756 leafs 25 kB (binary)/236 kB (full)

SBHM 1.0 0.5 97.0% 98.0% 1156 9 kB‡

SBHM 2.0 0.5 99.0% 99.4% 1676 13 kB‡

SBHM 3.0 0.45 98.6% 99.0% 2205 17 kB‡

SBHM 3.0 0.5 99.0% 98.6% 2205 17 kB‡

SBHM 3.0 0.55 99.5% 98.2% 2205 17 kB‡

0 2 4 6 8 10
Trajectory time length tf

0

5

10

15

20

C
ol

lis
io

n
ch

ec
ki

ng
ti

m
e

(µ
s) SB,∆ = 0.002s

SB,∆ = 0.003s

SB,∆ = 0.005s

SB,∆ = 0.01s

SB,∆ = 0.05s

SB,∆ = 0.1s

Ours

(a)

0 2 4 6 8 10
Trajectory time length tf

0

20

40

60

80

C
ol

lis
io

n
ch

ec
ki

ng
ti

m
e

(µ
s) SB,∆ = 0.002s

SB,∆ = 0.003s

SB,∆ = 0.005s

SB,∆ = 0.01s

SB,∆ = 0.05s

SB,∆ = 0.1s

Ours

(b)

Fig. 5: Collision checking time comparison between our methods and
sampling-based (SB) ones with different sampling interval ∆ for (a)
line segments p(t) = p0 + vt and (b) 2nd-order polynomial curves
p(t) = p0 + vt+ at2 for t ∈ [0, tf] with various values of tf .

that of the grid used to sample our training data from. As
SBHM depends on a grid of hinge points to generate feature
vectors, we chose the grid’s resolution so that the number of
hinge points is similar to our SBKM’s number of relevance
vectors for a fair comparison.

Table I compares the accuracy, the recall and the storage
requirements of our SBKM maps, our SKM maps, SBHM
maps [35] and OctoMap’s binary and probabilistic maps. The
SBKM map and its sparse set of relevance vectors are shown in
Fig. 4. To calculate map accuracy, we used different thresholds
ē to generate binary versions of our map and compare with
the ground truth. The ground truth map was sampled on a

grid with the same resolution 0.25 m and the accuracy was
calculated as the number of correct predictions divided by
the total number of samples. The interior (gray regions in the
ground-truth map) of the obstacles were considered occupied
for our map - since it was surrounded by positive relevance
vectors - but were considered free in SKM and OctoMap maps.

Table I shows that SBKM (with threshold ē = 0.5), SKM,
OctoMap’s binary map, and SBHM (with threshold ē = 0.5)
led to a similar accuracy of ∼ 99% (γ = 2.0 & 3.0)
and ∼ 97% (γ = 1.0) and a similar recall of ∼ 99%
(γ = 2.0&3.0) and ∼ 98% (γ = 1.0). SKM has ∼ 0.5% higher
accuracy than SBKM since the support vectors lie around the
obstacle boundary, leading to sharper decision boundaries. As
the decision threshold ē decreases, the accuracy decreases,
because more free cells are classified as “occupied”, and the
recall increases, because more occupied cells are classified as
“occupied”. When the parameter γ decreases, the support of
the kernel expanded, leading to fewer relevance vectors, i.e.,
less storage but lower accuracy and recalls. This illustrates the
trade-off between storage gains and accuracy when the details
of the obstacles’ boundaries can be reduced via a lower value
of γ to achieve higher compression rate.

We compared the storage requirements for our SBKM and
SKM representations and OctoMap. OctoMap’s binary map
required a compressed octree with 12432 non-leaf nodes with
2 bytes per node, leading to a storage requirement of ∼ 25 kB.
Its fully probabilistic map required to store 47188 leaf and

IEEE TRANSACTIONS ON ROBOTICS 12

non-leaf nodes with 5 bytes per node, leading to a storage
requirement of ∼ 236 kB. As the space consumption depends
on the computer architecture and how the relevance vector
information is compressed, we provide only a rough estimate
of storage requirements for our maps. For the SKM map,
each support vector required 8 bytes, including an integer
for the support vector’s location on the underlying grid and
a float for its weight. As a result, ∼ 20 kB were needed
to store the 2463 resulting support vectors for γ = 3.0. As
discussed in Sec. VII-B, the SBKM map could be stored in two
ways: 1) the relevance vectors’ location, their label and their
weight prior precision if Laplace approximation was allowed
at test time; 2) the relevance vectors’ location, their label,
their weight mean and the largest eigenvalue λmax of the
covariance matrix Σ if Laplace approximation was not allowed
at test time and our collision checking methods were used.
The former stored an integer representing a relevance vector’s
location on the underlying grid and a float representing its
weight prior’s precision and its label (using the float sign). This
required 8 bytes on a 32-bit architecture per relevance vector.
Our SBKM map with Γ =

√
3.0I contained 2141 relevance

vectors, leading to storage requirements of∼ 17 kB. The latter
also needed 17 kB to store the relevance vectors’ location,
their weight’s mean and label. Besides, an extra float (4 bytes)
is needed to store λmax leading to a similar total storage
requirement of 17 kB. These requirements were 32% and 15%
better than those of OctoMap and our (non-Bayesian) SKM,
respectively. To achieve a sparse Bayesian map representation,
more computation is needed, leading to slower map update
for SBKM compared to SKM and OctoMap. Since SBHM
and SBKM are both Bayesian online mapping methods and
share similar settings, we compared their map update time in
Sec. IX-B. As γ decreases, the number of relevance vectors of
SBKM decreases while the number of support vectors of SKM
increases. This is because the relevance vectors spread out in
the environment while the support vectors are placed on both
sides of the obstacle boundaries. Therefore, as γ decreases, a
relevance vector represents more space leading to fewer rele-
vance vectors in the SBKM models and more support vectors,
maintaining a sharp decision boundary, for the SKM models.

