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Abstract— This paper formulates hiding and seeking ob-
jectives for mobile sensors with limited field of view (FoV)
as control barrier function (CBF) constraints. We consider
a mobile pursuer aiming to keep an evader within its FoV
despite line-of-sight occlusions. The signed distance function
(SDF) of the FoV set is used to formulate visibility seeking as
a CBF constraint on the control input space of the pursuer.
An equivalent CBF constraint can achieve hiding, i.e., avoiding
a pursuer’s FoV from the evader’s perspective. Maintaining
visibility of a moving target is demonstrated in CARLA
simulations, employing OctoMap ray-tracing to estimate the
SDF and the SDF derivative of an occluded FoV.

I. INTRODUCTION

Pursuit-evasion problems [1] are widely studied in compu-
tational geometry, control theory, and robotics, motivated by
applications in search-and-rescue [2], security and surveil-
lance [3], and environmental monitoring [4]. Introducing
visibility constraints leads to the art gallery problem [5],
which has elegant solutions with static pursuers (guards) in
2D polygonal environments but becomes challenging with
mobile pursuers in 3D environments. Prior works tackled
the pursuit-evasion with visibility constraints by graph [6]
or game-theoretic approaches [7], [8]. This work proposes
a novel control design for hide-and-seek with field-of-view
(FoV) constraints, employing control barrier function (CBF)
techniques.

Originated from the pioneering work by Ames and coau-
thors in [9], CBFs for safety-critical systems have been
intensively developed, such as robust CBF [10] and adaptive
CBF [11]. CBFs are defined so that the positivity of CBF
implies the forward invariance of the corresponding safe
set. Therefore, the safe control is designed so that CBF
maintains positive value, which is typically employed by
Quadratic Programming (QP) to minimize the square norm
of the control input subject to the CBF constraint which is
linear in control, thereby the feasibility of the solution is
ensured [12]. As a method related also to stabilization, [13]
proposed fixed-time CBF and utilizing CBF for stability at
a given goal region, subject to the safety constraints.

One challenge of CBF-based methods is how to determine
the CBF so that the positivity of the function is equivalent
to the desired safety [14]. This paper introduces the Signed
Distance Function (SDF) as CBF, which returns a positive
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distance from a point to the closest point on the boundary
of the given set if the point is outside the set, and returns a
negative distance if the point is inside the set. SDF represents
the continuous field of a given object, which has been applied
to many computer vision tasks such as shape representations
[15] and mapping an environment [16]. Utilizing SDF for
modeling FoV of a sensing robot has been done in [17]
for active mapping and in [18] for target tracking. However,
those work do not consider occlusion that is caused when
FoV is overlapped with objects. Traditionally, occlusion
in sensing has been treated by ray-tracing through laser
scanning [19].

Vision-based control renders a challenge in the treatment
of raw image inputs and visibility constraints in the control
design. In the presence of FoV constraints, [20] proposed
model predictive control for differential-drive robot navi-
gation, while maintaining visibility of a static landmark.
Leader-follower formations for maintaining visibility were
addressed in [21]. A vision-based target tracking for quadro-
tor landing on a ground vehicle was focused in [22]. For a
safety-critical system, [23] developed vision-based feedback
control by combining CBF and Neural Radiance Fields
(NeRF) [24]. In [25], the authors proposed a safe control
under limited perception in a dynamic environment.

This paper proposes hide-and-seek control design for a
mobile pursuer tracking a moving evader with limited FoV
and occlusions from the environment geometry. The objec-
tive is to enforce the negativity of SDF of FoV evaluated at
the evader position in the pursuer-view coordinate. Owing
to the versatility of SDF, the change of shape in FoV due
to occlusion is represented by utilizing ray-tracing at every
time. We prove that the required time to seek an evader under
the CBF-based control is bounded by a known constant. The
performance is demonstrated in a CARLA simulation [26],
employing OctoMap[27] ray-tracing to estimate the SDF and
the SDF derivative of the occluded FoV.

II. PRELIMINARIES

Consider a system given by ordinary differential equation:

ẋ(t) = f(x(t)) +G(x(t))u(t), (1)

where x ∈ Rn and u ∈ U ⊂ Rm are the state and control
input and f : Rn → Rn and G : Rn → Rn×m are continuous
vector-valued and matrix-valued functions, respectively.

In safety-critical applications, it is desirable to control the
state of a dynamical system to ensure that it remains within
a safe set:

S(t) = {x ∈ Rn|h(t,x) ≥ 0}, (2)



where h : R+ × Rn → R is a continuously differentiable
function.

