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Abstract— This paper proposes a novel active Simultaneous
Localization and Mapping (SLAM) method with continuous
trajectory optimization over a stochastic robot dynamics model.
The problem is formalized as a stochastic optimal control
over the continuous robot kinematic model to minimize a cost
function that involves the covariance matrix of the landmark
states. We tackle the problem by separately obtaining an open-
loop control sequence subject to deterministic dynamics by iter-
ative Covariance Regulation (iCR) and a closed-loop feedback
control under stochastic robot and covariance dynamics by
Linear Quadratic Regulator (LQR). The proposed optimiza-
tion method captures the coupling between localization and
mapping in predicting uncertainty evolution and synthesizes
highly informative sensing trajectories. We demonstrate its
performance in active landmark-based SLAM using relative-
position measurements with a limited field of view.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has been
instrumental for enabling autonomous robots to transition
from controlled, structured, and fully known environments to
operation in a priori unknown real-world conditions [7], [24].
Many current SLAM techniques, however, remain passive
in their utilization of sensor data. Active SLAM [11] is an
extension of the SLAM problem which couples perception
and control, aiming to acquire more information about the
environment and reduce the uncertainty in the localization
and mapping process. Active SLAM introduces unique chal-
lenges related to keeping the map and location estimation
processes accurate, and yet computing and propagating un-
certainty over many potential sensing trajectories efficiently
to select an informative one.

Many existing works in active perception decouple the
localization and mapping problems and assume known robot
states when planning active mapping trajectories. The lit-
erature on active mapping can be categorized according to
the map representation it employs. Some techniques use
volumetric mapping, which represents occupancy (e.g., occu-
pancy grid) or obstacle distance (e.g., signed distance field)
at a finite number of voxels obtained by discretizing the envi-
ronment. Other techniques employ landmark-based mapping,
which represents positions of a finite number of landmarks
(e.g., objects or visual features) in the environment. While
a volumetric representation captures the complete geometric
structure of the environment, landmark-based mapping re-
quires much less memory. One of the earliest approaches for
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active mapping [28] is based on detecting and planning a
shortest path to frontiers (boundaries between explored and
unexplored space) in a volumetric map. Information-theoretic
planning is an alternative approach, which utilizes an infor-
mation measure to quantify and minimize the uncertainty in
the map, as developed first in [12] and subsequently used
widely in robotics [20], [13], [14]. Efficient computation
methods for computing uncertainty of volumetric maps have
been proposed in [10] for Cauchy-Schwarz quadratic mutual
information (CSQMI), and in [29] for fast Shannon mutual
information (FSMI). Active mapping for truncated signed
distance field (TSDF) reconstruction has been considered in
[25] and multi-category semantic maps have been studied
in [3]. Existing methods are, however, limited to discrete
control spaces, typically with a finite number of possible
control inputs, such as [25], [10], [29]. Recently, in [16], we
have developed a continuous trajectory optimization method
for active mapping, named iterative Covariance Regulation
(iCR). We have introduced a differentiable field of view
in sensing model, and apply gradient descent method for
obtaining an open-loop control sequence to maximize the
differential entropy of the map.

In applications other than mapping, motion planning under
uncertainty in the robot states has been developed for several
robotics tasks, such as reaching a goal without collisions
with obstacles. To cope with the uncertainty in the motion
model, the probability density function of the robot state
given a sensory data is constructed, named as belief space.
An important work in this area is Belief Roadmaps [22],
which projects a roadmap from the state space to the belief
space and seeks an optimal path in the constructed graph.
Such a sampling-based method has been further developed in
[2], [1]. Alternatively, continuous-space optimization meth-
ods have also been proposed for belief space planning.
Representative work by [27] applies an iterative LQG [26],
which computes both a nominal open-loop trajectory and a
feedback control policy through iterative solutions of a dy-
namic programming. The authors have utilized iLQG for the
belief dynamics consisting of the mean and the covariance
of the robot state through EKF estimate utilizing a sensory
data. However, the method in [27] limits the observation
model to be smooth for enabling the gradient computation
in iLQG, while a typical measurement by a camera field
of view does not follow such a smooth observation model.
Recently, [23] has relaxed the assumption by introducing
a probabilistic visibility model in sensing, and proposed a
novel motion planning method with guaranteeing a constraint
on the uncertainty in the robot state to be satisfied, via



employing an augmented Lagrangian method. This paper
differs from the belief space planning proposed in [27], [23]
in the sense that we take into account a target dynamics
as a belief state and propose a method of solving an open-
loop trajectory and closed-loop policy separately, which is
computationally efficient since the iteration is needed only
for an open-loop trajectory under a deterministic dynamics.

