
Information Filter Occupancy Mapping using Decomposable Radial
Kernels

Siwei Guo and Nikolay A. Atanasov

Abstract— Building occupancy maps of the environment
is a fundamental problem for robot autonomy. A common
assumption in early work was that the occupancy states of
different map elements are independent. Recently, Gaussian
Process (GP) techniques were proposed to capture correlation,
which is important not only for improved accuracy but also for
uncertainty quantification and autonomous exploration based
on the predicted occupancy of nearby unexplored areas. Despite
these desirable properties, current GP mapping techniques are
limited to small maps and slow inference speeds. This paper
proposes an information space formulation of the GP mapping
problem. If a decomposable radial kernel is evaluated over a la-
tent grid of pseudo-input points, the resulting kernel matrix has
a Kronecker-product-of-Toeplitz-matrices structure that allows
very efficient representation of the occupancy distribution. We
utilize this structure to design an information filter occupancy
mapping algorithm with linear time and memory complexity
that still permits continuous space observations and predictions.

I. INTRODUCTION

Modern robots are equipped with sensors able to provide
overwhelming amounts of data within seconds. Interpreting
the data and extracting a concise representation of a robot’s
surroundings is a key problem in robot autonomy. In this
paper, we focus on building large occupancy maps using
point cloud observations from LIDAR or depth camera
sensors. A common approach is to describe the environment
as a collection of volumes, each associated with a binary
variable, indicating whether the volume is occupied or free.
There exist efficient methods for dense occupancy map-
ping, including mesh-based [1]–[3], voxel-based [4]–[6], and
surface-based [7]–[10] techniques. All of these techniques
make the assumption that the occupancy states of different
map elements are independent. A primary objectives of this
work is to model correlation among map elements, not only
to improve accuracy but also to predict the visibility and
geometric structure of nearby unexplored areas, which is
important for autonomous exploration [11]–[13].

Maintaining correlation in occupancy maps has been con-
sidered by several recent works relying on Gaussian Process
(GP) classification and regression [14]–[17]. GP occupancy
mapping approaches rely on a kernel function to model
correlation and allow resolution-free occupancy estimation.
GP classification [18, Ch. 3.3] deals accurately with the hy-
brid nature of the problem, involving discrete measurements

We gratefully acknowledge support from ARL DCIST CRA W911NF-
17-2-0181 and NSF NRI CNS-1830399.

S. Guo is with Brain Corp, San Diego, CA 92093, USA
guo@braincorporation.com. N. Atanasov is with the Depart-
ment of Electrical and Computer Engineering, University of California San
Diego, CA 92093, USA natanasov@ucsd.edu

(occupied or free) and a continuous occupancy function.
However, due to the non-Gaussian measurement likelihood,
the posterior distribution of the occupancy function cannot
be determined analytically and has to be approximated with
an assumed density [19], [20] or iterative methods such as
Laplace approximation [21] or expectation propagation [22].
O’Callaghan et al. [14], [23], [24] recognized that GP
regression can be used to estimate the latent occupancy
function using Gaussian measurements and its posterior can
be squashed to a binary (free-occupied) observation model
only afterwards. The resulting probabilistic least-squares
method is simpler and more efficient than GP classification
with negligible loss in accuracy. Despite this, the computa-
tional complexity of GP mapping scales cubically with the
number of sensor measurements since the matrix of kernel
correlations among different measurement locations needs to
be inverted in the inference process.

Several fundamental techniques [25], [26], involving
sparse kernels and matrix factorization, have been proposed
to enable efficient inversion of the covariance matrix. Spe-
cific to occupancy mapping, Kim and Kim [16], [27], [28]
use a sparse kernel and Bayesian Committee Machines
(BCM) to perform small GP regressions with subsets of the
training data. Similarly, Wang and Englot [17] partition the
measurement data among several GP regressions and use
BCM to fuse the sensor-level regressions into a full map.
Ramos et al. [29] proposed fast kernel approximations to
project the occupancy data into a Hilbert space where a lo-
gistic regression classifier can distinguish occupied and free
space. This idea has been extended to dynamic maps [30]
as well as into a variational autoencoder formulation [31]
that compresses the local spatial information into a latent
low-dimensional feature representation and then decodes it
to infer the occupancy of a scene. These GP techniques have
demonstrated a key ability to propagate a joint occupancy
distribution but still have time and memory complexity limi-
tations when large maps are considered. Variational inference
techniques [32], [33] to choose a sparse set of inducing
points [34], [35] that summarize the full GP model have been
proposed but have not been applied to occupancy mapping.

The main contribution of this paper is an approach for
storing and updating a joint map occupancy distribution in
terms of a Gaussian information vector and information ma-
trix over a latent grid structure of inducing points. Similar to
other GP occupancy mapping techniques, our representation
can be updated from continuous-space occupancy observa-
tions and can predict the occupancy values of continuous-
space query points. In contrast to BCM techniques that

consider independent decompositions of space, our approach
avoids independence assumptions by computing kernel cor-
relations from the inputs and query points to a global
latent grid structure. Maintaining the joint distribution over
a large grid is possible due to two key insights. First,
the kernel matrix, associated with kernels that decompose
across dimensions, and its inverse can be computed over
a grid as the Kronecker product of kernel matrices of
one-dimensional kernels. Second, approximating the latent
occupancy values over a grid using GP regression is exactly
equivalent to information filtering with particularly simple
parameter updates. These observations allow us to design an
Information Filter Occupancy Mapping (IFOM) algorithm
whose memory complexity of storing and time complexity
of updating the information space parameters of the joint oc-
cupancy distribution is linear both in the number of grid cells
and in the number of sensor observations. The structure of
decomposable kernels has recently been exploited by [36]–
[38] to design scalable GP inference but these ideas have
not been applied to occupancy mapping and have not been
associated with information filtering.

