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Abstract—This paper develops an environment representation
that affords reasoning about the occupancy of space, necessary
for safe navigation, and about the identity of objects, necessary
for complex task interpretation. The main challenge is to provide
accurate dense classification of 3-D space, while observing the
limitations of onboard, realtime inference and storage. Our
approach constructs a graphical model of object geometry
and semantics and extends this sparse graph structure into a
tetrahedral decomposition of 3-D space. The resulting mesh map
can be used to interpolate the sparse object properties into a
dense spatial segmentation.

I. INTRODUCTION

Technological advances and improved affordability of em-
bedded sensing and computation create an opportunity for
autonomous robot systems to accomplish increasingly complex
tasks in unstructured environments. Robots need to reason
about the occupancy of space to guarantee safe navigation and
about the identity of objects to accommodate high-level task
specifications. The limitations of onboard processing and the
need for efficient inference and minimal latency of decision
making place strict requirements on the size and complexity
of artificial perceptual models. The objective of this paper is
to design an environment representation that unifies geometry
(occupancy of space) and semantic information (object classes)
and enables dense, yet efficient spatial reasoning. Our technical
approach is to detect objects in streaming image data and
extract semantic keypoints corresponding to mid-level object
parts [19] such as the windshield, doors, and wheels of a
car. The semantic keypoints and camera poses over time
are represented as the nodes of graphical model with edges
capturing constraints among the keypoints (object structure),
among the camera poses (sensor odometry) and across camera
poses and keypoints (camera projective model). Our main
contribution is to extend the graphical structure into a tetrahe-
dral decomposition of space that allows us to extrapolate the
sparse metric-semantic information at the nodes to a dense
segmentation of space. The advantage of this representation
is that it contains a sparse substructure allowing efficient
inference and storage and yet affords dense classification of
space where necessary.

Related work in robotics and computer vision is specialized
only to narrow aspects of the problem. For example, visual-
inertial odometry [2, 6, 8, 21] offers impressive tracking over
long trajectories but relies only on sparse geometric points

(ORB, SIFT, etc. features) and cannot account for the semantic
content or dense occupancy structure of space. Neural net-
work [12, 9, 25, 10] and structured object [4, 7] architectures
have been extremely successful for object recognition, seg-
mentation, and scene understanding but do not provide global
positioning of the semantic content. Keypoints of objects can
carry useful information such as structure, pose and scale of
objects yet maintain data-efficiency. [16, 26, 19] discuss about
how to detect and classify keypoints of specific categories.
Category-agnostic keypoint detector [28] is also proposed for
more general cases.

In SLAM application, map building is tightly combined
with localization and affects each other. Some object-based
map representation [24, 3] are introduced, mainly considering
the data-efficiency when a long-term task is performed. Also
object-based method can carry more semantic information
which can serve for the following high-level tasks.

Finally, volumetric occupancy mapping techniques [17, 27]
allow evaluating the safety and dynamic feasibility of planned
motion trajectories but require significant processing and
storage, do not capture semantic content, and do not allow
for incremental smoothing of past estimates based on new
information (e.g., loop closure). Efficient mesh-based mapping
methods [23, 15, 20] can distinguish the free and occupied
space by assigning occupancy status to each tetrahedron.
However semantic information is seldom included.

II. PROBLEM FORMULATION

Given a sequence of RGBD images {i1, i2, . . . , in}, a cor-
responding camera trajectory {x1, x2, . . . , xn} ⊂ SE(3), and
an object detector for C different object classes, our objective
is to build a representation f : R3 → {0} ∪ {1, . . . , C},
capable of classifying arbitrary 3-D points into unoccupied
(0) or belonging to one of the detectable classes. Our goal
is to have an efficient (based on few elements), yet accurate
(capable of dense classification) representation.

III. TECHNICAL APPROACH

A. Semantic Keypoint Extraction

Drawing inspiration from [29] and [5], we first compress the
image information into a collection of class-specific keypoints
and associate them to the camera trajectory in a graphical
model. Given an image i, we run object detection [22] to



Fig. 1: RGB image from a simulated environment overlaid
with the bounding boxes (green and blue) of detected objects
(car and bus) and associated semantic keypoints (red).

obtain bounding boxes (see Fig. 1). We extract semantic
keypoints corresponding to mid-level object parts (e.g., left
front wheel of a bus) from each bounding box using the
approach of [19]. In detail, we use a stacked hourglass
neural network [18], composed of two sets of convolution
and deconvolution layers with an intermediate supervision
layer that ensures nonvanishing gradients [13]. The output of
the network is a set of heatmaps, each of which indicates
the confidence in the 2D location of a corresponding object-
specific keypoint. In this preliminary work, we assume that
the data association both among object detections and among
object-specific keypoints over time is known. We also assume
that depth information is available, simplifying the process of
projecting the 2-D semantic keypoints to 3-D space.