Definition 1. A function h : R+ × Rn → R is a time-
varying control barrier function (CBF) defined on a set D,
if S(t) ⊆ D ⊂ Rn and there exists an extended class K
function α : R → R such that

sup
u∈U

{Lfh(t,x) + LGh(t,x)u}+ ∂h

∂t
(t,x) ≥ −α(h(t,x)),

for all x ∈ D and for all t ≥ 0.

When the set S(t) is defined by a CBF, it can be guaran-
teed that the system state remains within S(t) (invariance)
using a CBF constraint on the system control inputs.

Lemma 1 ([13]). Let h : R+×Rn → R be the time-varying
CBF defining a time-varying safe set (2). Then, for the system
(1), any Lipschitz continuous control input u(x) satisfying

Lfh(t,x) + LGh(t,x)u(x) +
∂h

∂t
(t,x) ≥ −α(h(x)), (3)

for all x ∈ S(t) and for all t ≥ 0, renders S(t) forward
invariant for all t ≥ 0.

For a locally Lipschitz reference control signal r(x) ∈
Rm, the following CBF quadratic program (QP) obtains the
minimum control perturbation to guarantee safety:

u∗(x) = argmin
u∈Rm

(u− r(x))⊤P (u− r(x))

s.t. Lfh+ LGhu+
∂h

∂t
≥ −αh.

(4)

where P ∈ Rm×m
+ is a positive-definite weight matrix.

III. SEEKING UNDER OCCLUDED FOV

A. Problem Statement

Consider a dynamical system given by (1), where the state
x ∈ Rn represents the pursuer’s physical state including both
position and orientation. We also consider a moving evader
where the evader’s physical state at time t is denoted as
y(t) ∈ Rn. To model visibility, we introduce two functions.
One is the relative vector q : Rn × Rn → R3 defined by

q(x,y) = R⊤(sp(y)− sp(x)). (5)

where R ∈ SO(3) ⊂ R3×3 is the orientation matrix of the
pursuer, and sp : Rn → R3 is a function mapping the state
to the position. The other is the Signed Distance Function
(SDF) defined below.

Definition 2. The signed distance function d : R3 → R
associated with a set F ⊂ R3 is:

d(q,F) =

{
−minq∗∈∂F ||q− q∗||, if q ∈ F ,

minq∗∈∂F ||q− q∗||, if q /∈ F ,
(6)

where ∂F is the boundary of F .

Let F̄ ⊂ R3 be the fixed non-occluded FoV set in the
coordinate of pursuer-view. Let Fx(x) be the occluded FoV,
which satisfies Fx(x) ⊂ F̄ for all x ∈ Rn. Seeking is
achieved when it holds d(q(x,y),Fx(x)) ≤ 0.

Problem: Given the target state y(t) and its time deriva-
tive ẏ(t) for all t ≥ 0, design the control law u to make
x(t) ∈ S(t) = {x ∈ Rn|d(q(x,y(t)),Fx(x)) ≤ 0} for all
t ≥ T for some user-defined T > 0.

Equivalently to the seeking problem above, hiding problem
can also be solved by introducing the evader FoV and the
corresponding SDF as a CBF constraint, which we do not
focus in this paper.

B. SDF-Based CBF for Finite-Time Convergence

Let h be CBF for seeking formulated as

h(t,x) = −γ
(
d(q(x,y(t)),Fx(x)) + εd̄

)
, (7)

where ε ∈ (0, 1) and d̄ = −minq d(q, F̄). Let qx :=
q(x,y) be the relative position of the robot state within the
target view-coordinate. To solve the Problem, we apply the
CBF-QP and show the following lemma.

Proposition 1. Consider the closed-loop system of (1) under
the CBF-QP (4) with CBF (7). For any parameter ε ∈ (0, 1),
it holds x(t) ∈ S(t) = {x ∈ Rn|d(q(x,y(t)),Fx(x)) ≤ 0}
for all t ≥ T , where

T =
1

α
log

(
1 +

d0
εd̄

)
(8)

and d0 = d(q(x(0),y(0)),Fx(x(0))) > 0.

Proof. Since d0 = d(q(x(0),y(0)),Fx(x(0))) > 0, by (7),
it holds that h(0) < 0 for any ε > 0. Since the CBF
constraint ensures h(t) ≥ h(0)e−αt, it holds that

d(q(x(t),y(t)),Fx(x(t))) ≤ (d0 + εd̄)e−αt − εd̄. (9)

Thus, if the right hand side of the inequality above becomes
0 at t = T , it is clear that d(q(x(t),y(t)),Fx(x(t))) < 0
for all t ≥ T . The condition yields (8).

