
Temporal Logic Guided Locomotion Planning and Control in Cluttered
Environments

Sutej Kulgod∗1 Wentao Chen∗2 Junda Huang∗2 Ye Zhao2 Nikolay Atanasov1

Abstract— We present planning and control techniques for
non-periodic locomotion tasks specified by temporal logic in
rough cluttered terrains. Our planning approach is based on a
discrete set of motion primitives for the center of mass (CoM)
of a general bipedal robot model. A deterministic shortest path
problem is solved over the Büchi automaton of the temporal
logic task specification, composed with the graph of CoM
keyframe states generated by the motion primitives. A low-
level controller based on quadratic programming is proposed to
track the resulting CoM and foot trajectories. We demonstrate
dynamically stable, non-periodic locomotion of a kneed compass
gait bipedal robot satisfying complex task specifications.

I. INTRODUCTION

Legged bipedal robots are becoming widely adopted to
accomplish complex tasks in human environments, due to
their potential to navigate cluttered rooms and buildings
and interact with objects of interest. While humans can
ambulate intelligently and robustly, legged bipedal robots
face challenges in doing the same due to the inherent
instability of their under-actuated locomotion dynamics and
the complexity of planning for complex task specifications.

Numerous works have investigated motion planning and
control of bipedal walking robots [1]–[5]. Few, however,
have explored a comprehensive strategy integrating motion
planning for high-level tasks and low-level control simulta-
neously. Our work proposes an approach that integrates task
design, motion planning and optimal control of non-periodic
dynamic legged locomotion over complex terrain.

Synthesis of high-level reactive task and motion plans has
been widely studied in the formal method community [6]–
[8]. Kress-Gazit et al. [9] propose a discrete controller
for linear temporal logic (LTL) tasks that specify complex
behavior for a ground mobile robot in a 2-D environment.
Generalizing ground mobility tasks to highly dynamic loco-
motion, Zhao et al. [10] propose a whole-body locomotion
planning approach by solving a two-player game between
a bipedal robot contact planner and its possibly adversarial
environment. Fu et al. [11] propose a reduction of a subclass
of LTL formulas to a deterministic shortest path problem
(DSP), achieving joint task and motion planning in proba-
bilistic semantic maps. Similar to [11], we consider a known

We gratefully acknowledge support from ONR SAI N00014-18-1-2828
and NSF Award No. 1924978.

∗The first three authors contributed equally to this work.
1S. Kulgod and N. Atanasov are with the Department of Electrical and

Computer Engineering, University of California, San Diego, La Jolla, CA
92093, USA {skulgod,natanasov}@ucsd.edu.

2W. Chen, J. Huang, and Y. Zhao are with the George W.
Woodruff School of Mechanical Engineering, Georgia Institute of
Technology, Atlanta, GA 30332, USA {wenche, jhuang496,
yzhao301}@gatech.edu.

Fig. 1: Example executions of different tasks with a kneed bipedal
robot in an environment with stairs and obstacles. The magenta
curve is a plan for satisfying the task “visit a blue and a red region
before going to a yellow region, while avoiding green regions.” The
blue curve is a plan for a similar task requiring either a blue or a
red region to be visited before the yellow region.

environment and reduce an LTL task specification to a DSP.
Meanwhile, we incorporate the switching strategies in [10]
to determine a set of feasible motions that achieve stable
locomotion behaviors while maneuvering confined space and
rough terrain environments.

Our approach to efficient task planning hinges on the
careful design of motion primitives that can be tracked by
various bipedal robots. The primary aim of motion prim-
itives is to describe a finite set of pre-computed feasible
trajectories and use it to reduce the complexity of high-
dimensional continuous-space planning problems. The use
of motion primitives in planning for various bipedal robots
has been explored in [12]–[15]. For example, a library
of common high-dimensional trajectories for motions such
as walking, climbing and the transitions between them is
proposed in [13], [14]. In [12], a set of primitives for the
compass-gait biped is derived with controlled reduction and a
discrete-search algorithm is used to plan open-loop primitive
sequences for walking. The importance of energy optimal
trajectory generation is discussed in [16]. In this work, we
propose a motion primitive design based on phase-space
keyframe states [10], capturing characteristics about the
robot’s center of mass and stance foot, that allows generation
of dynamically feasible optimal trajectories for a wide variety
of bipedal robots.