We compared the average collision checking time over one
million random line segments p(t) = p0 +vt and one million
random second order polynomial curves p(t) = p0 +vt+at2

for t ∈ [0, tf] using our complete method (Alg. 3 with Eq.
(27) for line segments, Alg. 4 with Eq. (29) for curves,
K+ + K− = 10 for score approximation, and e = −0.01
for occupancy threshold) and sampling-based methods with
different sampling resolutions using the ground truth map.
Fig. 5a and 5b show that the sampling-based collision checking
time increased as the time length tf increased or the sampling
resolution decreased. Meanwhile, our method’s time was sta-
ble at ∼ 3 µs for checking line segments and at ∼ 11 µs for
checking polynomial curves suggesting our collision checking
algorithms’ suitability for real-time applications.

B. Comparison with probabilistic map representations
In this section, we compared our sparse Bayesian kernel-

based map (SBKM) approach with other probablistic occu-

pancy mapping techniques: OctoMap [19], localized automatic
relevance determination Hilbert map (LARD-HM) [36], and
sequential Bayesian Hilbert map (SBHM) [35]. The Intel
Research Lab dataset [63] was used with the four methods to
build the map of the environment in an online manner. Both
SBKM and SBHM are kernel-based Bayesian probabilistic
mapping methods from streaming local observations. While
SBHM achieves sparseness by calculating feature vectors
based on a sparse set of hinged points, e.g., on a coarse grid,
our SBKM method learns the hinged points, i.e. the relevance
vectors, from data. We tried our best to match the parameters
for a fair comparison, e.g. using the same kernel parameter
Γ =

√
γI with γ = 6.71 as provided by SBHM code [35].

Our online training data (Sec. V-B) were generated from a grid
with resolution 0.2 m. Meanwhile, the LARD-HM method
determines the hinged points by clustering the training data
points using k-means algorithms and calculates their kernel
parameters by automatic relevance determination. To build a
LARD-HM map from streaming depth measurements, we used
the publicly available LARD-HM code in [36] to incrementally
add the centroids of the clusters and their kernel parameters
to the maps. OctoMap code [19] was used with its default
parameters. Since we only considered probabilistic occupancy
maps in this section, the metrics for comparison were the area
under the receiver operating characteristic curve (AUC) and
the negative log-likelihood loss (NLL) of a point x, defined as
NLL(y|x, ξ) = − log p(y|x, ξ), where y ∈ {−1, 1} is the true
label and p(y|x, ξ) is the predictive distribution in Eq. (13).
The AUC score and NLL loss were calculated over two test
sets: one sampled uniformly from the whole dataset to capture
overall reconstruction accuracy and one sampled near the room
area boundaries to capture detail reconstruction accuracy.

Table II presents the metrics for the four mapping methods.
SBHM used a fixed grid of 5600 hinged points with resolution
0.5 m for feature vector calculation. Meanwhile, our approach
incrementally learned a sparse set of 3492 relevance vectors
from the training dataset, not requiring a set of fixed hinged
points. Similarly, LARD-HM determined the hinged points
from the data by incrementally adding the centroids of kf
free and ko occupied clusters and their kernel parameters
from each laser scan, where kf = ko = 2, 3, 4 leading
to 3640 (similar to the SBKM’s feature dimension), 5460
(similar to the SBHM’s feature dimension) and 7280 hinged
points in Table II, respectively. Fig. 6a, 6b and 6c show the
final maps from the SBHM, LARD-HM approaches and our
SBKM method, respectively. Fig. 6d plots the our SBKM
map’s variance, distinguishing between known (low variance)
and unknown (high variance) regions.

Our final map’s AUC score and NLL loss were slightly
worse than those of SBHM with full covariance matrix while
maintaining ∼ 35% fewer points to represent the environment
and having faster map updates with less than 1 s per scan,
on average, as shown in Table II and Fig. 7a. Our training
algorithm incrementally built the set of relevance vectors and
only updated the weights of the local vectors due to the use of
K nearest relevance vectors in Alg. 2. Consequently, it did not
have a fixed global set of points to optimize over as done by
SBHM, leading to suboptimality in trade-off for sparseness.

IEEE TRANSACTIONS ON ROBOTICS 13

TABLE II: Comparison among our sparse Bayesian kernel-based map (SBKM), Sequential Bayesian Hilbert map (SBHM) [35] (with full
and diagonal covariance matrices), localized automatic relevance determination Hilbert map (LARD-HM) [36] and OctoMap [19] on the
Intel Research Lab dataset [63]. An RBF kernel with η = 1,Γ =

√
γI was used for SBHM and our SBKM maps. The metrics are the area

under the receiver operating characteristic curve (AUC) and the negative log-likelihood loss (NLL). Collision checking time was measured
for line segments p(t) = p0 + vt and second-order polynomial curves p(t) = p0 + vt + at2 for t ∈ [0, tf] with tf = 2s. Our proposed
collision checking described in Sec. VI was used with our SBKM map while sampling-based collision checking with sampling resolution
∆ = 0.005 was used with the other maps.

Test data Methods SBHM SBHM LARD-HM LARD-HM LARD-HM SBKM SBKM OM
- γ 6.71 6.71 - - - 6.71 6.71 -
- Σ full diag. - - - full λmax only -
- Feature dim. 5600 5600 3640 5460 7280 3492 3492 -

Uniformly sampled AUC 0.98 0.98 0.90 0.96 0.97 0.96 0.95 0.95
Uniformly sampled NLL 0.24 0.24 0.41 0.30 0.24 0.36 0.52 0.27

Near boundary + rooms AUC 0.82 0.77 0.57 0.55 0.56 0.62 0.61 0.75
Near boundary + rooms NLL 0.54 0.60 0.83 0.83 0.78 0.73 0.84 0.67

- Map update time/scan 11.8 s 0.03 s 0.03 s 0.03 s 0.03 s 0.76 s 0.43 s 0.01 s
Line Collision checking time 380 ms 38 ms 5.6 ms 6.2 ms 6.2 ms 7 µs 7 µs 21 µs

Curve Collision checking time 384 ms 37 ms 6.3 ms 6.7 ms 6.5 ms 18 µs 18 µs 23 µs

−20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

0.0

0.2

0.4

0.6

0.8

1.0

(a) SBHM map.