II. PROBLEM FORMULATION

Let X (d) := [x(d), x̄(d)] be a closed interval in R and
let X := X (1) × · · · × X (D) ⊂ RD be a closed rectangle
in D-dimensional Euclidean space that we are interested in
mapping. The occupancy of a location x ∈ X is specified
by a latent function f : X → R that assigns a free label
y = −1 or an occupied label y = 1 according to a Bernoulli
probability mass function (pmf):

p(y | f(x)) = Φ

(
yf(x)

σ

)
, y ∈ {−1, 1} (1)

where Φ(z) is the probit function, i.e., the cumulative dis-
tribution function of a standard Gaussian, and σ is a scaling
parameter. The probit1 serves to squash the continuous range
of f(x) into a range [0, 1] representing a valid pmf.

Problem (Occupancy Mapping). Given a set of occupancy
measurements, D := {(x(t), y(t)) | x(t) ∈ X , y(t) ∈
{−1, 1}, t = 1, . . . , T}, generated from the observation
model (1), construct an approximation f̂ : X → R of the
latent occupancy function f .

III. BACKGROUND

Consider a linear model f(x) := ωTx, where ω ∈ RD is
a vector parameterizing f . The occupancy y∗ ∈ {−1, 1} of
an arbitrary location x∗ ∈ X can be predicted based on the
available observations D via:

p(y∗ | x∗,D) =

∫
p(y∗ | x∗,ω)p(ω | D)dω, (2)

1Another usual choice of a squashing function is the sigmoid(
1 + e−z

)−1. We chose the probit Φ(z) because it allows us to establish
a clear connection between classification and regression in Sec. III and
to compute integrals

∫
Φ(z)φ(z)dz with respect to the Gaussian density

function in closed form.

where p(y∗|x∗,ω) = Φ(y∗ω
Tx∗/σ) based on (1).

Thus, the classification problem reduces to approxi-
mating the posterior parameter distribution p(ω|D) ∝∏T

t=1 Φ(y(t)ωTx(t)/σ)p(ω) based on the data D and a
given (usually Gaussian) prior p(ω) over the parameters.

Instead of a linear model, state-of-the-art classification
techniques use more complex models for f such as neural
networks [39] or Gaussian processes [18]. In this paper,
we focus on GP models, which use a kernel function k :
X × X → R to capture correlation among the environment
locations. A common kernel choice is the Gaussian radial
basis function:

kRBF (x,x′) := b exp

(
−1

2
(x− x′)TS−1(x− x′)

)
(3)

with hyperparameters b ∈ R>0 and diagonal positive-
semidefinite S ∈ RD×D controlling the amplitude and
wiggliness. Other kernel choices include Matérn kernels, γ-
exponential kernels, piecewise polynomial kernels, etc. [18,
Ch. 4.2]. The kernel is used to place a GP prior on the
latent occupancy function f ∼ GP(0, k), which means that
its values f := [f(x(1)) · · · f(x(T))]T over the training
set, before taking the observations y := [y(1) · · · y(T)]T

into account, have a Gaussian distribution p(f) = φ(f ;0,K)
with mean 0 and covariance matrix K ∈ RT×T with
elements Kij := k(x(i),x(j)). As in the linear model
case, since the observation model (1) is non-Gaussian, the
main challenge is to compute the posterior distribution
p(f |D) ∝

∏T
t=1 p(y(t) | f(x(t)))p(f) and subsequently the

integral in (2). The posterior is usually approximated via a
Gaussian distribution using Laplace approximation [21] or
expectation propagation [22] and, in turn, the integral in (2)
can be computed in closed form (see eq. (15)). While GP
classification uses a theoretically sound model and leads to
accurate results, the posterior approximation may be very
computationally demanding for large training sets.

Several authors [14], [16], [17], [28] proposed the use of
GP regression instead of GP classification in the context of
occupancy mapping. This can be justified by interpreting the
observation model (1) as follows:

y = sgn(f(x) + ε), ε ∼ N (0, σ2) (4)

where sgn is the sign function. This model is equivalent to
the model in (1) since:

P(y = 1 | f(x)) = P(ε > −f(x)) = Φ(f(x)/σ). (5)

Hence, instead of using classification, one can pretend that
the occupancy measurements y(t) are direct observations of
f(x(t)) perturbed by Gaussian noise ε, apply GP regression
to estimate f , and squash its value to Φ(f(x∗)/σ) only after
the inference process. More precisely, for an arbitrary query
x∗(1), . . . ,x∗(M) ∈ X , the joint distribution of y and f∗ :=
[f(x∗(1)) · · · f∗(x(M))]T is:[

y
f∗

]
∼ N

(
0,

[
K + σ2I K∗
KT
∗ K∗∗

])
(6)

where K∗ ∈ RM×T is a matrix with elements [K∗]ij :=
k(x∗(i),x(j)) and K∗∗ ∈ RM×M is a matrix with elements
[K∗∗]ij := k(x∗(i),x∗(j)) [18]. The posterior computed via
GP regression is the distribution of f∗ conditioned on y and
can be obtained from (6) via Schur complementation:

f∗|D ∼ N
(
K∗(K + σ2I)−1y,K∗∗ −K∗(K + σ2I)−1KT

∗
)
.