Stabilizing locomotion trajectories over complex terrain
is challenging, even if dynamically feasible CoM and
foot trajectories are predefined to satisfy specified tasks.
Quadratic programming (QP) is a powerful and well-
established method for low-level control of bipedal robots
during recent years. QP methods have been extensively
investigated for controlling full-body humanoid robots [17],
[18], and achieving control objectives subject to control
barrier safety constraints [19]. To enable stable walking
for bipedal robots, the work of [20], [21] introduces Zero
Moment Point (ZMP) and Inverse Kinematics (IK) to the
QP controller, while the work in [22] explicitly computes
stability polygon and constructs task-based QP controllers
based on quasi-static motion. Although their research has
shown robustness on rough terrain to some degree, the
walking process does not have the same success rate as
dynamic walking. On the contrary, we implement a QP
controller with trajectory re-planning to realize dynamic
walking over rough terrain. As taking the keyframe based
CoM trajectory and heuristic foot trajectory as inputs, we
verify the feasibility of keyframe based motion primitives
and achieve the locomotion trajectory tracking by using the
model-based QP controller.

The contributions of this work are summarized as follows.
• We propose motion primitive design based on phase-

space keyframe states that can be used with general
bipedal robot models to achieve non-periodic motion.

• We demonstrate that a robot task specified via a linear
temporal logic formula can be realised by solving a de-
terministic shortest path problem over motion primitive
compositions.

II. PROBLEM FORMULATION

Reduced-order models have been extensively employed
for modeling dynamic legged locomotion. In this study, we
develop a motion planner that relies on a prismatic inverted
pendulum with center-of-mass (CoM) position constrained
on a parametric surface as described in [23]. We assume
instantaneous foot contact switching during walking. The
start of a walking step is defined when the CoM is on top
of the stance foot sagittal position, while its end is when the
CoM is above the next stance foot location after one foot
switch. Legged locomotion is described by hybrid swing and
contact dynamics.

A. Discrete Dynamics

We first describe the discrete variables, which remain
constant during the step duration. Let tk, tk+1, . . . be the
discrete times at which the steps begin. The step state at
time tk is defined as sk := (pTk , ψk)T , where pk ∈ R3 is
the initial stance foot position and ψk ∈ R is the heading
angle. Using sk and a step length along the transverse plane
lk ∈ R>0, the change in height δzk ∈ R for the step is
determined based on the terrain. The evolution of the heading
angle ψk is determined by a desired change in heading angle
δψk ∈ R. Thus, the input determining the evolution of sk is

uk = {δψk, lk} ∈ R2, leading to discrete dynamics:

sk+1 :=

[
pk+1

ψk+1

]
= f(sk,uk)

:=

[
pk + lkRz (ψk) e1 + δzke3

ψk + δψk

] (1)

where ei ∈ R3 are standard basis vectors and Rz(ψ) ∈
SO(3) specifies a rotation around the z-axis by angle ψ.

B. Continuous Dynamics

The remaining robot states evolve in continuous time
during each walking step, specified by sk. Let the origin
of the local coordinate frame of the kth step be defined by
the stance foot location pk. The x-coordinate is aligned with
the walking direction, the y-coordinate is in the transverse
plane perpendicular to x, and the z-coordinate is in the
sagittal plane perpendicular to x. Let the CoM-state in local
coordinates be ξk(t) := (xk(t)T , ẋk(t)T)T ∈ R6, specified
by its position xk(t) := (xk(t), yk(t), zk(t))