C. Occlusion

A challenging task is to obtain the gradient of SDF
of FoV with respect to the pursuer pose state. Here, let
d∗(x) := d(q(x,y),Fx(x)) be SDF w.r.t. the pursuer pose
state. Consider a set of pursuer pose perturbation X =
{[rηi, 0], [rηi,±δθ]}Ni=1 ∈ R3×3N , where r ∈ R+ and δθ ∈
R+ are sufficiently small positive scalar values and ηi =
[cos( 2πiN ), sin( 2πiN )] and the corresponding SDF d∗(x+ δxi)
for each δxi ∈ X . By Taylor expansion, the perturbation of
SDF is d∗(x+δxi) = d∗(x)+ ∂d∗

∂x (x)δxi. Thus, by defining
∆d∗i (x) = d∗(x + δxi) − d∗(x), one can approximate the
gradient as ∂d∗

∂x (x) ≈ argminp
∑3N

i=1 ||p⊤δxi − ∆d∗i (x)||,
which is solved by the least square method.

IV. EXPERIMENT

In this section, we evaluate the performance of the pro-
posed hide-and-seek method in 2-D and 3-D simulation
environments. All experiments are conducted using Python
and the CARLA simulator.



(a) Ray-tracing (b) Signed distance

Fig. 1: pursuer 2D perception with ray-tracing and the corresponding SDF.

A. 2D Simulation

1) Environment Settings: In the planar simulation, we
construct a scene with multiple polygonal obstacles and
a polygonal map boundary. The octagonal scene contains
sixteen rectangular obstacles, providing varying angles of ob-
scured pursuer vision in complex evader motion trajectories.
The scale of the map is 400m × 400m, and each obstacle
measures 5m×5m. Physical limitations of the environment,
such as friction and collision interactions, are not considered
during the actual motion process.

2) Pursuer Motion and Perception: We consider a uni-
cycle model with control input u = [u, ω]⊤ ∈ R2 where u
is the linear velocity and ω is the angular velocity, the state
variable is defined as x = [x, y, θ] ∈ R3 for position in x−y
coordinate, and the angle θ. Namely, the dynamics is given
by ẋ = u cos(θ), ẏ = u sin(θ), θ̇ = ω. In 2-D simulation,
the pursuer is equipped with a depth camera boasting a 60°
FoV and an effective measurement range of 10 meters. We
have simplified the camera’s maximum detection area into
a triangular region rather than a sectorial one to ensure that
the actual visible area conforms to a polygonal shape. We
employ ray tracing to determine the pursuer’s actual visible
region, with the ray-tracing featuring an angular resolution
of 0.6°. The resulting visible area through ray-tracing is
depicted in Fig. 1a. After determining the pursuer’s visible
range, we calculate the signed distance from the evader
to this visible region using the polygonal Signed Distance
Function (SDF). The distribution of distances within the
polygon is depicted in Fig. 1b. Upon obtaining the signed
distance, we employ the finite difference method to compute
the approximate gradient of the signed distance with respect
to the pursuer’s pose.

3) Evader Settings: The evader model follows a Lissajous
curve executing periodic movements within the simulation
environment, described by x = A sin at+ δ and y = B sin bt
in x−y coordinate at time t ≥ 0. Throughout its movement,
the evader persistently navigates through gaps between obsta-
cles, encompassing scenarios like near-linear paths, gradual
turns, and sharp maneuvers. The trajectory parameters, along
with other simulation details, are listed in Table I.

B. CARLA 3D Simulation

CARLA [26] is a renowned open-source simulator de-
signed specifically for autonomous driving research. Estab-
lished on realistic simulation environments, it offers a rich

TABLE I: Chosen values for each parameter

Parameters Values Parameters Values

x(0) (0,0,0) τ 0.1
A 180 a 0.15
B 90 b 0.40
δ 2.05 ε 0.2

r(x) (18,0) γ 5

(a) Environment (b) OctoMap

Fig. 2: CARLA 3-D simulation setup.

set of features to facilitate the development, training, and
validation of autonomous driving systems. The simulator’s
high-fidelity graphics and physics engine provide a near-real-
world experience, enabling researchers to study autonomous
vehicle behavior under many conditions.

1) Environment Settings: In CARLA, leveraging the capa-
bilities of the Unreal Engine, we have constructed a straight-
forward 3-D simulation map, bounded and reflecting the
same quantity and positioning of obstacles as the previously
mentioned 2-D map. In this 3D representation, the ground is
textured with grass, while obstacles receive a concrete finish.
We have disabled the physical interactions between obstacles
and vehicles, meaning no tangible physical collisions will
occur. Nevertheless, we ensure that the vehicle sensors
accurately detect the presence of these obstacles. Throughout
the simulation, we refrain from employing CARLA’s Traffic-
Manager for traffic planning, as well as its built-in automated
navigation feature. Analogous to the 2D simulation, the
vehicle position is directly affected by the CBF controller.