IV. TECHNICAL APPROACH

GP regression is a non-parametric method and inference
requires storing all training data D as seen in the expression
for f∗|D above. We propose the following steps to make
the inference in occupancy mapping problems significantly
less computationally and memory demanding with negligible
accuracy loss. First, instead of storing all training data D,
we introduce a latent finite grid C ⊂ X and only keep
a distribution over the N values f# ∈ RN of the grid
points x# ∈ C. This is similar to the idea of pseudo-
inputs in sparse GP regression [40] but instead of opti-
mizing the pseudo-input positions we keep a fixed grid. A
latent grid is well-suited for mapping because the kernel
matrix resulting from a decomposable radial kernel evaluated
over the grid C has a special Kronecker-product-of-Toeplitz-
matrices structure (Sec. IV-A). This allows very efficient
storage of the map distribution even for large environments.
Second, approximating the finite set of values f# using GP
regression is equivalent to Kalman filtering and, in turn,
to information filtering [41]. Hence, one can propagate the
latent function distribution in information form, which is
exact, memory and computationally efficient, and can still
be updated from continuous-space measurements (Sec. IV-
B). The trade-off is that to compute the predictive pmf in (2),
one needs to recover the latent mean and covariance of f#,
which is the main computational challenge for our approach.
Our motivation is that recovering the whole map mean and
covariance is not necessary during online mapping because
map uncertainty can be evaluated using the information
matrix, while collision checking can be performed locally
by only recovering small portions of the mean (Sec. IV-C).
These observations leads to our IFOM algorithm (Sec. IV-D).

A. Kronecker and Toeplitz kernel structure

To motivate the choice of a latent pseudo-point grid C, we
analyze the structure of the kernel matrix that arises when
a decomposable radial kernel is evaluated over the grid. We
make the following assumption throughout the paper.

Assumption 1. The kernel function is decomposable into a
product of one-dimensional kernels,

k(x,x′) =

D∏
d=1

k(d)
(
x(d),x′(d)

)
, (7)

and each k(d)
(
x(d),x′(d)

)
is radial, i.e., its value depends

only on the distance |x(d) − x′(d)| between its inputs.

This assumption means that the correlation between the
occupancy of two points in X is independent along the
axes in 3-D space, while the per-axis correlation depends

only on distance. This is a weak assumption that only states
that strong correlation along one direction does not imply
correlation along another direction. It is general enough to
capture correlations along different orientations of structures
in the environment but one set of kernel hyperparameters
might not capture different parts of the environment well
(e.g., vertical hallways vs diagonal hallways). Many com-
monly used kernels satisfy this assumption. For example,
the Gaussian kernel in (3) with b =

∏D
d=1 b

(d) and S =
diag

(
s(1), . . . , s(D)

)
is radial and decomposable:

kRBF (x,x′) =

D∏
d=1

b(d) exp

(
−
(
x(d) − x′(d)

)2
2s(d)s(d)

)
. (8)

Remark. We emphasize that Assumption 1 does not preclude
the use of automatic relevance determination [18] for opti-
mization of the kernel hyperparameters. For example, it per-
mits the use of a Gaussian kernel with ellipsoidal covariance.
Rather than hyperparameter optimization, this paper focuses
on efficient online training, storage, and inference.

Let X (d) be discretized into a finite grid ∪n(d)

k=1[x(d) +
(k − 1)r(d),x(d) + kr(d)] with n(d) cells and resolution
r(d) := (x̄(d) − x(d))/n(d). Let C(d) := {c(d)

k | c(d)
k =

x(d) + r(d)(k − 1/2), k = 1, . . . ,n(d)} be the set of cell
centers. Finally, let C := C(1) × · · · × C(D) = {xi | x(d)

i =

c
(d)
s(i,d), d = 1, . . . D} be the set of voxel centers in RD,

where the function s(i, d) maps an index i ∈ {1, . . . , N}
with N :=

∏D
d=1 n

(d) to subindices in each dimension. Due
to Assumption 1, the matrix K## ∈ RN×N resulting from
evaluating a decomposable kernel k over all pairs of grid
points x#,x

′
∈ C has a Kronecker product structure:

K## =

D⊗
d=1

K
(d)
##, i.e., [K##]ij =

D∏
d=1

[
K

(d)
##

]
s(i,d),s(j,d)

(9)

where K(d)
##∈Rnd×nd

is the matrix associated with k(d). This
observation has been exploited by [36], [37], [42] to design
GP learning and inference algorithms with O(DN1+1/D)
time and O(DN2/D) memory complexity. The Kronecker
structure of K## carries over to LDLT and eigendecom-

positions2 and hence K−1
=

⊗D
d=1

(
K

(d)
##

)−1

. If in

addition k(d) is radial, the matrices K
(d)
are Toeplitz

with constant diagonals, [K
(d)
##]ij = [K

(d)
##]i+1,j+1. The

Toeplitz structure can be exploited for GP inference [43],
[44] with O(n(d) logn(d)) computational complexity. For
our purposes, it allows efficient storage and inversion of
K

(d)
##. A symmetric Toeplitz matrix and its inverse are also

persymmetric (symmetric with respect to the northeast-to-
southwest diagonal) and hence only 1

4n
(d)n(d) elements

need to be stored. Also, a symmetric Toeplitz matrix can
be inverted using 2n(d)n(d) operations via the Trench al-
gorithm [45]. For a Gaussian kernel matrix, this can be
improved to 1

2n
(d)n(d) operations [46].

2One can compute K## = QV QT by combining the eigendecomposi-
tions of the small K(d)

via Q =
⊗D
d=1Q

(d) and V =
⊗D
d=1 V

(d).

Finally, we note that for a radial and monotone decreasing
kernel, such as the Gaussian RBF, the correlation, k(x,x#),
between a query point x ∈ X and a grid point x# ∈ C is
approximately zero when ‖x−x#‖ is larger than a threshold.
In this case, both the vector kT

:= [k(x,x1), . . . , k(x,xN)]
for xi ∈ C and the matrix K## can be assumed sparse.