−20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

0.0

0.2

0.4

0.6

0.8

1.0

(b) LARD-HM map.

−20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

0.0

0.2

0.4

0.6

0.8

1.0

(c) Our SBKM map.

−20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

0.00

0.05

0.10

0.15

0.20

0.25

(d) Our SBKM map’s variance.

Fig. 6: Comparison among our sparse Bayesian kernel-based map (SBKM), Localized Automatic Relevance Determination Hilbert Map
(LARD-HM) [36] with 7280 clusters, and Sequential Bayesian Hilbert Map (SBHM) [35] with η = 1, Γ =

√
6.71I built online using lidar

scans from the Intel Research Lab dataset [63].

Note that both our map and the SBHM map estimated the
mean µ and the full covariance matrix Σ of the weights’
posterior for test time. If our collision checking algorithms
are used for planning, only the largest eigenvalue λmax of Σ
is needed and can be calculated efficiently using the sparsified
inverse covariance matrix as shown in Sec. VII-B. In this case,
Table II shows that our map update time was reduced by half
to about ∼ 0.43 s per scan (Table II and Fig. 7a) while
offering similar AUC score to that of our SBKM map with
full covariance matrix. The higher NLL loss was due to the
upper bound used in Prop. 3 for point classification instead of
the true occupancy probability. A variant of SBHM that only
uses diagonal covariance matrix updated the map 25 times
faster than our SBKM method with full covariance matrix.
While SBKM time can be improved further using a diagonal
covariance matrix, we leave this investigation for future work.

Our map’s AUC score and NLL loss, calculated using test
data sampled uniformly from the dataset, were better than
those of LARD-HM with 3640 features (similar to our map’s
feature size 3492), comparable to those of LARD-HM with
5460 features, and worse than those of LARD-HM with 7280
features, shown in Fig. 6b. Our map update time was 14 times
(with λmax only) and 25 times (with full corvariance matrix)
slower. The main reason for the slower speed is that our
method uses Bayesian updates with a full posterior covariance
matrix while LARD-HM is not Bayesian. The speed of our
method can be accelerated by using a diagonal-only covariance

matrix formulation or learning different kernel parameters
from data using the key ideas in LARD-HM. With similar
number of features, LARD-HM tended to preserve less details
of the obstacle boundary compared to our method in the room
areas of the Intel Lab dataset, as shown in Fig. 6b and in Table
II by the better AUC score and NLL loss of our map when
the test set was sampled in the rooms near the boundary. This
reflects the difference that our SBKM approach adds relevance
vectors, which can be very close to the boundary, while
LARD-HM maps chooses cluster centroids, which intuitively
are farther from the boundary.

Octomap’s AUC score, calculated from test points sampled
uniformly from the complete dataset, was lower than ours as
the default maximum (0.97) and minimum (0.12) values of
the occupancy probability were used. Meanwhile, OctoMap’s
performance was better than ours in preserving boundary
details in the room areas. A feature dimension is not reported
for OctoMap since it is not a kernel-based method.

An advantage of our SBKM map representation is that it can
utilize the collision-checking techniques for lines and curves
developed in Sec. VI. We checked 1000 random line segments
p(t) = p0 + vt and 1000 second-order polynomial curves
p(t) = p0 + vt + at2 for t ∈ [0, tf] for collisions using our
method (Alg. 3 with Eq. (27) for line segments, Alg. 4 with
Eq. (29) for curves, K+ +K− = 20 for score approximation,
and e = −0.01 for occupancy threshold) and sampling-based
methods with sampling resolution ∆ = 0.005 s using the

IEEE TRANSACTIONS ON ROBOTICS 14

0 200 400 600 800

Time steps

10−2

10−1

100

101

M
ap

up
da

te
ti

m
e(

s)

SBKM - full cov.
SBKM - λmax.

SBHM - full cov.

SBHM - diag. cov.

LARD-HM

(a)

0 2 4 6 8 10
Trajectory time length tf

10−5

10−3

10−1

C
ol

lis
io

n
ch

ec
ki

ng
ti

m
e

(s
)

LARD-HM

SBHM diag.

SBHM

OctoMap

Ours

(b)

0 2 4 6 8 10
Trajectory time length tf

10−5

10−3

10−1

C
ol

lis
io

n
ch

ec
ki

ng
ti

m
e

(s
)

LARD-HM

SBHM diag.

SBHM

OctoMap

Ours

(c)

Fig. 7: (a) Map update times and collision checking time comparison for (b) line segments p(t) = p0 + vt and (c) second-order polynomial
curves p(t) = p0 + vt + at2 for t ∈ [0, tf] with various values of tf . Our proposed collision checking described in Sec. VI is used with
our SBKM map while sampling-based collision checking with sampling resolution ∆ = 0.005 is used with the other maps.

−0.4 −0.2 0.0 0.2 0.4
b

400
600
800

1000
1200

O
cc

up
ie

d
A

re
a

e = -0.2

e = 0.0

e = 0.2

(a) The occupied area (with different values of e) versus the bias b.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Noise’s standard deviation l

450
460
470
480
490
500

O
cc

up
ie

d
A

re
a

(b) The occupied area (with b = −0.01, e = 0.0) versus the noise’s
standard deviation.

Fig. 8: Occupied area versus the bias b and the threshold e (a) and
versus noise level (b).

OctoMap, SBHM, and LARD-HM maps. Fig. 7b and 7c show
that the collision checking time for sampling-based methods
increased as tf increased. Meanwhile, our method’s time was
stable at ∼ 7 µs for checking line segments and at ∼ 20 µs
for checking polynomial curves, as shown in Table II.

C. Decision Boundary’s Conservativeness

As the decision boundary between free and occupied spaces
affects the area for robot navigation, we examined its con-
servativeness with respect to the bias b, threshold e, and
measurement noise variance l2 parameters. Fig. 8a plots the
occupied area in our map, i.e., the area with occupancy
probability greater than the threshold e = 0, built from the
Intel Lab dataset [63] for different values of the bias b and
threshold e. As expected, the occupied area increases, i.e.,
smaller navigable area, if e decreases and/or b increases. Note
that our previous SKM model [28] does not offer similar
tuning for the decision boundary because it does not provide
parameters such as b and e.

