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Abstract— This paper focuses on building semantic maps,
containing object poses and shapes, using a monocular camera.
Our contribution is an instance-specific mesh model of object
shape that can be optimized online based on semantic infor-
mation extracted from camera images. Multi-view constraints
on the object shape are obtained by detecting objects and
extracting category-specific keypoints and segmentation masks.
We show that the errors between projections of the mesh model
and the observed keypoints and masks can be differentiated in
order to obtain accurate instance-specific object shapes.

I. INTRODUCTION

The foundations of artificial perception lie in the twin
technologies of inferring geometry (e.g., occupancy map-
ping) and semantic content (e.g., scene and object recog-
nition). Simultaneous Localization And Mapping (SLAM)
are approaches capable of tracking the pose of a robotic
system while simultaneously reconstructing a sparse or dense
geometric representation of the environment. A major re-
search challenge today is to exploit information provided by
deep learning, such as category-specific object keypoints ,
semantic edges, and segmentation masks , in VIO and SLAM
algorithms to build rich models of the shape, structure, and
function of objects.

This paper addresses camera localization and object-level
mapping, incorporating object categories, poses, and shapes.
Our main contribution is the development of an instance-
specific object shape model based on a triangular mesh and
differentiable functions that measure the discrepancy in the
image plane between projections of the model and detected
semantic information. We utilize semantic keypoints [1], [2]
and segmentation masks [3] as observations for optimizing
the error functions. Initialized from a pre-defined mean
category-level model, the optimization steps are inspired
by the recently proposed differentiable mesh renderer [4],
which allows back-propagation of mask errors measured on
a rendered image to update the mesh vertices.

II. PROBLEM FORMULATION

We consider the problem of detecting, localizing, and
estimating the shape of object instances present in the scene,
and estimating the pose of a camera over time. The states
we are interested in estimating are the camera poses C ,
{ct}Tt=1 with ct ∈ SE(3) and the object shapes and poses
O , {on}Nn=1. An object state on = (µn, Ron , pon) consists
of a pose Ron ∈ SO(3), pon ∈ R3 and shape µn, specified as
a 3-D triangular mesh µn = (Vn, Fn) in the object canoncial
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Fig. 1: Our objective is to build detailed environment maps in-
corporating object poses and shapes. The figure from KITTI [5]
in the top row shows the kind of information that our method
relies on: bounding boxes (green), segmentation masks (magenta)
and semantic keypoints (multiple colors). The middle row includes
the reconstructed mesh models and 3D configuration. The last row
shows the projection result.

frame with vertices Vn ∈ R3×|Vn| and faces Fn ∈ R3×|Fn|.
We define a keypoint association matrix An ∈ R|Vn|×|Kn|

that generates |Kn| keypoints VnAn from all mesh vertices.
Suppose that a sequence I , {it}Tt=1 of T images

it ∈ RW×H , collected from the corresponding camera poses
{ct}Tt=1, are available for the estimation task. From each
image it, we extract a set of object observations Zt , {zlt =
(ξlt, slt, ylt)}Lt

l=1, consisting of a detected object’s category
ξlt ∈ Ξ, a segmentation masks slt ∈ {0, 1}W×H and the
pixel coordiantes of detected keypoints ylt ∈ R2×|Klt|. See
Fig. 1 for example object observations.

We can predict expected semantic mask ŝlt and semantic
keypoint observations ŷlt using a perspective projection
model: ŝlt = Rmask(ĉt, ôn), ŷlt = Rkps(ĉt, ôn, An)

The camera and object estimates can be optimized by
reducing the error between the predicted Ẑ1:T and the actual
Z1:T observations measured by loss functions Lmask and Lkps

Problem. Given object observations Z1:T , determine the
camera poses C and object states O that minimize the mask
and keypoint losses:

min
C,O

T∑
t=1

Lt∑
l=1

(
wmaskLmask(slt,Rmask(ct, oπt(l)))

+ wkpsLkps
(
ylt,Rkps(ct, oπt(l), Aπt(l))

)) (1)

where wmask, wkps are scalar weight parameters specifying the
relative importance of the mask and keypoint loss functions.