Active SLAM is a challenging problem due to the mutual
dependence among the accuracy of the robot localization, the
performance of the mapping, and the trade-off between ex-
ploring new areas and exploiting uncertainty minimization in
visited areas. Several techniques in the literature approach the
active SLAM problem with a landmark-based mapping using
greedy planning over a discrete control space, see [8] for
instance. To avoid the costly global planning with long time
horizons, in [18], the authors have introduced an attractor
in landmark-based active SLAM, which incorporates global
information about the environment for the local planner,
and applied a model predictive control approach. Utilizing
the idea of introducing the attractor, in [5], a decentralized
nonmyopic approach to a multi-robot landmark-based active
SLAM has been proposed via exploiting the sparsity in
the information filter. In [15], a multi-robot landmark-based
active SLAM has been tackled by develoing a scalable
sampling-based planning. While almost all of the literature
in active SLAM have employed a discretized control space
planning, [19] has developed an online path planning method
for active SLAM under a continuous control space by a
Bayesian optimization for updating a parameter in a control
policy. However, the method requires a sampling of the state
propagation to approximate a mean square error of SLAM
and an iteration of policy search, which renders a difficulty
in the real-time implementation with an online planning.

Unlike existing active SLAM techniques which commonly
consider a discretized control space and known robot poses,
this work develops an active SLAM method with continuous
trajectory optimization over a stochastic robot dynamics
model utilizing offline planning. A major advantage of
the proposed method is its ability to capture the coupling
between localization and mapping in predicting uncertainty
evolution and to synthesize highly informative sensing tra-
jectories due to the continuous-space optimization, which
is computationally efficient and capable of real-time imple-
mentation through an offline computation. We first provide a
general formulation of the active information acquisition as
studied in [4], [25], [16]. Apart from the previous literature,
we include a stochastic process noise in the robot dynamics,
which needs to be dealt with in application to active SLAM.
Next, we propose a method for obtaining a nominal open-
loop trajectory via iCR for deterministic robot dynamics
and a closed-loop control policy by LQR for a linearized
stochastic system around the iCR trajectory. Then, we apply
these techniques to active SLAM to estimate the positions
of a finite number of landmarks.

II. PROBLEM STATEMENT

We consider a sensing system with state xk ∈ Rnx and
control input uk ∈ Rm at time tk ∈ R+ where {tk}Kk=0 for
some K ∈ N is an increasing sequence. The task is to reduce
uncertainty in a target state, denoted as yk ∈ Rny , through
on-board sensors which receives a sensor measurement zk ∈
Rnz as a function of both the sensing system and target
states. We consider a stochastic nonlinear dynamics of the
system state, a linear stochastic dynamics of the target state,
and a linear observation model with respect to the target
state, described by

xk+1 = f(xk,uk,wk),

yk+1 = Ayk + Ξ
1/2
k ξk,

zk = H(xk)yk + V (xk)
1/2vk,

(1)

where wk ∼ N (0,Wk), ξk ∼ N (0, Iny
), vk ∼ N (0, Inz

),
Wk ∈ Snx×nx

≻0 , Ξk ∈ Sny×ny

≻0 , V : Rnx → Snz×nz
≻0 , and H :

Rnx → Rnz×ny . Sn×n
≻0 is a set of positive definite matrices

within Rn×n.
Active information acquisition is a motion planning prob-

lem for a system dynamics aiming to minimize some un-
certainty measure of the target state. One representative
candidate for the measure is the differential entropy in
the target state conditioned on the sensor states and mea-
surements. In [17], for deterministic system dynamics (i.e.,
wk = 0), the problem of minimizing the differential entropy
is shown to be equivalent to minimizing the log determinant
of the covariance matrix of the target state as a determin-
istic optimal control, which is known as D-optimality in
optimal experimental design [21]. There are several other
criteria in optimal experimental design, such as A-optimality,
minimizing the trace of the covariance, and E-optimality,
minimizing the maximum eigenvalue [9]. Here, we consider
a general cost function over the covariance matrix to capture
all possible optimality criteria.