The decision boundary’s conservativeness should also be
affected by the measurement noise since a robot should
proceed carefully around the obstacle boundary if the depth
measurements are noisy. To illustrate the conservativeness of
the boundary generated by our approach against measurement

noise, we added Gaussian noise with zero mean and variance
l2 to the laser endpoints in the dataset and trained our model.
The occupied area versus the noise’s standard deviation l is
plotted in Fig. 8b. As the noise level l increases, the occupied
area increases, i.e., the navigable area decreases, making the
robot more cautious around obstacles in the environment.

D. Real Experiments

Real experiments were carried out on an 1/10th scale
Racecar robot equipped with a Hokuyo UST-10LX Lidar and
Nvidia TX2 computer. The robot body was modeled by a ball
of radius r = 0.25 m. The online training data (Sec. V-B)
were generated from a grid with resolution 0.25 m. We used
an RBF kernel parameter Γ =

√
γI with γ = 3.0 and an R∗-

tree approximation of the score F (x) with K+ + K− = 20
nearest support vectors around the robot location pk for
map updating. For motion planning, second-order polynomial
motion primitives were generated with time discretization of
τ = 1 s as described in Sec. VIII-B. The motion cost
was defined as c(s,a) := (‖a‖2 + 2)τ to encourage both
smooth and fast motion [53]. Alg. 4 with Eq. (29), ε = 0.1,
score approximation with K+ = K− = 2, and threshold
e = −0.01 was used for collision checking in Alg. 5. The
trajectory generated by an A∗ motion planner was tracked
using a closed-loop controller [64]. The robot navigated in an
unknown hallway to two destinations consequently chosen by
a human operator. Fig. 9a shows the learned relevance vectors
representing the environment. Fig. 9b shows the probabilistic
map recovered from the relevance vectors together with the
robot trajectory and the two chosen destinations.

The time taken by Alg. 2 to update the relevance vectors
from one lidar scan is shown in Fig. 9c. Map updates imple-
mented in Python took 0.4 s on average. It took a longer time
(∼ 1 s) to update the map when the robot observed new large
parts of the environment, e.g., at the beginning and toward the
end of our experiment. To evaluate collision checking time, the
A∗ planning time was normalized by the number of motion
primitives being checked to account for differences in planning
to nearby and far goals. The planning time per motion primi-
tive (Fig. 9d) was ∼ 15 µs on average and ∼ 30 µs at most,
suggesting our method’s suitability for real-time applications.

In both the simulations and the real experiment, the free
area contains multiple blobs of points with low occupancy

IEEE TRANSACTIONS ON ROBOTICS 15

−20 −15 −10 −5 0 5 10 15 20

−10

−5

0

5

10

15

20
pos. relevance vectors

neg. relevance vectors

(a) The final 453 relevance vectors.

−20 −10 0 10 20

−10

−5

0

5

10

15

20

25

robot trajectory

start

goal 1

goal 2

0.0

0.2

0.4

0.6

0.8

1.0

(b) The final probabilistic map.

0 10 20 30 40 50 60

time(s)

0.0

0.5

1.0

1.5

ti
m

e(
s)

Map update time

(c) Map update time.

0 10 20 30 40 50 60

time(s)

10

20

30

ti
m

e(
µ
s)

A* time per motion primitive

(d) Planning time per motion primitive.

Fig. 9: Real experiment with an autonomous Racecar robot navigating in an unknown hallway environment: (a) The final 453 relevance
vectors; (b) The final probabilistic map; (c) Map update time; (d) Planning time per motion primitive. Please refer to our website https:
//thaipduong.github.io/sbkm for the experiment video.

0 10 20 30

0

5

10

15

20

25

30

0.2

0.4

0.6

0.8

(a) t = 76s

0 10 20 30

0

5

10

15

20

25

30

0.0

0.2

0.4

0.6

0.8

1.0

(b) t = 209s

0 10 20 30

0

5

10

15

20

25

30

0.0

0.2

0.4

0.6

0.8

1.0

(c) t = 301s

0 10 20 30

0

5

10

15

20

25

30

0.0

0.2

0.4

0.6

0.8

1.0

(d) t = 414s

Fig. 10: Active mapping at times t = 76s, 209s, 301s, 414s. The red, green and cyan dots are the initial and current robot positions, and
the goal actively picked to reduce the map entropy, respectively. The robot trajectory is in blue.

0 100 200 300 400

Time (s)

0.86

0.90

0.94

0.98

A
vg

.
m

ar
gi

na
l

en
tr

op
y

(b
it

s)

Fig. 11: Average marginal entropy of a point in the map over time.

probability, caused by the sparse map representation and the
fixed kernel parameters of SBKM. To improve this, kernel
parameter learning, e.g. using variational inference [65], clus-
tering and automatic relevance determination [36], [37], or
kernel parameter dictionaries, e.g., pre-trained in small and
simple environments [66], can be used to to adaptively update
the kernel parameters at different location based on the depth
measurements. This is a promising avenue for future research.