III. TECHNICAL APPROACH

For each frame, we first use [3] to get object detection
results represented with bounding boxes and instance seg-
mentations inside the boxes. Each object is assigned to one
of the class labels in Ξ. Then we extract semantic keypoints
ylt within the bounding box of each detected object using
the stacked hourglass model of [2].

Next, we develop the observation models Rmask and Rkps
that specify how a semantic observations z = (ξ, s, y) is gen-
erated by a camera with pose (Rc, pc) ∈ SE(3) observing an
object of class ξ ∈ Ξ with pose (Ro, po) ∈ SE(3) and mesh
shape µ = (V, F ) with keypoint association matrix A. Let K
be the intrinsic matrix of the camera. Let x := V Aek ∈ R3

be the coordinates of the k-th object keypoint in the object
frame, where ek is a standard basis vector. The projection of
x onto the image frame can be determined by first projecting
it from the object frame to the camera frame using (Ro, po)
and (Rc, pc) and then the perspective projection π(·). In
detail, this sequence of transformations leads to the pixel
coordinates of x as follows:

y(k) = Kπ(RTc (Rox+ po − pc)) ∈ R2 (2)

Applying the same transformation to all object keypoints V A
simultaneously leads to the keypoint projection model:

Rkps(c, o, A) := Kπ
(
RTc (RoV A+ (po − pc)1T )

)
(3)

where 1 is a vector whose elements are all equal to 1.
To defineRmask, we need an extra rasterization step, which

projects the object faces F to the image frame. Kato et
al. [4] show how to obtain an approximate gradient for the
rasterization function Raster(·), which is used here. We can
define the mask projection model:

Rmask(c, o) := Raster (Rkps(c, o, I), F ) (4)

Since all the steps are differentiable, we can use gradient-
based method to solve the optimization in (1).

We implemented the localization and mapping tasks sepa-
rately. In the localization task, we initialize the camera pose
using inertial odometry obtained from integration of IMU
measurements [6]. The camera pose is optimized sequentially
between every two images via (1), leading to an object-level
visual-inertial odometry algorithm.

To initialize the object model in the mapping task, we
collect high-quality keypoints (according to qlt defined in
Sec. III) from multiple frames until an object track is
lost. The 3-D positions of these keypoints are estimated by
optimizing Lkps only using the Levenberg-Marquardt algo-
rithm. Using a predefined category-level mesh model(mean
model) with known keypoints, we apply the Kabsch algo-
rithm to initialize the object pose (i.e., the transformation
from the detected 3-D keypoints to the category-level model
keypoints). To improve the deformation optimization and
obtain a smooth mesh model, we add regularization using
a discretization of the continuous Laplace-Beltrami opera-
tor [7]. Constraints from symmetric object categories can be
enforced by directly defining the mesh shape model to be
symmetric.

Fig. 2: Top: category-level model before shape optimization. Bot-
tom: instance-level model after shape optimization.

Fig. 3: Left: 2D observation of mesh models. Right: corresponding
3D configuration. Trajectory in blue.

IV. EXPERIMENTS AND CONCLUSION

We evaluate the ability of the proposed localization and
mapping technique to optimize the camera trajectory and
reconstruct object poses and shapes using real-world KITTI
data. Our experiments use images from a monocular camera
and inertial odometry information and focus on detecting,
localizing and reconstructing cars. Fig. 2 and 3 show some
qualitative results.

This work demonstrates that object categories, shapes and
poses can be recovered from visual semantic observations.
The key innovation is the development of differentiable
keypoint and segmentation mask projection models that
allow object shape to be used for simultaneous semantic
mapping and camera pose optimization. In contrast with
existing techniques, our method generates accurate instance-
level reconstructions of multiple objects, incorporating multi-
view semantic information.
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