We approach the problem of minimizing an uncertainty
criterion over the target state subject to motion and sensor
models in (1) by extending the formulation in [4] to include
stochastic noise in the robot dynamics. Let Σk ∈ Sny×ny

≻0

be the covariance matrix of the target state. Then, the
optimization problem in this paper is written as:

min
U∈RmK

E

{
K−1∑
k=0

c̄k (Σk) + c̄K (ΣK)

}
, (2)

s.t. xk+1 = f(xk,uk,wk),

Σk+1 = A
(
Σ−1

k +M(xk+1)
)−1

A⊤ + Ξk, (3)

M(x) = H(x)⊤V (x)−1H(x), (4)

where c̄k : Sny×ny

≻0 → R for k ∈ {0, . . . ,K} is an
objective function with respect to the covariance matrix,
M : Rnx → Rny×ny is the so-called “sensor information
matrix” . In D-optimal design to minimize the differential
entropy, we can set c̄k = 0 for k ∈ {0, . . . ,K − 1} and
c̄K(ΣK) = log det(ΣK). In this paper, we keep setting a
general objective function c̄k.



We tackle the optimal control problem by a separate plan-
ning of an open-loop trajectory optimization (iCR) developed
in [16], and a closed-loop feedback control by LQR. While
iCR in [16] has been developed for a robot motion model
with an SE(3) pose state represented by a matrix, a typical
LQR approach is applicable to dynamics described with re-
spect to a vector state. Therefore, we reformulate the Riccati
update (3) of the covariance matrix by the dynamics of the
vector state. Let σk ∈ Rnσ , where nσ := ny(ny+1)/2, be a
vector representation of the covariance matrix Σk defined by
σk := vech(Σk), where vech(·) : Sny×ny

≻0 → Rny(ny+1)/2 is
a half-vectorization operator applied to a symmetric matrix.
By reformulating the Riccati update in (3) and rewriting
the cost function (2) with respect to the vector state σ, the
optimization problem we consider can be recast as follows.

Problem. Obtain a control policy uk = πk(xk,σk), where
πk : Rnx+nσ → Rm for k = 0, . . . ,K − 1 to solve the
following stochastic optimal control problem:

min
π0,...,πK−1

E

{
K−1∑
k=0

ck(σk) + cK(σK)

}
(5)

where ck : Rnσ → R, subject to

xk+1 = f(xk,πk(xk,σk),wk), (6)
σk+1 = g(σk,xk+1). (7)

III. PLANNING METHOD

This section proposes a method to solve (5)–(7) by design-
ing an open-loop control sequence and closed-loop control
policy separately.

A. Linearized system around iCR trajectory

iCR proposed by [16] provides the solution to the deter-
ministic case (i.e., wk = 0) of the optimal control stated
above, for active exploration and mapping with the cost of
log determinant of the covariance matrix. Extending iCR to
minimizing a general cost, we obtain a nominal open-loop
trajectory {x̄k+1, ūk, σ̄k+1}K−1

k=0 which is a solution to

[ū1, . . . , ūK−1] = argmin
ū1,...,ūK−1

(
K−1∑
k=0

ck(σ̄k) + cK(σ̄K)

)
,

s.t. x̄k+1 = f(x̄k, ūk, 0), σ̄k+1 = g(σ̄k, x̄k+1).