B. Equivalence between Gaussian Processes and Kalman
filtering on finite spaces

The special structure of the kernel matrix for a radial
decomposable kernel discussed in Sec. IV-A, motivates an
occupancy mapping approach which uses the continuous-
space online observations (x(t), y(t)) to efficiently update
and store a distribution over the latent grid values f# and
subsequently predict the labels y∗ of continuous-space query
points x∗(1), . . . ,x∗(M) based on f#. Consider the relation-
ship between an observation (x, y) and f#. Since f(x) and
f# are jointly Gaussian with zero mean and covariance given
by the kernel matrix:

p(y | x, f#) =

∫
p(y | f(x))p(f(x) | f#)df(x)

=

∫
Φ

(
yf

σ

)
φ
(
f ;kT

#K
−1
##f#, k(x,x)− kT

#K
−1
##k#

)
df

= Φ

 ykT
#K

−1
##f#√

k(x,x)− kT
#K

−1
##k# + σ2

 . (10)

Using the interpretation in (4), we can pretend that the label
y is a direct observations of the latent values:

y = kT
#K

−1
##f# + ε(x) ε(x) ∼ N (0, λ(x) + σ2) (11)

where λ(x) := k(x,x) − kT
#K

−1
##k#. Then, GP regression

and Kalman filtering are equivalent.

Proposition 1. Suppose that the observations (x(t), y(t)) ∈
D are obtained according to the observation model in (11).
Then, the posterior distribution p(f# | D) of the latent values
over the grid points x# ∈ C computed via GP regression with
zero prior mean and kernel k is exactly equal to the posterior
distribution computed by a Kalman filter with prior mean 0
and prior covariance K## ∈ RN×N .

Proof. The joint distribution of y and f# is:[
y
f#

]
∼ N

(
0,

[
K + Λ + σ2I K#

KT
K##

])
(12)

where K# ∈ RT×N is a matrix with elements [K#]t,j :=
k(x(t),x#(j)) and Λ ∈ RT×T is a diagonal matrix with
Λtt := λ(x(t)). The distribution of f#|D computed via GP
regression is obtained via Schur complementation:

N
(
K#(K + Λ + σ2I)−1y,K## −K#(K + Λ + σ2I)−1KT

#

)
.

Let H ∈ RT×N be a matrix whose t-th row is kT
#K

−1
##.

Given observations y = Hf# + ε with noise ε ∼ N (0,Λ +
σ2I), the Kalman filter posterior over f# is:

f# | D ∼ N (Gy,K## −GHK##) (13)

where G := K##H
T
(
HK##H

T + Λ + σ2I
)−1

is the
Kalman gain. Note that K = HK##H

T and K# =
K##H

T , which shows that (13) is equivalent to the GP
posterior.

Since Kalman filtering is also equivalent to information
filtering, Prop. 1 allows us to maintain the latent function
distribution in information form f#|D ∼ N (Ω−1ν,Ω−1):

ν = K−1
##K

T
#(Λ + σ2I)−1y

Ω = K−1
+K−1

##K
T
#(Λ + σ2I)−1K#K

−1
##.

(14)

Once the parameters ν, Ω of the posterior of f# are computed
based on the data D, we can predict the label y∗ at an
arbitrary continuous-space location x∗ ∈ X , as follows:

p(y∗ | x∗,D) =

∫
p(y∗ | x∗, f#)p(f# | D)df#

=

∫
Φ

(
y∗k

T
#K

−1
##f#√

λ(x∗) + σ2

)
φ
(
f#; Ω−1ν,Ω−1

)
df#

= Φ

 y∗k
T
#K

−1
##Ω−1ν√

λ(x∗) + σ2 + kT
#K

−1
##Ω−1K−1

##k#

(15)

Close inspection of (14) and (15) reveals that it is sufficient to
represent the distribution of f#|D using simpler parameters:

γ := KT
#(Λ + σ2I)−1y

Γ := KT
#(Λ + σ2I)−1K#

(16)

whose relationship to the information space parameters ν,
Ω, the regular parameters µ, Σ, and the pmf p(y∗|x∗,D) is:

ν = K−1
##γ Ω = K−1

(K## + Γ)K−1
##

µ = K## (K## + Γ)
−1
γ Σ = K## (K## + Γ)

−1
K##

p(y∗ | x∗,D) = Φ

 y∗k
T
(K## + Γ)

−1
γ√

λ(x∗) + σ2 + kT
(K## + Γ)

−1
k#

Instead of a batch update with all measurements at once, the
γ and Γ parameters can be updated sequentially:

γt+1 = γt +
k#,ty(t)

λ(x(t)) + σ2

Γt+1 = Γt +
k#,tk

T
#,t

λ(x(t)) + σ2

for t = 1, . . . , T (17)

with γ1 = 0 ∈ RN and Γ1 = 0 ∈ RN×N . We emphasize that
γt and Γt can be stored and updated with linear complexity
in T and N as long as the kernel function k is decomposable,
radial, and monotone decreasing. In detail, k#,t is sparse as
mentioned in Sec. IV-A and can be computed in O(1) by
looking up the grid cells within a distance threshold from
x(t). The inverse kernel matrix satisfies:[

K−1
##

]
ij

=

D∏
d=1

[(
K

(d)
##

)−1
]
s(i,d),s(j,d)

(18)

and λ(x(t)) can be computed in O(1) by precomputing the

small kernel matrices
(
K

(d)
##

)−1

. Hence, computing γT+1

and ΓT+1 has time complexity O(T). Storing γt and Γt has
memory complexity O(N) because Γt has the same sparisty
structure as K## for a radial, monotone decreasing kernel.

Storing the inverse kernel matrices
(
K

(d)
##

)−1

has complex-
ity O(maxd n

d) which is dominated by O(N). Thus, storing
and updating the distribution of f# in terms of γt and Γt

has linear memory complexity in the number of grid cells N
and linear time complexity in the number of observations T .