E. Active Mapping

Our SBKM representation enables uncertainty quantifica-
tion which besides for collision checking can be used for active
mapping. This ability is not offered by non-Bayesian mapping
methods, such as SKM. In this section, we demonstrate active
mapping of an unknown simulated environment using SBKM.
Our approach estimates the map uncertainty in different re-

gions and chooses the region with the highest uncertainty as
the goal region. Specifically, we maintain a frontier, defined as
a list of L candidate poses Pl, l = 1, 2, . . . , L. For each pose
Pl, we calculate the map uncertainty H(Sl) of the field of
view Sl of the depth sensor. The map uncertainty of a region
S is measured as the average marginal entropy over the region:

H(S) =
1

|S|

∫
S
h(x)dx, (34)

where h(x) is the marginal entropy of a point x in the region,
calculated using the predictive distribution in Def 1 as

h(x) = −P (y = 1|x, ξ) log2 P (y = 1|x, ξ)

−P (y = 0|x, ξ) log2 P (y = 0|xi, ξ),
(35)

y ∈ {−1, 1} is the predictive label of the point x, and |S|
denotes the area of the region S. We choose the region Sl∗

with the largest average marginal entropy to explore:

l∗ = argmax
l=1,2,...,L

H(Sl). (36)

In our active mapping experiment, the candidate poses
P1,P2, . . . ,PL in the frontier were sampled from the laser
endpoints up to the current time t with 4 different yaw
angles: 0, π4 ,

π
2 ,

3π
4 . Since the laser scans could not see through

obstacles, we gained little information of the environment by
placing the robot near the occupied regions. Therefore, only
the endpoints with maximum lidar range, i.e. the laser ray did
not hit an obstacle, and at least 2 m away from the positive

IEEE TRANSACTIONS ON ROBOTICS 16

relevance vectors were considered. A hypothetical lidar field
of view Sl (similar to Fig. 2b without the obstacles) simulating
a Hokuyo UST-10LX lidar, was placed at each candidate
pose Pl. We sampled N = 100 points xi, i = 1, . . . , N, from
Sl and computed the marginal entropy H(xi). The average
marginal entropy (34) of the region Sl was approximated as

H(Sl) ≈
1

N

N∑
i=1

h(xi). (37)

The robot picked the goal region Sl∗ with the highest map
uncertainty from the set {S1,S2, . . . ,SL} every 0.5 s and
planned a trajectory to reach the goal using our collision
checking methods and the same A∗ planner used in Sec. IX-D.
Fig. 10 shows the SBKM map, the robot trajectory and the
candidate pose associated with the goal region at different
times as the robot successfully explored and actively built
the map. The average marginal entropy of the map (Fig. 11),
estimated using Eq. (37) with N = 20736 points sampled on
a regular grid of resolution 0.25 m, shows our active mapping
approach reduced the map uncertainty over time.

X. CONCLUSION

This paper proposes a sparse Bayesian kernel-based map-
ping method for efficient online generation of large occupancy
maps, supporting autonomous robot navigation in unknown
environments. Our map representation, as a sparse set of
relevance vectors learned from streaming range observations
of the environment, is efficient to store. It supports efficient
and complete collision checking for general curves modeling
potential robot trajectories. Our experiments demonstrate the
potential of this model at generating compressed, yet accu-
rate, probabilistic environment models. Our results offer a
promising venue for quantifying safety and uncertainty and
enabling real-time long-term autonomous navigation in unpre-
dictable environments. Future work will further explore active
exploration and map uncertainty reduction, kernel parameter
learning as well as simultaneous localization and mapping
using the proposed map representations.

APPENDIX A
PROOF OF PROPOSITION 3

Proof. A point x is considered free if:

Φ>xµ+ b < e

√
1 + Φ>x ΣΦx, (38)

where Φx is the feature vector Φx =
[k1(x), k2(x), . . . , kM (x)]>. We use the following
lower bound and upper bound on Φ>x ΣΦx:
0 ≤ Φ>x ΣΦx ≤ λmax

∑M
m=1(km(x))2 where λmax ≥ 0

is the largest eigenvalue of the covariance matrix Σ. Since
km(x) > 0 for all m, we have:

1 ≤
√

1 + Φ>x ΣΦx ≤ 1 +
√
λmax

M∑
m=1

(km(x)). (39)

Therefore, the point x is still free if

Φ>xµ+ b ≤ e(1 + 1{e≤0}
√
λmax

M∑
m=1

(km(x))), (40)

or
∑M
m=1(µm − e1{e≤0}

√
λmax)km(x) + b− e ≤ 0.

APPENDIX B
PROOF OF PROPOSITION 4

Proof. A point x is free if Eq. (23) holds. Let x+
∗ be the

closest positive relevance vector to x and x−j be any negative
relevance vector. We have:

M+∑
i=1

ν+
i k(x,x+

i)−
M−∑
j=1

ν−j k(x,x−j) + b− e ≤

≤ (

M+∑
i=1

ν+
i)k(x,x+

∗)− ν−j k(x,x−j) + b− e

Under Assumptions 1 and 2, both terms ν−j kj(x) and e − b
are non-negative. By the arithmetic mean- geometric mean
inequality, we have:

ν−j k(x,x−j) + e− b = n2

ν−j k(x,x−j)

n2
+ n1

e− b
n1

≥ (n1 + n2)

(
ν−j k(x,x−j)

n2

) n2
n1+n2

(
e− b
n1

) n1
n1+n2

= ρ(e− b, ν−j k(x,x−j)).

Therefore, a point x is free if

(

M+∑
i=1

ν+
i)k(x,x+

∗)− ρ(e− b, ν−j k(x,x−j)) ≤ 0. (41)

APPENDIX C
PROOF OF PROPOSITION 5

Proof. By plugging k(x,x+
∗) = ηe−‖Γ(x−x+

∗)‖2 , and
k(x,x−j) = ηe−γ‖Γ(x−x−j)‖2 into Eq. (41), a point x is free if

e−‖Γ(x−x+
∗)‖2+

n2
n1+n2

‖Γ(x−x−j)‖2 ≤
ρ(e− b, ν−j)

η
n1

n1+n2

∑M+

i=1 ν
+
i

(42)

Substituting the test point x by p(t) = p0 + tv in Eq. (42),
the point p(t) is free if:

V (t,x+
∗ ,x

−
j) = −(n1 + n2)‖Γ(p0 + tv − x+

∗)‖2

+n2‖Γ(p0 + tv − x−j)‖2 − (n1 + n2)β ≤ 0,

where β = log
ρ(e−b,ν−j)

η
n1

n1+n2
∑M+

i=1 ν
+
i

. By expanding the quadratic

norms in V (t,x+
∗ ,x

−
j), the point p(t) is free if:

V (t,x+
∗ ,x

−
j) = at2 + b(x+

∗ ,x
−
j)t+ c(x+

∗ ,x
−
j) ≤ 0 (43)

where a = −n1‖Γv‖2,
b(x+
∗ ,x

−
j) = −2v>Γ>Γ(n1p0 − (n1 + n2)x+

∗ + n2x
−
j),

c(x+
∗ ,x

−
j) = −(n1 + n2)‖Γ(p0 − x+

∗)‖2

+n2‖Γ(p0 − x−j)‖2 − (n1 + n2)β.