The solution is obtained via gradient-descent for a multi-
step control sequence U = [ū⊤

1 , . . . , ū
⊤
K−1]

⊤, via iterative
update of the control sequence by U ← U− α∂JU

∂U with a
step size α and the cost JU =

∑K−1
k=0 ck(σk) + cK(σK),

where the gradient ∂JU

∂U is computed analytically. Around the
nominal open-loop trajectory {x̄k+1, ūk, σ̄k+1}K−1

k=0 and the
mean of the noise wk = 0, the nonlinear stochastic dynamics
(6), (7) can be described by a linear time-varying system as
a first-order approximation through Taylor expansion (see
[30]). Let us define the error variables: x̃k = xk− x̄k, σ̃k =
σk − σ̄k, π̃k(x̃k, σ̃k) = πk(xk,σk) − ūk. Then, lineariz-
ing the dynamics (6), (7) around the nominal trajectory

{x̄k+1, σ̄k+1}K−1
k=0 , the dynamics for the error variables are

x̃k+1 = Ekx̃k +Bkπ̃k(x̃k, σ̃k) +Dkwk,

σ̃k+1 = Fkσ̃k +Gk(Ekx̃k +Bkũk +Dkwk),

where

Ek =
∂f

∂x

∣∣∣∣
(x̄k,ūk,0)

, Bk =
∂f

∂u

∣∣∣∣
(x̄k,ūk,0)

, Dk =
∂f

∂w

∣∣∣∣
(x̄k,ūk,0)

,

(8)

Fk =
∂g

∂σ

∣∣∣∣
(x̄k,ūk,0)

, Gk =
∂g

∂x

∣∣∣∣
(x̄k,ūk,0)

. (9)

We aim to minimize the cost (5) subject to the linearized
stochastic dynamics by designing a control policy π̃k(x,σ).
Applying the Taylor expansion to (5) around the nominal tra-
jectory and approximating by second-order accuracy yields

ck(σk) ≈ σ̃⊤
k Ckσ̃k + b̄⊤

k σ̃k + ck(σ̄k), (10)

Ck :=
∂2ck
∂σ2

(σ̄k), b̄⊤
k :=

∂ck
∂σ

(σ̄k). (11)

At the same time, to validate the linearization, the trajectories
should stay around the nominal trajectories, namely, the error
variables should stay around zero. Pursuing these two objec-
tives, and introducing the new state variable sk ∈ Rnx+nσ

defined by sk = [x̃⊤
k , σ̃

⊤
k ]

⊤, π̃k(sk) = πk(xk,σk)− ūk the
dynamics and the cost function can be written with respect
to sk as

sk+1 = Aksk + Bkπ̃k(sk) +Dkwk, (12)

J̃ = E

{
K−1∑
k=0

(s⊤k Qksk + b⊤
k sk + π̃k(sk)Rkπ̃k(sk))

}
+ E

{
s⊤KQKsK + b⊤

KsK
}
, (13)

where ns = nx + nσ , Ak ∈ Rns×ns , Bk ∈ Rns×m, Dk ∈
Rns×nx , Q ∈ Rns×ns , b ∈ Rns are defined by

Ak =

[
Ek 0

GkEk Fk

]
,Bk =

[
Bk

GkBk

]
,Dk =

[
Dk

GkDk

]
, (14)

Qk =

[
Q

(1)
k 0

0 Q
(2)
k + Ck

]
, bk =

[
0
b̄k

]
, (15)

where Q
(1)
k ∈ Rnx×nx , Q

(2)
k ∈ Rnσ×nσ , and Rk ∈ Rm×m

are weight matrices to be determined by the user.

B. LQR-based closed-loop feedback control

We derive a closed-loop feedback control policy to min-
imize (13) subject to (12). Note that, unlike the standard
LQR, the cost function (13) includes a linear term b⊤

k sk, in
both stage and terminal costs. Even then, one can show that
the optimal control policy is a linear feedback control with
a time-varying constant term, as stated below.