T ∈ R3 and
velocity ẋk(t) ∈ R3 for t ∈ [tk, tk+1]. Let ζk ∈ [tk, tk+1]
be the time at which the stance foot switches. The CoM
height at the switching point zk(ζk) as well as the apex
velocity ẋk(tk+1) and CoM height zk(tk+1) at the end of
the step are constrained for each step in order to obtain
desired gait characteristics. Let these constraints be specified
by vk = (ẋk(tk+1), zk(tk+1), zk(ζk))T ∈ R3. Finally, let
c(t) ∈ R6 be the global coordinates of the CoM state ξk(t)
for t ∈ [tk, tk+1]. The continuous-time CoM dynamics,

ċ(t) = g(c(t), sk, sk+1,vk), t ∈ [tk, tk+1], (2)

are defined precisely in Sec. IV.

C. Linear Temporal Logic Specifications

An LTL formula ϕ is used to specify the robot’s task over
a finite set of atomic propositions AP , evaluated to be true
when certain conditions are met by the robot’s CoM state
c(t). Temporal logic utilizes propositions, Boolean operators
and temporal operators to represent system properties and
requirements, especially the temporal ordering of events [24].
An LTL formula ϕ is composed of atomic propositions π ∈
AP , based on the following grammar,

ϕ := π|¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ| © ϕ|ϕUϕ

with Boolean constants True and False, logic operators nega-
tion (¬), disjunction (∨), conjunction (∧), implication (⇒),
equivalence (⇔), and temporal operators next (©), until (U),
eventually (♦ϕ := TrueUϕ), and always (�ϕ := ¬♦¬ϕ).

A labeling function ` : R6 → 2AP provides the set of
propositions `(c(t)) that evaluate true at the environment
location specified by the CoM state c(t). We convert the
task ϕ into a deterministic finite-state automaton (DFA) Aϕ
using the Spot library [25] (see Fig. 2). The DFA is defined
as Aϕ =

(
Q, 2AP , h, q0,QS ,QF

)
, where Q is a finite set

of automaton states, 2AP is the alphabet, h : Q× 2AP → Q
is the transition function and q0 ∈ Q is the initial state. The
transition function h defines the continuous-time evolution

of the discrete automaton state q(t) as a function of the
propositions satisfied by the CoM:

q+(t) = h
(
q−(t), ` (c(t))

)
, t ∈ [tk, tk+1] (3)

where q−(t) and q+(t) are the automation states before and
after the instantaneous update at time t. The set QS ⊂ Q
denotes unaccepting sink states (e.g., collision) such that
q(t) = h(q(t), `) for all ` ∈ 2AP and the task ϕ can
never be satisfied, while QF ⊂ Q denotes accepting final
states at which the task ϕ is satisfied. The planning problem
considered in this work follows.

Problem 1. Let Aϕ be a deterministic finite-state automaton
with initial state q0 specifying the robot task. Given an
initial step state s0 and CoM state c(0), determine a control
sequence uk for k = 0, . . . ,K − 1 that satisfies the task,
i.e., an accepting automaton state q(tK) ∈ QF is reached at
beginning of the Kth step, while minimizing:

min
K,u0:K−1,v0:K−1

K−1∑
k=0

ρ(c(tk), c(tk+1)) + uTkRuk + vTkGvk

s.t. sk+1 = f (sk,uk) , k = 0, . . . ,K − 1

ċ(t) = g(c(t), sk, sk+1,vk), t ∈ [tk, tk+1] (4)

q+(t) = h
(
q−(t), ` (c(t))

)
, t ∈ [tk, tk+1]

q(0) = q0, q(t) /∈ QS , q(tK) ∈ QF ,

where ρ is a positive definite motion cost function and R,G
are positive definite matrices.