Note that V (t,x+
∗ ,x

−
j) is a quadratic polynomial in t and the

point p(t) is free if V (t,x+
∗ ,x

−
j) ≤ 0.

1) If it has less than 2 roots, Eq. (43) is satisfied for all t.
2) If it has 2 roots t1 < t2, then V (t,x+

∗ ,x
−
j) ≤ 0 for t ≥ t2

or t ≤ t1. There are three cases:

IEEE TRANSACTIONS ON ROBOTICS 17

a) t1 < t2 ≤ 0: V (t,x+
∗ ,x

−
j) ≤ 0 for all t ≥ 0 or the

entire ray s(t) is free;
b) 0 ≤ t1 < t2: V (t,x+

∗ ,x
−
j) ≤ 0 for t ∈ [0, t1] or the

ray s(t) is free for t ∈ [0, t1].
c) t1 ≤ 0 ≤ t2: V (0,x+

∗ ,x
−
j) ≥ 0 or the ray s(t) is

colliding.

Let τ(p0,x
+
∗ ,x

−
j)

=

+∞, if V (t,x+

∗ ,x
−
j) has less than 2 roots

+∞, if V (t,x+
∗ ,x

−
j) has 2 roots t1 < t2 ≤ 0

t1 if V (t,x+
∗ ,x

−
j) has 2 roots 0 ≤ t1 < t2

0 if V (t,x+
∗ ,x

−
j) has 2 roots t1 ≤ 0 ≤ t2

.

Note that x+
∗ varies with t but belongs to a finite set, we cal-

culate τ(p0,x
+
i ,x

−
j) for all positive vectors x+

i and take the
minimum value. Therefore, p(t) is free as long as: t ≤ tu =
mini=1,...,M+ τ(p0,x

+,x−j), which holds for any negative rel-
evance vector x−j . Therefore, the point p(t) is free as long as
t ≤ t∗u = maxj=1,...,M− mini=1,...,M+ τ(p0,x

+,x−j).

APPENDIX D
PROOF OF PROPOSITION 6

Proof. Consider an arbitrary ray p′(t) = p0 + tv′, 0 ≤ t <
∞. If we scale the velocity v′ by a positive constant λ, i.e.
v = λv′, the ray p(t) = p0 + tv, 0 ≤ t < ∞ represents the
same ray as p′(t). If we scale the vector v′ by λ = 1

‖Γv′‖ ,
the velocity vector v satisfies ‖Γv‖ = 1. Using the Cauchy-
Schwarz inequality in Eq. (43) in Appendix C, we have:

−2tv>Γ>Γ(n1p0 − (n1 + n2)x+
∗ + n2x

−
j)

≤ 2t‖Γ(n1p0 − (n1 + n2)x+
∗ + n2x

−
j)‖

Therefore, the point p(t) is free if V̄ (t,x+
∗ ,x

−
j) ≤ 0. Follow-

ing the same reasoning as Prop. 5, the point p(t) is free for
0 < t < ru or 0 < t < r∗u. In other words, the interior of the
ellipsoids E(p0, ru) ⊆ E(p0, r

∗
u) is free.

REFERENCES

[1] J. Guzzi, A. Giusti, L. M. Gambardella, G. Theraulaz, and G. A. D.
Caro, “Human-friendly robot navigation in dynamic environments,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2013, pp. 423–430.

[2] L. Janson, T. Hu, and M. Pavone, “Safe motion planning in unknown en-
vironments: optimality benchmarks and tractable policies,” in Robotics:
Science and Systems (RSS), Pittsburgh, Pennsylvania, June 2018.

[3] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping:
using Kinect-style depth cameras for dense 3D modeling of indoor
environments,” The International Journal of Robotics Research (IJRR),
vol. 31, no. 5, pp. 647–663, 2012.

[4] M. Klingensmith, I. Dryanovski, S. Srinivasa, and J. Xiao, “Chisel: real
time large scale 3d reconstruction onboard a mobile device,” in Robotics:
Science and Systems (RSS), 2015.

[5] T. Whelan, R. Salas-Moreno, B. Glocker, A. Davison, and S. Leuteneg-
ger, “ElasticFusion: real-time dense SLAM and light source estimation,”
The International Journal of Robotics Research (IJRR), vol. 35, no. 14,
pp. 1697–1716, 2016.

[6] K. Wang, F. Gao, and S. Shen, “Real-time scalable dense surfel
mapping,” in IEEE Int. Conf. on Robotics and Automation (ICRA), 2019,
pp. 6919–6925.

[7] J. Behley and C. Stachniss, “Efficient surfel-based SLAM using 3D laser
range data in urban environments,” in Robotics: Science and Systems
(RSS), 2018.

[8] M. Kaess, “Simultaneous localization and mapping with infinite planes,”
in IEEE Int. Conf. on Robotics and Automation (ICRA), 2015, pp. 4605–
4611.

[9] S. Bowman, N. Atanasov, K. Daniilidis, and G. Pappas, “Probabilistic
data association for semantic slam,” in IEEE Int. Conf. on Robotics and
Automation (ICRA), 2017.

[10] L. Nicholson, M. Milford, and N. Sünderhauf, “QuadricSLAM: dual
quadrics from object detections as landmarks in object-oriented SLAM,”
IEEE Robotics and Automation Letters, vol. 4, no. 1, 2019.

[11] S. Yang and S. Scherer, “CubeSLAM: monocular 3-D object SLAM,”
IEEE Transactions on Robotics, vol. 35, no. 4, pp. 925–938, 2019.