Proposition 1. The closed-loop control

π̃k(sk) = L∗
ksk + ε∗k, (16)

L∗
k = −(R+ B⊤k Pk+1Bk)−1B⊤k Pk+1Ak, (17)

ε∗k = −1

2
(R+ B⊤k Pk+1Bk)−1B⊤k dk+1, (18)



where Pk ∈ Rns×ns , dk ∈ Rns , and δk ∈ R at k = K are
given by PK = QK ,dK = bK , δK = 0, and recursively
updated from k + 1 to k for k = K − 1,K − 2, . . . , 0 as
follows:

Pk = Qk +A⊤
k Pk+1Ak

−A⊤
k Pk+1Bk(R+ B⊤k Pk+1Bk)−1B⊤k Pk+1Ak, (19)

dk = bk +A⊤
k dk+1

−A⊤
k Pk+1Bk(R+ B⊤k Pk+1Bk)−1B⊤k dk+1, (20)

δk = δk+1 + tr(D⊤
k Pk+1DkWk)

− 1

4
d⊤
k+1Bk(R+ B⊤k Pk+1Bk)−1B⊤k dk+1 (21)

minimizes the cost function (13) subject to the system dy-
namics (12) with optimal cost:

min
ũ0,...,ũK−1

J̃ = V0(s) = s⊤P0s+ d⊤
0 s+ δ0,

for a given initial condition s0 = s.

The proof is done using a dynamic programming method,
and is omitted in this paper due to space constraints.

IV. APPLICATION TO ACTIVE SLAM

We apply the proposed planning method to an active
SLAM problem, where a set of landmarks in the environment
is regarded as the target state. The task is to estimate the
landmark positions and the pose of a sensing robot, and to
plan motion that reduces the uncertainty in these estimates.

A. Differential-drive motion model and its linearization

Let x = [p⊤, θ]⊤ ∈ R3 be the state of a ground robot,
where p ∈ R2 is the robot position and θ ∈ [−π, π) is the
robot’s heading angle. Let u ∈ [v, ω] ∈ R2 be the robot’s
control input, where v is the linear velocity and ω is the
angular velocity. We model the robot dynamics f : R3 ×
R2 × R3 → R3 in (6) using a differential-drive kinematic
model with time discretization τ :

f(xk,uk,wk) = xk + τ

 vksinc (ak) cos (θk + ak)
vksinc (ak) sin (θk + ak)

ωk

+wk,

(22)

where ak := ωkτ
2 .

B. Limited field-of-view sensing model

The landmarks are modeled as points y(j) ∈ R2 in the
environment, for all j ∈ {1, . . . , nl}, where nl is a number
of landmark. Noting that the landmark location is static, the
matrices in the target dynamics given in (1) are set as:

A = I2nl×2nl
, Ξk = 02nl×2nl

. (23)

For a given robot state x ∈ R3 and the position y(j) ∈
R2 of the j-th landmark, we consider the robot body-frame
coordinates of y(j):

q
(
x,y(j)

)
= R⊤(θ)(y(j) − p), (24)

where R : R → SO(2) ⊂ R2×2 is a 2-D rotation matrix
of the robot pose. Here, we define the set of indices of the
landmarks within the field of view F ⊂ R2 of the robot, as
follows:

Ik,F =

{
∀j ∈ {1, . . . , nl}

∣∣∣∣q(xk,y
(j)
)
∈ F

}
(25)

We suppose to have both range and bearing measurements,
which capture the relative landmark positions in robot frame
as follows:

zk =
[
{z̄(xk,y

(j))}j∈Ik,F

]
∈ R2|Ik,F |, (26)

z̄(x,y(j)) = q(x,y(j)) + Γ1/2(x,y(j))v, (27)

where Γ : R3 × R2 → S2×2
≻0 is the sensor noise covariance

and v ∼ N (0, I2). Notice that the sensing model (27)
is nonlinear with respect to the target state, while up to
the previous sections we have considered a linear sensing
model. In the application to active SLAM in this section,
we deal with the nonlinear sensing model by employing the
linearization around some estimate of the target state, and
utilize it for both planning and SLAM.