III. TASK SPECIFICATION AND KEYFRAME STATE
SELECTION

The key idea to solve Problem 1 is to define a finite set
of motion primitives that serve to reduce the path planning
problem to a finite-state deterministic shortest path problem.
In our work, motion primitives are defined by a discrete set of
possible inputs uk, constraints vk and associated continuous-
time CoM trajectories c(t) for t ∈ [tk, tk+1] that can be
selected at the beginning of each step. This section describes
the task specification ϕ and the selection of constraints for
motion primitive generation.

A. Task Specification

Let E ⊂ R3 represent the environment in which the robot
is operating. The environment E = ∪iTi contains different
terrains Ti, such as lower ground, stairs, or ramps (see
Fig. 1). In addition, there are regionsRi ⊂ E of interest, such
as obstacles or locations that robot should visit (see Fig. 1).
To specify a meaningful task for the robot, the regions Ri
are associated with atomic propositions αi ∈ A ⊂ AP
that evaluate to True according to the labeling function,
i.e., αi ∈ `(c(t)), when the robot’s CoM c(t) is in the
corresponding region Ri. Note that the regions Ri may
overlap, in which case the labeling function returns multiple
valid propositions αi. The robot’s task is specified via a
temporal logic formula over the propositions αi.

Example 1. Consider a task requiring the robot to visit a
Red region and then a finish its mission at a Yellow region

0

1

2 3

!g&!r

!g&r

!g&r&y

g

!g

!g&y

g

!g&y

g|!y

1

Fig. 2: Deterministic finite-state automation obtained from ϕ in
Example 1. Propositions αRed, αYellow, and αGreen are denoted by
r, y, g, respectively, for readability. Automaton state 2 is a final
state (green) and state 3 is a sink state (red).

while always avoiding Green regions (see Fig. 1). This task
may formally be specified by the LTL formula ϕ in (5) and
the corresponding deterministic finite-state automation is as
given in Fig. 2:

ϕ = ♦αRed ∧ ♦�αYellow ∧�¬αGreen (5)

B. Environment Action Set

Similar to associating atomic propositions to the interest
regions Ri, the terrains Ti are associated with atomic propo-
sitions νi ∈ B ⊂ AP and νi ∈ `(c(t)) when the robot’s
CoM c(t) is on the corresponding terrain Ti. Thus, B and
A, together, form the set of atomic propositions AP used
to define Problem 1, i.e., A ∪ B = AP . We call B the
environment action set because the propositions νi ∈ B are
used to define rules for selecting the robot inputs uk and
constraints vk depending on the terrain Ti.

Example 2. Consider an environment containing stairs
and three elevation levels: lower, ground, and upper.
The corresponding environment action set B consists of the
following atomic propositions:

B := {βst, βll, βgd, βul} (6)

where the first proposition βst is true when the robot is one
step away or stepping on the stairs, and the remaining ones
indicate whether the robot is on the lower level/ground lev-
el/upper level of the environment. The environment actions
other than βst are mutually exclusive.

C. Determining Keyframe States using Environment Actions

A keyframe state θk := (uTk ,v
T
k) ⊂ R5 at time tk is

defined as the input uk for the kth step discrete dynamics
and the CoM state constraints vk. The environment actions
that evaluate to True at time tk are used to determine the
keyframe state θk depending on the terrain and desired gait
characteristics. A propositional logic formula $ is specified
over νi to define such rules as illustrated in the next example.
The keyframe states that satisfy $ form a finite set Θk ⊂ R5.
The figurative presentation of keyframe states in the CoM
phase-space plane and CoM sagittal plane can be visualized
in Fig. 3 and 4.