C. Occupancy prediction

If predicted occupancy values are needed, the expression
for p(y∗|x∗,D) above needs to be evaluated. This is the main
computational challenge for our method since it requires
computing (K## + Γ)

−1
γ and (K## + Γ)

−1
k#. While

(K##+Γ) is sparse it may be giant for large maps and using
Cholesky or QR factorization is not feasible. Instead, we
use the conjugate gradient (CG) method [47] – an iterative
algorithm for solving linear systems defined by symmetric
positive-definite matrices. The advantage of CG is that it
maintains only matrix-vector products during its iterations,
making it scalable to very large systems. The main CG
computation is repeated multiplication of (K## + Γ) with a
conjugate direction vector p, which may be computed effi-
ciently due to the sparsity of (K## + Γ). For completeness,
we include the CG method in Alg. 1.

If instead of the occupancy likelihood p(y∗|x∗,D), it is
only necessary to tell if a query point x∗ is occupied, i.e.,
if p(1|x∗,D) > 1

2 , then it is sufficient to compute only
(K## + Γ)

−1
γ because Φ(x) > 1

2 ⇔ x > 0 and since the
denominator in the expression for p(y∗|x∗,D) is positive:

y∗ = 1 ⇔ kT
(K## + Γ)

−1
γ > 0 (19)

As a result, a complete occupancy grid map at an arbitrary
resolution can be obtained by a single call to Alg. 1 to
compute (K## + Γ)

−1
γ. Given γ ∈ RN , Γ ∈ RN×N ,

due to the sparsity of (K## + Γ), obtaining a map with M
elements via the CG algorithm has complexity O(LMN)
where L is the number of CG iterations. Computing the
occupancy likelihood p(y∗|x∗,D) requires a second call to
Alg. 1 to obtain kT

(K## + Γ)
−1

k# but due to sparsity in
k#, a much smaller matrix and vector can be provided.

Predicting occupancy values over the whole latent grid
is much more computationally demanding than propagating
the information space distribution of f#. Our motivation for
using an information space representation is that recovering
the occupancy values of the whole map is not necessary
during online mapping. Instead, only the occupancy values
of a small set of query points may be needed for collision
checking, while the complete map can be recovered offline.
We propose an approximation to K∗#(K## + Γ)−1γ that
may be used to predict a subset of the occupancy values for
the purpose of collision checking much more efficiently than
CG. Exploiting the kernel matrix sparsity, suppose that the
points in the query set x∗(1), . . . ,x∗(M) are close only to
a small subset A of the latent grid C, while the remaining
grid points B ⊂ C are far enough that k(x∗(i),x#) ≈ 0 for

Algorithm 1 Conjugate Gradient Method

1: Input: symmetric positive-definite A ∈ RN×N , b ∈ RN
2: Output: µ = A−1b ∈ RN
3: µ = 0, r = p = b
4: loop
5: q = Ap, ρ = rT r, α = ρ

pT q

6: µ = µ + αp, r = r− αq, p = r + rT r
ρ

p

i ∈ {1, . . . ,M} and x# ∈ B. Let A := (K## + Γ) and
decompose µ := A−1γ as follows:[

µA
µB

]
=

[
AA,A AA,B
AT
A,B AB,B

]−1 [
γA
γB

]
. (20)

We only need µA to predict the occupancy values of the
query set. Using the block matrix inversion lemma:

µA =
(
AA,A −AA,BA

−1
B,BAA,B

)−1 (
γA −AA,BA

−1
B,BγB

)
Assuming that A is a small subset of C, the above expression
can be computed efficiently as long as A−1

B,B is available. We
use a diagonal-matrix approximation to A−1

B,B.

Proposition 2. Let A be a symmetric positive definite
matrix. The diagonal matrix D that best approximates A−1

according to the Frobenius norm (minD ‖AD−I‖2F) satisfies
Dii = Aii∑M

j=1 A2
ij

.

Proof. Taking the gradient of and equating it to 0 leads to:

0 = ∇Λ tr
(
(AD − I)(AD − I)T

)
= 2 tr(A2D +A)

which is satisfied as long as Dii = Aii∑M
j=1 A2

ij

.

Based on Prop. 2, we can check the occupancy of a query
point x∗ approximately via:

kT
AµA ≈ kT

A (AA,A −AA,BDB,BAA,B)
−1

(γA −AA,BDB,BγB)

where kA is a vector with elements k(x∗,x#) for x# ∈ A.

D. Information filter occupancy mapping

In this section, we use the main results to design an
information filter occupancy mapping algorithm (Alg. 2).
Given the grid discretization and the kernel hyperparameters,
the algorithm is initialized by precomputing the Toeplitz ma-
trices K(d) and their inverses (line 3). Online, the distribution
of the latent function f# is propagated in information form
by accumulating occupancy measurements (line 4). When the
occupancy states of query points x∗ need to be recovered,
the the CG method is used to compute the latent mean µ
(Alg. 1) and to obtain the label y∗ according to (19) (line
7). As mentioned earlier, if p(y∗|x∗,D) is desired another
call to Alg. 1 or an approximation based on Prop. 2 is
needed to compute kT

#(K## + Γ)−1k#. As discussed in
Sec. IV-C, the occupancy state and likelihood computations
can be approximated efficiently if the query set is small and
localized in the same portion of the map, as it is the case for
collision checking. As discussed at the end of Sec. IV-B, as
long as the kernel k is decomposable, radial, and monotone
decreasing, the overall memory and time complexities of
Alg. 2 are O(N) and O(LMN+T), where T is the number