C. Differentiable field of view

One special characteristic of the sensing model (26) with
a limited field of view (FoV) is that the measurement
dimension is dependent on the robot pose state at time k.
This is caused by a binary (observable or unobservable)
sensing within the FoV, which makes the sensing model non-
differentiable with respect to the state and hence the control
input. To deal with the challenge, we use a differentiable FoV
proposed in [16], where the measurement is supposed to be
obtained for all landmark states, while the noise covariance is
supposed to become approximately infinity outside the FoV.
Namely, the measurement function h : R3 × R2nl → R2nl

and the noise covariance matrix are formalized as:

h(x,y) = [q(x,y(1))⊤, . . . ,q(x,y(nl))⊤]⊤, (28)

V (x) = diag(V̄ (x, ŷ(1)), . . . , V̄ (x, ŷ(nl))) ∈ R2nl×2nl ,

where ŷ(j) ∈ R2 is an initial estimate of the j-th landmark
state, V̄ (x,y(j)) : R3×R2 → R2×2 is a noise covariance of
j-th landmark with differentiable FoV, given by

V̄ (x,y(j)) =
(
1− Φ(d(q(x,y(j)),F))

)−1

Γ(x,y(j)),

where Φ : R → [0, 1] is the Gaussian CDF defined by
Φ(x) = 1

2

[
1 + erf

(
x√
2κ
− 2
)]

and d(q,F) is a signed
distance function defined below.

Definition 1. The signed distance function d : R2 → R
associated with a set F ⊂ R2 is:

d(q,F) =
{
−minq∗∈∂F ∥q− q∗∥, if q ∈ F ,
minq∗∈∂F ∥q− q∗∥, if q /∈ F , (29)

where ∂F is the boundary of F .

A 2-D plot of 1 − Φ(d(q(x,y(j)),F), which is the
amplification factor in the differentiable FoV, is shown in



[16]. In accordance with the linear sensing model in (1),
we take a linearization of (28). Let H : R3 → R2nl×2nl

be the measurement matrix defined by H(x) = ∂h
∂y (x, ŷ).

Then, with (28), one can show H is a block diagonal ma-
trix, given by H(x) = diag(H̄(xk, ŷ

(1)), . . . , H̄(xk, ŷ
(nl))),

where H̄(xk,y
(j)) : R3 × R2 → R2×2 is the measurement

matrix for j-th landmark at time k, given as H̄(xk,y
(j)) :=

∂q
∂y(j) (xk,y

(j)) = R⊤(θk), where we utilized (24). Since the
product of the block diagonal matrix with same size is also
a block diagonal matrix of each product, the sensor infor-
mation matrix defined by (4) is also a block diagonal ma-
trix, given by M(x) = diag(M̄(x, ŷ(1)), . . . , M̄(x, ŷ(nl))),
where M̄(x,y(j)) =

(
1− Φ(d(q(j),F))

)
R(θ)Γ−1R⊤(θ).

Since the matrix M and the initial covariance matrix are
block diagonal matrices with same size, and the fact that the
landmark is static (23), Riccati update (3) leads to that the
covariance matrix Σk is also a block diagonal matrix with the
same size for all k, i.e., Σk = diag(Σ

(1)
k ,Σ

(2)
k , · · · ,Σ(nl)

k ),
satisfying

Σ
(j)
k+1 =

((
Σ

(j)
k

)−1

+ M̄
(
xk+1, ŷ

(j)
0

))−1

(30)

D. iCR for active SLAM with trace minimization

Following [16], in the derivation of iCR, the robot pose
dynamics is described by SE(2) pose kinematics, in which
the robot state is defined in SE(2) ⊂ R3×3 . The SE(2)
pose kinematics is equivalent to the differential-drive motion
model in (22), through the exponential map T = exp(x̂)
and the logarithm map x = log (T )∨ [6]. While in [16]
the cost is set to a log determinant of the covariance
matrix at final time, in this paper we consider the cost
to be a trace of the covariance matrix, which eases the
computation of the gradient (11) of the cost with respect
to the vectorized covariance. Describing the robot dynamics
by SE(2) pose kinematics, and taking into account the
differentiable field of view formulation presented above, iCR
for active SLAM problem is developed, thereby the nominal
trajectory {T̄0:K , Σ̄0:K , ū0,K−1} for a deterministic SE(2)
pose kinematics is obtained.

E. LQR gain derivation

As presented in Secion III, for deriving the LQR gains,
provided the nominal iCR trajectory, Jacobian matrices (8)
(9) must be computed. As stated above, iCR trajectory
{T̄0:K , Σ̄0:K , ū0,K−1} is obtained for a SE(2) pose state
T̄ ∈ SE(2) ⊂ R3×3 and the covariance matrix Σ̄ ∈
S2nl×2nl
≻0 , which need to be converted to vectorized states.