[12] M. Shan, Q. Feng, and N. Atanasov, “OrcVIO: object residual con-
strained visual-inertial odometry,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2020.

[13] L. Teixeira and M. Chli, “Real-time mesh-based scene estimation for
aerial inspection,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2016.

[14] E. Piazza, A. Romanoni, and M. Matteucci, “Real-time cpu-based
large-scale three-dimensional mesh reconstruction,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1584–1591, 2018.

[15] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-
source library for real-time metric-semantic localization and mapping,”
in IEEE Int. Conf. on Robotics and Automation (ICRA), 2020.

[16] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[17] O. Kähler, V. A. Prisacariu, and D. W. Murray, “Real-time large-scale
dense 3D reconstruction with loop closure,” in European Conference on
Computer Vision (ECCV), 2016, pp. 500–516.

[18] M. Muglikar, Z. Zhang, and D. Scaramuzza, “Voxel map for visual
SLAM,” in IEEE Int. Conf. on Robotics and Automation (ICRA), 2020.

[19] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: an efficient probabilistic 3D mapping framework based on
octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206, 2013.

[20] M. Zeng, F. Zhao, J. Zheng, and X. Liu, “Octree-based fusion for
realtime 3d reconstruction,” Graphical Models, vol. 75, no. 3, pp. 126–
136, 2013.

[21] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. H. J. Kelly, and
S. Leutenegger, “Efficient octree-based volumetric SLAM supporting
signed-distance and occupancy mapping,” IEEE Robotics and Automa-
tion Letters, vol. 3, no. 2, pp. 1144–1151, 2018.

[22] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH), 1996, pp. 303–312.

[23] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruc-
tion,” in Eurographics Symposium on Geometry Processing, 2006.

[24] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon,
“KinectFusion: real-time 3D reconstruction and interaction using a
moving depth camera,” in ACM Sym. on User Interface Software and
Technology (UIST), 2011, pp. 559–568.

[25] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
incremental 3D Euclidean signed distance fields for on-board MAV
planning,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2017.

[26] L. Han, F. Gao, B. Zhou, and S. Shen, “FIESTA: a fast incremental
euclidean distance fields for online quadrotor motion planning,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2019.

[27] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3D reconstruction at scale using voxel hashing,” ACM Transactions on
Graphics, vol. 32, no. 6, 2013.

[28] T. Duong, N. Das, M. Yip, and N. Atanasov, “Autonomous navigation in
unknown environments using sparse kernel-based occupancy mapping,”
in IEEE Int. Conf. on Robotics and Automation (ICRA), 2020.

[29] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[30] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with rao-blackwellized particle filters,” IEEE Transactions on
Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[31] S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy maps,”
The International Journal of Robotics Research (IJRR), vol. 31, no. 1,
pp. 42–62, 2012.

[32] J. Wang and B. Englot, “Fast, accurate gaussian process occupancy maps
via test-data octrees and nested bayesian fusion,” in IEEE Int. Conf. on
Robotics and Automation (ICRA), 2016, pp. 1003–1010.

[33] M. G. Jadidi, J. V. Miro, and G. Dissanayake, “Warped gaussian
processes occupancy mapping with uncertain inputs,” IEEE Robotics
and Automation Letters, vol. 2, no. 2, pp. 680–687, 2017.

[34] F. Ramos and L. Ott, “Hilbert maps: scalable continuous occupancy
mapping with stochastic gradient descent,” The International Journal of
Robotics Research (IJRR), vol. 35, no. 14, pp. 1717–1730, 2016.

IEEE TRANSACTIONS ON ROBOTICS 18

[35] R. Senanayake and F. Ramos, “Bayesian Hilbert maps for dynamic
continuous occupancy mapping,” in Conference on Robot Learning
(CoRL), 2017, pp. 458–471.

[36] V. Guizilini and F. Ramos, “Large-scale 3D scene reconstruction with
Hilbert maps,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2016, pp. 3247–3254.

[37] V. Guizilini and F. Ramos, “Towards real-time 3D continuous occupancy
mapping using Hilbert maps,” The International Journal of Robotics
Research (IJRR), vol. 37, no. 6, pp. 566–584, 2018.

[38] M. E. Tipping, “The relevance vector machine,” in Advances in neural
information processing systems, 2000, pp. 652–658.

[39] M. E. Tipping, “Sparse bayesian learning and the relevance vector
machine,” Journal of Machine Learning Research, vol. 1, no. Jun, pp.
211–244, 2001.

[40] M. E. Tipping, A. C. Faul et al., “Fast marginal likelihood maximisation
for sparse bayesian models.” in Int. Conf. on Artificial Intelligence and
Statistics (AISTATS), 2003.

[41] B. T. Lopez and J. P. How, “Aggressive 3-d collision avoidance for
high-speed navigation,” in IEEE Int. Conf. on Robotics and Automation
(ICRA), 2017, pp. 5759–5765.

[42] J. Chen and S. Shen, “Improving octree-based occupancy maps using
environment sparsity with application to aerial robot navigation,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2017, pp. 3656–
3663.

[43] D. Fridovich-Keil, E. Nelson, and A. Zakhor, “AtomMap: A probabilistic
amorphous 3D map representation for robotics and surface reconstruc-
tion,” in IEEE Int. Conf. on Robotics and Automation (ICRA), 2017, pp.
3110–3117.

[44] J. Bialkowski, M. Otte, S. Karaman, and E. Frazzoli, “Efficient collision
checking in sampling-based motion planning via safety certificates,” The
International Journal of Robotics Research (IJRR), vol. 35, no. 7, pp.
767–796, 2016.

[45] J. Luo and K. Hauser, “An empirical study of optimal motion planning,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). IEEE,
2014, pp. 1761–1768.

[46] K. Hauser, “Lazy collision checking in asymptotically-optimal motion
planning,” in IEEE Int. Conf. on Robotics and Automation (ICRA), 2015.