Algorithm 2 Information Filter Occupancy Mapping

1: Input: latent grid size n ∈ RD and resolution r ∈ RD , RBF kernel
amplitudes b ∈ RD and standard dev. s ∈ RD , observation noise
standard dev. σ ∈ R, occupancy observations D = {x(t), y(t)}Tt=1

2: Output: occupancy states {y∗(i)} for a set {x∗(i)} ofM query points

3:
{
K##,

(
K

(d)
##

)−1}
= INITIALIZE(n, r, b, s)

4: γ, Γ = ADDOBSERVATIONS(D, σ)
5: µ = CONJUGATEGRADIENTMETHOD(K## + Γ, γ) . Alg. 1
6: for i = 1, . . . ,M do
7: y∗(i) = PREDICTOCCUPANCY(µ, x∗)
8: return {y∗(i)}
9:

10: function INITIALIZE(n, r, b, s)
11: for d = 1, . . . , D do
12: a(d) := exp

(
−r(d)r(d)

2s(d)s(d)

)
13: Compute K(d)

and
(
K

(d)
##

)−1

14: K## =
⊗D
d=1K

(d)
. sparse matrix

15: function ADDOBSERVATIONS(D, σ)
16: γ1 = 0, Γ1 = 0
17: for t = 1, . . . , T do
18: γt+1 = γt +

k#,ty(t)

λ(x(t))+σ2

19: Γt+1 = Γt +
k#,tk

T
#,t

λ(x(t))+σ2

20: function PREDICTOCCUPANCY(µ, x∗)
21: Compute k# with elements k(x∗,x#) for x# ∈ C
22: return 1 if kT#µ > 0 and −1 otherwise

of observations, N is the number of latent grid cells, L
is the number of CG iterations for occupancy prediction,
and M is the number of query points. In the worst case, if
the occupancy states of the whole map are needed at each
iteration, the overall time complexity would be O(LMNT),
which is similar to GP regression with pseudo-inputs [40].
The latent grid of IFOM allows it to scale to large maps while
maintaining correlation efficiently. In the best case, when
only small sets of query points need to be evaluated in local
regions, IFOM allows very efficient predictive inference.

V. EVALUATION

Our experiments compare the performance of IFOM
(Alg. 2) and the GPOctoMap method of [17] using simulated
data from a 2-D LIDAR and real data from a Microsoft
Kinect depth camera. In both cases and for both methods, the
Gaussian RBF kernel (3) was used. The sensor motion was
assumed known and the focus was on building an occupancy
map. To convert the range measurements collected by the
LIDAR and depth camera to occupancy measurements y(t) ∈
{−1, 1} at continuous-space points x(t) ∈ X , the endpoint
of each sensor ray was taken as occupied, while free points
were sampled using a Poisson distribution along each ray.

Simulated LIDAR data: The first set of experiments was
carried out using a simulated 2-D Hokuyo LIDAR to obtain
range measurements of a Gazebo environment, represented
as a 3-D mesh in STL format. A ground truth occupancy grid
was obtained from the mesh and is shown in Fig. 1a. The map
had dimensons 85.5m× 31.5m× 6.5m and was discretized
with resolution r(d) = 0.5m in each dimension, creating
a grid with size n = [171, 63, 13]T and a total number of
cells of N = 140049. We collected 5443 LIDAR scans, each
providing roughly 556 occupancy measurements for a total

of T = 3.0×106 measurements. The kernel hyperparameters
were s = [0.1, 0.1, 0.3]T and b = 1.16, the scaling
parameter was σ = 0.1. The occupancy maps recovered
by GPOctoMap and IFOM are shown in Fig. 1. The time
taken to obtain these results is shown in Table I. The table
also shows the accuracy of the reconstructed maps evaluated
with respect to the ground truth via acc = 1

M

∑M
i=1 1{qi=q̂i},

where qi and q̂i are the true and estimated occupancy states
of cell i, respectively. When calculating accuracy, unobserved
cells were considered free. The results show that our method
is slower than GPOctoMap but results in higher accuracy.
Note that the provided observations did not cover the whole
map, so it was impossible to obtain a 100% accuracy. Our
implementation is not yet optimized and we expect that the
timing results can be improved. Recovering the whole map
takes additional time for our method.

Real depth camera data: The algorithms were also
evaluated on three sequences, fr1/teddy, fr3/cabinet and
fr3/large cabinet, of the TUM RGBD dataset [48] using only
depth images. The depth images were filtered and downsam-
pled after conversion to 3-D pointclouds to reduce noise.
Both GPOctoMap and IFOM used the same preprocessed
pointclouds. The maps had dimensions listed in Table I. Each
was discretized with resolution r(d) = 0.1m in each dimen-
sion, creating a latent grid with size n = [105, 105, 65]T

for fr1/teddy, n = [93, 77, 9]T for fr3/cabinet, and n =
[145, 169, 45]T for fr3/large cabinet. This resulted in a total
number of N = 7.2×105, N = 6.4×104, and N = 1.1×106

cells, respectively. The datasets contain about 5000 RGBD
images published at 30 Hz. A depth measurement was used
to update the map distribution only when the camera pose
changed significantly (0.1m position and 0.2 rad axis-angle
change). About 220 pointclouds each providing roughly
46500 occupancy measurements were used for a total of T =
11.5× 106 measurements. The kernel hyperparameters were
s(d) = 0.15 and b = 1.09, the scaling parameter was σ = 0.1.
The estimated occupancy maps are shown in Fig. 2, while
the computation time is shown in Table I. Fig. 2 also shows
the information vector and information matrix maintained by
IFOM in each case. While recovering a complete occupancy
map using IFOM is slow, the information matrix can be
maintained efficiently and provides a measure of uncertainty
that can be used to generate sensing trajectories in the context
of autonomous exploration and mapping. The figures show
that the middle areas of the maps, where many observations
are made, have high certainty, while frindge areas would
benefit from additional observations.