The robot vector state x ∈ R3 is obtained by x = log (T )∨.
Regarding the covariance vector state σ, in Section II, we
define by the half-vectorization operator vech(·) as a general
case. However, in active SLAM we consider in this section,
owing to the independency among covariances of each land-
mark as shown in (30) and its symmetric property, we can
define a covariance vector state with a lower dimension than
the half-vectorization operator as follows. Let σ(j) ∈ R3

be defined by σ(j) =
[
e⊤1 Σ

(j)e1, e
⊤
1 Σ

(j)e2, e
⊤
2 Σ

(j)e2
]⊤

,

Fig. 1: Diagram of active SLAM via iCR-LQR.

where Σ(j) ∈ S2×2
≻0 is a j-th block diagonal matrix in

Σ ∈ S2nl×2nl
≻0 . Then, we define the covariance vector state by

σ := [σ(1),σ(2), . . . ,σ(nl)] ∈ R3nl , which includes all the
variables in the covariance matrix obeying the Riccati update.
Hereafter, this conversion is denoted as σ = vecbl(Σ).

Through this conversion from the covariance matrix to
the covariance vector state, we can derive the Jacobian
matrix analytically. The computation steps of obtaining the
LQR gain is shown in Algorithm 1, which includes ”Jacob-
robot” as a Jacobian matrices of the robot dynamics (22),
and ”Jacob-Riccati” as a Jacobian matrices of the Riccati
update provided in Appendix. ”Grad-cost” computes the
gradient of the cost function with respect to the vectorized
covariance state as given in (11). Considering the cost of
minimizing a trace of the covariance, the variables (11) in
the cost function are obtained as Ck = 03nl×3nl

and b̄k =
[η⊤,η⊤, . . . ,η⊤]⊤ ∈ R3nl where η = [1, 0, 1]⊤ ∈ R3, since
each η in b̄k corresponds to the diagonal element of Σ(j)

with respect to the vectorized covariance σ(j).

Algorithm 1: LQR gain
Data: iCR trajectory T̄1:K , ū1:K−1, Σ̄1:K , weight

matrices Q
(1)
k , Q

(2)
k , Rk

C, b̄← Grad-cost(σ̄K) in (11)
[P,d, δ]← [QK ,bK , 0] from (15)
Solve LQR gain backward in time
for k ← K − 1 to 0 do

[x̄k, x̄k+1, σ̄k]←
[log

(
T̄k

)∨
, log

(
T̄k+1

)∨
, vecbl

(
Σ̄k

)
]

E, B, D ← Jacob-robot(x̄k, ūk)
F , G← Jacob-Riccati(σ̄k, x̄k+1)
A,B,D ← (14) using [E,B,D, F,G]
C, b̄← Grad-cost(σ̄k) in (11)
Q,b← (15) using [Q

(1)
k , Q

(2)
k , C, b̄]

[L∗
k, ε

∗
k]← (17), (18) using [P,d,A,B, R]

d← (20) using [d,b, P,A,B, R]
δ ← (21) using [δ, P,d,B, R,D,Wk]
P ← (19) using [P,Q,A,B, R]

end
Output: L∗

0:K−1, ε
∗
0:K−1



(a) Closed-loop iCR + LQR (b) Open-loop iCR

Fig. 2: Active SLAM via closed-loop and open-loop control
policies. The green dotted line shows the robot ground
truth trajectory. The blue dot shows robot pose, while
the surrounding ellipse corresponds to the covariance of
robot position. Red dots indicate the ground truth landmark
positions. Cyan dots and ellipses indicate the mean and
covariance of landmarks, respectively.