B. From 2-D Information to 3-D Structure

Using the image depth and the known intrinsic and extrinsic
camera parameters, we compute the 3-D positions of the se-
mantic keypoints in the world frame. Since we assume known
camera localization and data association, the main source of
error in the keypoint position estimates is due to uncertainty
in depth (due to occlusions or limited field of view) and in the
2-D keypoint localization. We develop a smoothing technique
to obtain accurate global keypoint positions over time. At time
step t, we store all valid keypoints associated with object k
organized by keypoint ID as S := {S1, S2, . . . , SMk

}. Here,
each Si is a set that is augmented with newly estimated
positions for keypoint i over time. Given the keypoint sets S
associated with object k and a prior model of the object’s key-
points L := {l1, l2, . . . , lMk

}, we seek to find a transformation
and scaling of L to accurately match the estimates in S. First,
we measure the compactness of each cluster by calculating the
mean distances from its keypoints to its centroid:
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The compactness measure is used to select the three most
compact clusters Sp1

, Sp2
, Sp3

and seek the three correspond-
ing keypoints in the model L, denoted as lp1

, lp2
, lp3

. To
determine these keypoints, we need to obtain a transformation
(translation p, rotation R, scaling s) that minimizes the L2-

norm between the clusters and the model keypoints:
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estimate the scale s from the ratio of two triangles:
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Then, denoting the size of the clusters by N =
3∑
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can obtain p and R in closed form by method in [11],
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where Z and L are obtained from the singular value decom-
position M = ZΣLT of
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Finally, using s, p, and R, we can reconstruct the 3-D keypoint
positions in the world frame. In future work, we intend to
used pose graph optimization to improve this process and
remove the dependence on depth. Also, deformable shape
object models generated from annotated CAD models [19]
can add additional constraints to this inference process.

C. From Sparse Structure to Dense Segmentation

Mesh-representation can combine both sparse structure and
dense segmentation. Sparse structure only keeps a few points
and edges. And we can interpolate a new query point by
checking its neighboring saved points to build the dense
segmentation.

Here, the environment is defined as the convex hull con-
taining semantic keypoints of objects together with the camera
points. Camera points represent the camera’s locations along
the trajectory and they are assigned to be free. Semantic
keypoints are assigned to be occupied because they are points
of objects. Delaunary triangulation in 3-D space subdivides the
convex hull into tetrahedra and guarantees that no points are
inside of any circumscribed sphere of the tetrahedra. Tetrahe-
dra with both free and occupied vertices enable probabilistic
interpolation of the occupancy status of the vertices to the
tetrahedron interior.

Fig. 2 shows an example triangulation in 2-D for ease of
explanation but our experiments are carried out in 3-D. In 2-D,
the space is divided into triangles (rather than tetrahedra). We



Fig. 2: Triangulation example in 2D case: the original triangulation (left), the addition of auxiliary points (middle), and the
refined triangulation (right). The node colors indicate the camera (black), object (red and blue), and auxiliary (green) classes.

Fig. 3: Tetrahedral decomposition of 3-D space allowing
interpolation of sparse properties such as car parts (green),
bus parts (blue), and camera trajectory (red) into a dense
classification of space. Auxiliary points (cyan) are added at
the intersections of camera rays and tetrahedra faces.

look for the intersection of visible constraint edge and triangles
edges other than tetrahedra faces. If an object keypoint oi
is visible from a camera point cj , there should be an edge
going through free space between them. We first use Delaunay
triangulation to subdivide the convex hull of the point set
including object keypoints {o} and camera points {c}. We
add the intersections of the rays that connect camera points
with visible points with the tetrahedra faces to the point set.
We refer to these additional intersection points as auxiliary
points. See Fig. 2 for an example. To restrict the number of
auxiliary points, we choose only intersections that are outside
of the object convex hulls. We set the added auxiliary points
{a} as free space points, same as the camera points. Then,
together with the added auxiliary free space points and the
semantic keypoints and camera points, we can re-triangulate
the whole space defined by the convex hull of {o, c, a}.

For the dense reconstruction, we assign a label c ∈ RC+1

for each point s ∈ R3, where C is the number of categories
the classifier can distinguish among. Given a point s0 included
in the convex hull we generated, we can check the only
tetrahedron that contains s0 and use barycentric coordinates to
represent s0 as a combination of the vertices of the tetrahedron

v1:4

s0 =

4∑
i=1

pivi cs0 =

4∑
i=1

picvi (5)

where
∑4

i=1 pi = 1. Notice that for existing vertices v, cv is a
vector with one element as 1 and the others as 0. A threshold
is chosen to decide whether a point belongs to an object or
the free space.

Fig. 4: Dense segmentation of space into free, car (green), and
bus (blue) classes based on the tetrahedral model in Fig. 3.
Colors indicate the probabilities the points belong to certain
object classes, including the camera poses (black).

IV. EVALUATION

To detect object bounding boxes we used the YOLOv3
network [22] pretrained on the COCO dataset [14]. We used
a pretrained stacked hourglass model [18] to obtain seman-
tic keypoint heatmaps and the followed the procedure in
Sec. III-B to localize the keypoints in 3-D space. The proposed
method was evaluated in a Gazebo simulation [1], with a car
and a bus as foreground and a street view with houses as
background. The estimated semantic keypoint positions and
the Delaunay triangulation are shown in Fig 3. Fig 4 shows
the dense spatial segmentation resulting from a barycentric
interpolation on the tetrahedral model. Future work will focus
on interpolating variance information from the graphical model
to the dense representation and on an extension to a monocular
visual inertial system.
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