VI. CONCLUSION

We showed that GP regression with a grid of pseudo
inputs is equivalent to information filtering and that ker-
nel matrices corresponding to decomposable radial kernels
evaluated over the grid can be computed and stored as
Kronecker products of Toeplitz matrices. These observations
were used to design IFOM, an efficient Bayesian occupancy
mapping algorithm. Using both simulated and real data, we

(a) Ground Truth (b) GPOctoMap [17] (c) IFOM (Alg. 2)
Fig. 1: Ground truth occupancy map (a) and maps recovered by GPOctoMap (b) and IFOM (c) using 2-D LIDAR measurements in a
simulated Gazebo environment. The color represents height. The map dimensions are listed in Table I.

(a) GPOctoMap (b) IFOM (c) IFOM Information Vector (d) IFOM Information Matrix

(e) GPOctoMap (f) IFOM Mean (g) IFOM Information Vector (h) IFOM Information Matrix

(i) GPOctoMap (j) IFOM Mean (k) IFOM Information Vector (l) IFOM Information Matrix
Fig. 2: Maps of 0.1m resolution recovered by GPOctoMap (a), (e), (i) and IFOM (b), (f), (j) on the TUM Teddy, Cabinet, and Large
Cabinet sequences, respectively. The figures shows the information vector (c), (g), (k) and the information matrix (d), (h), (l) maintained
by IFOM in each case. The values in the information matrix vary from certain (red) to uncertain (purple).

TABLE I: Comparison of the accuracy and computation time of GPOctoMap [17] and IFOM (Alg. 2)
Dataset Map Size (m3) Res (m) Algorithm Accuracy (%) Avg. Scan Time (s) Avg. CG Iteration Time (s)

(for map recovery)

Simulation 85.5× 31.5× 6.5 0.5 GPOctoMap 75.6 0.0055 0
IFOM 79.1 0.074 0.119

TUM Teddy 10.5× 10.5× 6.5 0.1 GPOctoMap — 0.039 0
IFOM — 0.52 0.486

TUM Cabinet 9.3× 7.5× 0.9 0.1 GPOctoMap — 0.023 0
IFOM — 0.54 0.029

TUM Large Cabinet 14.3× 16.7× 4.4 0.1 GPOctoMap — 0.15 0
IFOM — 0.52 0.942

demonstrated that IFOM has equivalent accuracy to state-of-
the-art GP occupancy mapping techniques while providing
computational and storage advantages when recovering the
whole occupancy map online is not necessary. Future work
will focus on map representations with adaptive and hier-
archical structure and on estimating a signed distance field
instead of occupancy values.

REFERENCES

[1] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon,
“KinectFusion: Real-time 3D Reconstruction and Interaction Using a
Moving Depth Camera,” in ACM Sym. on User Interface Software and
Technology (UIST), 2011, pp. 559–568.

[2] L. Teixeira and M. Chli, “Real-time mesh-based scene estimation for
aerial inspection,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2016, pp. 4863–4869.

[3] E. Piazza, A. Romanoni, and M. Matteucci, “Real-time cpu-based
large-scale three-dimensional mesh reconstruction,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1584–1591, 2018.

[4] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[5] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press
Cambridge, 2005.

[6] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: an efficient probabilistic 3D mapping framework based on
octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206, 2013.

[7] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D
mapping: Using Kinect-style depth cameras for dense 3D modeling of
indoor environments,” The International Journal of Robotics Research
(IJRR), vol. 31, no. 5, pp. 647–663, 2012.

[8] T. Whelan, R. Salas-Moreno, B. Glocker, A. Davison, and S. Leuteneg-
ger, “ElasticFusion: Real-Time Dense SLAM and Light Source Es-
timation,” The International Journal of Robotics Research, vol. 35,
no. 14, pp. 1697–1716, 2016.

[9] R. Newcombe, “Dense Visual SLAM,” Ph.D. dissertation, Imperial
College London, 2012.

[10] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in European Conference on Computer Vision
(ECCV), 2014.

[11] M. Ghaffari Jadidi, J. Valls Miro, and G. Dissanayake, “Gaussian
Process Autonomous Mapping and Exploration for Range Sensing
Mobile Robots,” ArXiv: 1605.00335, 2016.

[12] N. Atanasov, “Active Information Acquisition with Mobile Robots,”
Ph.D. dissertation, University of Pennsylvania, 2015.

[13] B. Charrow, “Information-Theoretic Active Perception for Multi-Robot
Teams,” Ph.D. dissertation, University of Pennsylvania, 2015.

[14] S. O’Callaghan and F. Ramos, “Gaussian process occupancy maps,”
The International Journal of Robotics Research, vol. 31, no. 1, pp.
42–62, 2012.

[15] C. Vido and F. Ramos, “From grids to continuous occupancy maps
through area kernels,” in IEEE Int. Conf. on Robotics and Automation
(ICRA), 2016, pp. 1043–1048.

[16] S. Kim and J. Kim, GPmap: A Unified Framework for Robotic
Mapping Based on Sparse Gaussian Processes. Springer International
Publishing, 2015, pp. 319–332.

[17] J. Wang and B. Englot, “Fast, accurate gaussian process occupancy
maps via test-data octrees and nested bayesian fusion,” in IEEE Int.
Conf. on Robotics and Automation (ICRA), 2016, pp. 1003–1010.

[18] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. MIT Press, 2006.

[19] M. Opper and O. Winther, “A Bayesian Approach to On-line Learn-
ing,” in On-line Learning in Neural Networks, 1998, pp. 363–378.