F. EKF-SLAM

We construct the estimator of both the landmark
position and the robot position by Extended Kalman
Filter (EKF). The probabilistic landmark position and
the robot position are set as a Gaussian distribution:[

xk

y

]
|z1:k ∼ N

([
x̂+
k

ŷk

]
,Σ+

k ,

)
for posteriori estimate,

and
[

xk+1

y

]
|z1:k ∼ N

([
x̂−
k+1

ŷk

]
,Σ−

k+1,

)
for a priori

estimate. Once the measurement is obtained as given in (26),
which is a measured landmark relative position in robot-
body frame within FoV, we reconstruct the measured state
as zk = [z

(1)
k , z

(2)
k , . . . , z

(nl)
k ] ∈ R2nl , where

z
(j)
k =

{
z̄(xk,y

(j)), if j ∈ Ik,F
q(x̂−

k , ŷ
(j)
k−1), otherwise

(31)

Using the reconstructed sensor state (31), we implement EKF
for SLAM by updating the mean and covariance of both
priori and posteriori estimates. Note that, since the innovation
term in EKF is zk−h(x̂−

k , ŷk−1), where h is given by (28),
the reconstructed sensor state (31) makes the innovation term
zero in j-th landmark estimate for all j /∈ Ik,F . Namely, all
the landmark estimate outside FoV does not have an update
through applying (31) to EKF-SLAM.

A diagram depicting the structure of the entire proposed
algorithm is shown in Fig. 1.

G. Evaluation

We examine the performance of the proposed method in
a simulated environment with dimensions 100[m] × 70[m],
where the landmarks are located following a uniform random
distribution. The robot follows the SE(2) motion model of
(22) with Wk = diag (0.1, 0.1, 0.01), and its on-board sensor
measures the relative position of visible landmarks in the
robot frame. The field of view F is set as an isosceles triangle
with height 20 [m] and the angle between the two legs equal
to 120◦. The relative position measurements are corrupted by
an additive Gaussian noise with zero mean and covariance
Γ = diag (0.1, 0.1). The control uk and measurements

zk+1 are given to EKF-SLAM for state estimation, where
we assume the noise covariances Wk and Γ are known
to EKF-SLAM. We initialize the mean

[
x̂+
0 ŷ

+
0

]⊤
with the

ground truth position of the robot and landmarks, added by
a Gaussian noise with variance 25 [m2], while the state
covariance is initialized as Σ+

0 = 25Ins×ns . During each
planning phase, we begin by computing the initial iCR
control sequence ū0:K−1 for planning horizon K = 5, where
the differentiable FoV is parameterized by κ = 10 and the
gradient decent update is done for 10 iterations with α =
diag (0.005, 0.0005). The obtained control sequence ū0:K−1

is regularized by LQR where Q(1)
k = diag (10, 10, 1), Q(2)

k =

Inl×nl
⊗diag (1, 0.1, 1), and Rk =

[
20 5
5 10

]
. The closed-

loop control uk is applied to the robot for K steps while
the state mean and covariance are updated on each step.
Fig. 2 shows examples of active SLAM using open-loop
and closed-loop control policies. We observe that the LQR
closed-loop control allows for larger exploration of the envi-
ronment since the trajectory is constantly corrected by LQR,
while for the case of open-loop policy, landmark entropy
increases after execution of the control sequence, which
encourages re-visiting the nearby landmarks and resulting
in limited exploration.

Fig. 3 summarizes simulation results for a random policy,
open-loop control obtained from iCR, and LQR closed-
loop control over iCR output. Both open-loop and closed-
loop policies outperform the random policy; however, the
policy regulated by LQR shows more long-term stability and
uncertainty reduction. This can be directly attributed to the
cost function for LQR, where stability and landmark position
uncertainty are explicitly factored in the model.

V. CONCLUSION

This paper developed a method for continuous trajectory
optimization for active information acquisition problems.
The problem is formalized as a stochastic optimal control
problem to minimize an uncertainty measure over the target
state. The novelty of the proposed method lies in (i) taking
into account the process noise in robot dynamics, (ii) intro-
ducing a differentiable field of view for enabling the gradient
computation, and (iii) planning an open-loop trajectory by
iCR and a closed-loop control policy by LQR applied to a
linearized system around iCR trajectory. We demonstrated
the efficacy of the proposed method in a simulation of
landmark-based active SLAM, aiming to map the landmarks
and localize robot accurately.
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