[47] E. G. Tsardoulias, A. Iliakopoulou, A. Kargakos, and L. Petrou, “A
review of global path planning methods for occupancy grid maps
regardless of obstacle density,” Journal of Intelligent & Robotic Systems,
vol. 84, no. 1, pp. 829–858, 2016.

[48] N. Das, N. Gupta, and M. Yip, “Fastron: an online learning-based model
and active learning strategy for proxy collision detection,” in Conference
on Robot Learning (CoRL), 2017, pp. 496–504.

[49] J. Pan and D. Manocha, “Efficient configuration space construction and
optimization for motion planning,” Engineering, vol. 1, no. 1, pp. 046–
057, 2015.

[50] J. Huh and D. D. Lee, “Learning high-dimensional mixture models for
fast collision detection in rapidly-exploring random trees,” in IEEE Int.
Conf. on Robotics and Automation (ICRA), 2016, pp. 63–69.

[51] N. Das and M. Yip, “Learning-based proxy collision detection for robot
motion planning applications,” IEEE Transactions on Robotics, 2020.

[52] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library for
collision and proximity queries,” in IEEE Int. Conf. on Robotics and
Automation (ICRA). IEEE, 2012, pp. 3859–3866.

[53] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion
planning for quadrotors using linear quadratic minimum time control,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2017,
pp. 2872–2879.

[54] A. De Luca, G. Oriolo, and M. Vendittelli, “Stabilization of the unicycle
via dynamic feedback linearization,” IFAC Proceedings Volumes, vol. 33,
no. 27, pp. 687–692, 2000.

[55] J. Franch and J. Rodriguez-Fortun, “Control and trajectory generation
of an Ackerman vehicle by dynamic linearization,” in European Control
Conference (ECC), 2009, pp. 4937–4942.

[56] D. J. MacKay, “The evidence framework applied to classification net-
works,” Neural Computation, vol. 4, no. 5, pp. 720–736, 1992.

[57] I. T. Nabney, “Efficient training of RBF networks for classification,”
International Journal of Neural Systems, vol. 14, no. 3, pp. 1–8, 2004.

[58] R. M. Neal, Bayesian learning for neural networks. Springer Science
& Business Media, 2012, vol. 118.

[59] S. Koenig and Y. Smirnov, “Sensor-based planning with the free space
assumption,” in IEEE Int. Conf. on Robotics and Automation (ICRA),
1997.

[60] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK users’ guide:
solution of large-scale eigenvalue problems with implicitly restarted
Arnoldi methods. SIAM, 1998.

[61] S. Russell and P. Norvig, Artificial intelligence: a modern approach.
Prentice Hall Press, 2009.

[62] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for
optimal motion planning,” Robotics: Science and Systems (RSS), 2010.

[63] A. Howard and N. Roy, “The robotics data set repository (Radish),”
2003. [Online]. Available: http://radish.sourceforge.net/

[64] O. Arslan and D. E. Koditschek, “Exact robot navigation using power
diagrams,” in IEEE Int. Conf. on Robotics and Automation (ICRA), 2016.

[65] R. Senanayake, A. Tompkins, and F. Ramos, “Automorphing kernels for
nonstationarity in mapping unstructured environments,” in CoRL, 2018,
pp. 443–455.

[66] A. Tompkins, R. Senanayake, and F. Ramos, “Online domain adaptation
for occupancy mapping,” in Robotics: Science and Systems (RSS), 2020.

Thai Duong (S’18) is a PhD student in Electri-
cal and Computer Engineering at the University of
California, San Diego. He received a B.S. degree
in Electronics and Telecommunications from Hanoi
University of Science and Technology, Hanoi, Viet-
nam in 2011 and an M.S. degree in Electrical and
Computer Engineering from Oregon State Univer-
sity, Corvallis, OR, in 2013. His research interests
include machine learning in robotics, mapping and
active exploration using mobile robots, robot dynam-
ics learning, and decision making under uncertainty.

Michael Yip (Senior Member, IEEE) is an Assistant
Professor of Electrical and Computer Engineering
at UC San Diego, IEEE RAS Distinguished Lec-
turer, Hellman Fellow, and Director of the Advanced
Robotics and Controls Laboratory (ARCLab). His
group currently focuses on solving problems in data-
efficient and computationally efficient robot control
and motion planning through the use of various
forms of learning representations, including deep
learning and reinforcement learning strategies. His
lab applies these ideas to surgical robotics and

the automation of surgical procedures. Previously, Dr. Yip’s research has
investigated different facets of model-free control, planning, haptics, soft
robotics, and computer vision strategies, all towards achieving automated
surgery. Dr. Yip’s work has been recognized through several best paper
awards at ICRA, including the inaugural best paper award for IEEE’s Robotics
and Automation Letters. Dr. Yip has previously been a Research Associate
with Disney Research Los Angeles in 2014, a Visiting Professor at Stanford
University in 2019, and a Visiting Professor with Amazon Robotics’ Machine
Learning and Computer Vision group in Seattle, WA in 2018. He received a
B.Sc. in Mechatronics Engineering from the University of Waterloo, an M.S.
in Electrical Engineering from the University of British Columbia, and a Ph.D.
in Bioengineering from Stanford University.

Nikolay Atanasov (S’07-M’16) is an Assistant Pro-
fessor of Electrical and Computer Engineering at
the University of California San Diego. He obtained
a B.S. degree in Electrical Engineering from Trin-
ity College, Hartford, CT, in 2008 and M.S. and
Ph.D. degrees in Electrical and Systems Engineering
from the University of Pennsylvania, Philadelphia,
PA, in 2012 and 2015, respectively. His research
focuses on robotics, control theory, and machine
learning, applied to active sensing using ground and
aerial robots. He works on probabilistic environment

models that unify geometry and semantics and on optimal control and
reinforcement learning approaches for minimizing uncertainty in these models.
Dr. Atanasov’s work has been recognized by the Joseph and Rosaline Wolf
award for the best Ph.D. dissertation in Electrical and Systems Engineering at
the University of Pennsylvania in 2015 and the best conference paper award
at the International Conference on Robotics and Automation in 2017.