[20] K. Sun, K. Saulnier, N. Atanasov, G. Pappas, and V. Kumar, “Dense 3-
d mapping with spatial correlation via gaussian filtering,” in American
Control Conference (ACC), 2018.

[21] T. Minka, “A family of algorithms for approximate Bayesian infer-
ence,” Ph.D. dissertation, Massachusetts Institute of Technology, 2001.

[22] C. Williams and D. Barber, “Bayesian classification with Gaussian
processes,” IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI), vol. 20, no. 12, pp. 1342–1351, 1998.

[23] S. O’Callaghan, F. Ramos, and H. Durrant-Whyte, “Contextual occu-
pancy maps using gaussian processes,” in IEEE Int. Conf. on Robotics
and Automation (ICRA), 2009, pp. 1054–1060.

[24] S. O’Callaghan and F. Ramos, “Continuous Occupancy Mapping with
Integral Kernels,” in AAAI Conference on Artificial Intelligence, 2011.

[25] S. Ambikasaran, D. Foreman-Mackey, L. Greengard, D. W. Hogg, and
M. O’Neil, “Fast direct methods for gaussian processes,” IEEE Trans.
Pattern Anal. Mach. Intell, vol. 38, no. 2, pp. 252–265, 2016.

[26] S. Anderson, T. Barfoot, C. H. Tong, and S. Särkkä, “Batch nonlin-
ear continuous-time trajectory estimation as exactly sparse gaussian
process regression,” Autonomous Robots, vol. 39, no. 3, 2015.

[27] S. Kim and J. Kim, “Recursive Bayesian Updates for Occupancy
Mapping and Surface Reconstruction,” in Australasian Conference on
Robotics and Automation (ACRA), 2014.

[28] S. Kim and J. Kim, “Occupancy Mapping and Surface Reconstruction
Using Local Gaussian Processes With Kinect Sensors,” IEEE Trans-
actions on Cybernetics, vol. 43, no. 5, pp. 1335–1346, 2013.

[29] F. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent,” The International Journal
of Robotics Research, vol. 35, no. 14, pp. 1717–1730, 2016.

[30] R. Senanayake and F. Ramos, “Bayesian Hilbert Maps for Continu-
ous Occupancy Mapping in Dynamic Environments,” in Conference
on Robot Learning (CoRL), ser. Proceedings of Machine Learning
Research, vol. 78, 2017, pp. 458–471.

[31] V. Guizilini and F. Ramos, “Learning to Reconstruct 3D Structures
for Occupancy Mapping,” in Robotics: Science and Systems, 2017.

[32] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian Processes for Big
Data,” in Conference on Uncertainty in Artificial Intelligence, 2013.

[33] C. Cheng and B. Boots, “Variational inference for gaussian process
models with linear complexity,” in Advances in Neural Information
Processing Systems, 2017.

[34] C. E. R. Joaquin Quiñonero-Candela, “A Unifying View of Sparse
Approximate Gaussian Process Regression,” Journal of Machine
Learning Research (JMLR), vol. 6, no. Dec, pp. 1939–1959, 2005.

[35] M. Titsias, “Variational Learning of Inducing Variables in Sparse
Gaussian Processes,” in Int. Conf. on Artificial Intelligence and Statis-
tics, ser. Proc. of ML Research, vol. 5, 2009, pp. 567–574.

[36] Y. Saatci, “Scalable Inference for Structured Gaussian Process Mod-
els,” Ph.D. dissertation, University of Cambridge, 2011.

[37] A. G. Wilson, C. Dann, and H. Nickisch, “Thoughts on Massively
Scalable Gaussian Processes,” arXiv, vol. 1511.01870, 2015.

[38] T. Evans and P. Nair, “Scalable Gaussian Processes with Grid-
Structured Eigenfunctions (GP-GRIEF),” in International Conference
on Machine Learning, 2018, pp. 1417–1426.

[39] Y. Gal, “Uncertainty in Deep Learning,” Ph.D. dissertation, University
of Cambridge, 2016.

[40] E. Snelson and Z. Ghahramani, “Sparse Gaussian Processes using
Pseudo-inputs,” in Advances in Neural Information Processing Systems
18, Y. Weiss, B. Schölkopf, and J. C. Platt, Eds., 2006, pp. 1257–1264.

[41] S. Reece and S. Roberts, “An Introduction to Gaussian Processes for
the Kalman Filter Expert,” in Conference on Information Fusion, 2010.

[42] A. G. Wilson, E. Gilboa, A. Nehorai, and J. P. Cunningham, “Fast
Kernel Learning for Multidimensional Pattern Extrapolation,” in Ad-
vances in Neural Information Processing Systems (NIPS), 2014.

[43] Y. Zhang, W. E. Leithead, and D. J. Leith, “Time-series Gaussian
Process Regression Based on Toeplitz Computation of O(N2) Op-
erations and O(N)-level Storage,” in IEEE Conference on Decision
and Control (CDC), 2005, pp. 3711–3716.

[44] J. P. Cunningham, K. V. Shenoy, and M. Sahani, “Fast gaussian pro-
cess methods for point process intensity estimation,” in International
Conference on Machine Learning (ICML), 2008, pp. 192–199.

[45] S. Zohar, “Toeplitz Matrix Inversion: The Algorithm of W. F. Trench,”
Journal of the ACM, vol. 16, no. 4, pp. 592–601, 1969.

[46] M. Gover, “Properties of the Inverse of the Gaussian Matrix,” SIAM
Journal on Matrix Analysis and Applications, vol. 12, no. 3, 1991.

[47] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for
Solving Linear Systems,” Journal of Research of the National Bureau
of Standards, vol. 49, no. 6, 1952.

[48] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A Benchmark for the Evaluation of RGB-D SLAM Systems,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2012.