2) CARLA Communication: In CARLA, sensor data and
vehicle position information are communicated through the
Robot Operating System (ROS) [28]. Within the 3-D sim-
ulation environment, we have activated the RGBD camera,
LiDAR, and GPS positioning systems. This data is subse-
quently published to corresponding ROS nodes for access
by the controller or during debugging processes. The CBF
controller influences the simulation process by manipulating
elements within the simulation environment, such as the
vehicle’s physical parameters and the simulation running
frequency, achieved through interfacing with the CARLA
Python API.

3) OctoMap in CARLA Simulation: OctoMap [27] is a
pioneering open-source library designed to create volumetric
3D environment maps in real time. Rooted in a probabilistic
occupancy estimation framework, it represents an environ-
ment with an octree data structure, allowing for efficient
storage, manipulation, and queries. In the 3-D simulation,
we employ OctoMap to construct both the global map and



Fig. 3: 2D simulation process illustrating the pursuer’s progression from
initial discovery to stable tracking, Light green and bright green indicate
successful tracking, signifying that, at that moment, the signed distance
from the evader to the pursuer’s visible region is less than zero.

Fig. 4: Variation of the signed distance from the evader to the pursuer’s
visible region during the simulation.

the pursuer’s visible region. The mapping process with Oc-
toMap during the simulation is illustrated in Fig. 2b, where
colors indicate the height from ground and white blocks are
point clouds. Initially, we convert the RGBD images into
point clouds using the ROS depth image proc package.
Subsequently, we leverage the OctoMap library to transform
these point clouds into an accessible global OctoMap, along
with its projection on a 2-D plane.

C. Results

Fig. 3 shows the snapshots of the 2-D simulation, which
illustrates a successful result in a transition from not detect-
ing the evader to tracking and maintaining the visibility. The
green box represents the pursuer’s visible region, while the
blue and red points correspond to the pursuer and evader, re-
spectively. Fig. 4 displays the variation of the signed distance
from the evader to the pursuer’s visible region throughout
the simulation. Fig. 5 depicts linear and angular velocities
of both the pursuer and the evader. When the evader resides
within the pursuer’s field of view, the control input remains
consistently at (18, 0). We utilize the parameter ε to delineate
a safe region within the pursuer’s visual field, which enlarges
the control input to enforce the target to stay close to the
center of the pursuer’s FoV. The pursuer’s angular velocity
variation closely aligns with that of the evader, maintaining
a stable phase difference. From this, we deduce that the
CBF controller adeptly modifies the reference input r(x),
equipping the pursuer to effectively and consistently track
the evader within a set duration. As evident from the figures,
following the initial phase and the pursuer’s first tracking
success, in most cases, the pursuer manages to maintain
stable tracking convinced by the negativity of the signed
distance. The 2-D simulation ran on a Windows platform,
requiring approximately 160ms of computation time for each
time step on an i7-13700H processor.

The 3-D CARLA simulation ran on a desktop with i7-
7700K and RTX3060 graphics card. Within our custom map,

Fig. 5: Control inputs of the proposed method.

Fig. 6: A sequence from the CARLA simulation illustrating the pursuer’s
perspective, transitioning from initial non-tracking to achieving consistent
evader tracking. The red vehicle represents the Seeker, while the blue
vehicle, indicated by the indigo arrow, is the evader vehicle.

the server side operated at 90Hz, while the client side ran
approximately at 60Hz. The CBF controller updated the
positions of both the evader and the pursuer every 0.16
seconds. Fig. 6 illustrates a sequence of images from the
CARLA simulation, capturing the pursuer’s perspective as it
transitions from initially not tracking the evader to achieving
stable vision-tracking.

V. CONCLUSION

This paper has addressed hide-and-seek control design for
a single pursuer and a evader under visibility constraint. We
introduced the Signed Distance Function for modeling the
visibility under occlusion. Using the barrier function method,
we show that the visibility of the moving evader is achieved
within a finite time. The occlusion of the field-of-view is han-
dled by the ray-tracing. The performance is demonstrated in
both 2-D simulation and 3-D CARLA simulator employing
the OctoMap. In future work, we will consider a non-myopic
control by the model predictive control to minimize a long-
term cost, sensor-based control by constructing an estimator
of the evader state, and the hide-and-seek scenario where the
evader is also trying to seek the pursuer.
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