Example 3. Suppose that each of the five dimensions (head-
ing angle change δψk, step length lk, apex velocity ẋk(tk+1),
CoM height zk(tk+1), switching CoM height zk(ζk)) of

a keyframe state θk can take on values from a finite set
{∗, s,m,h}. The symbols specify a small (s), medium (m),
high (h), or unspecified (∗) value for the keyframe state
dimensions. When a dimension of θk is unspecified (∗),
its value needs to be determined during the optimization in
Problem 1. Given the environment actions in Example 2, we
define the following keyframe state selection rules.
• When the robot is approaching stairs, it should switch

to a large step length, small apex velocity, large CoM
switching height and large apex height:

$1 =
(
βst ⇒

(
θ = (∗,h, s,h,h)

))
• When on the ground level, the robot should adopt a

medium step length, large apex velocity, medium apex
height, and medium switching height:

$2 =
((
βgd ∧ ¬βst

)
⇒
(
θ = (∗,m,h,m,m)

))
• When on the lower level or upper levels, the robot

should adopt a small step length, medium apex velocity,
medium apex height, and medium switching height:

$3 =
((
βul ∨ βll

)
∧ ¬βst ⇒

(
θ = (∗, s,m,m,m)

))
The combined formula $:= $1∧$2∧$3 specifies the rules
for selecting a keyframe state θk instantaneously depending
on the terrain Ti where the CoM c(tk) is located, i.e., $
does not involve temporal operators.

IV. MOTION PRIMITIVE GENERATION

At the beginning of the kth step, the robot’s CoM c(tk)
determines the environment actions as detailed in the pre-
vious section, which in turn determines the possible inputs
and constraints θk ∈ Θk. Each element of Θk specifies a
possible continuous-time CoM trajectory, which we refer to
as a motion primitive.

The CoM motion is constrained to two planar surfaces
perpendicular to the sagittal plane. The surfaces are defined
by the equations:

γixk(t) + νi − zk(t) = 0, i ∈ {1, 2} (7)

where i = 1 in the first half of the walking cycle, i.e., before
the stance foot switching time, tk ≤ t < ζk, and i = 2 in the
second half of the walking cycle, i.e., for ζk ≤ t < tk+1. The
constants γi, νi may be determined from c(tk), uk, and vk as
described next. The CoM position xk follows the dynamics:

ẍk(t) =

{
W1xk(t), tk ≤ t < ζk

W2xk(t)−RTz (ψk)(pk+1 − pk), ζk ≤ t ≤ tk+1

(8)

where Wi is determined by an asymptotic slope ωi with
acceleration due to gravity gc:

Wi =

 ω2
i 0 0

0 ω2
i 0

γiω
2
i 0 0

 ∀i ∈ {1, 2} (9)

ω1 =

√
gc

zk(tk)
, ω2 =

√
gc

zk+1(tk+1)
(10)

Fig. 3: Evolution of the CoM position xk(t) and velocity ẋk(t) in
the walking direction. The terminal value xk(tk+1) is determined
by the step length lk in the input uk, while ẋk(tk+1) is available
from the constraints vk.

Fig. 4: Evolution of the CoM sagittal coordinates xk(t) and zk(t).
The terminal value xk(tk+1) is determined by the step length lk in
the input uk, while zk(tk+1) is available from the constraints vk.

A. Stance Foot Switching Time

Separating the sagittal dynamics from (8) results in:

ẍk(t) =

{
ω2
1xk(t), tk ≤ t < ζk

ω2
2xk(t)− eT1 R

T
z (ψk)(pk+1 − pk), ζk ≤ t ≤ tk+1

(11)

The keyframe constraint vk determines ẋk(tk+1). From the
step definition and since pk is the origin of the local frame,
we have xk(tk) = 0 and xk(tk+1) = lk, where the step
length lk is available from the input uk. Hence, the time of
stance foot switch ζk is determined by integrating forward
from xk(tk), ẋk(tk) and backwards from xk(tk+1), ẋk(tk+1)
using ε perturbations [26], [27] until the x and ẋ curves
intersect. The evolution of xk(t), ẋk(t) and the point of foot
switching are illustrated in Fig. 3.

B. Surface Parameter Computation

Eq. (8) and (9) indicate that xk(t) and yk(t) are inde-
pendent of the surface constants γi, νi. Hence, the surface
constants determine the value of zk(t) for t ∈ [tk, tk+1]. The
keyframe constraint vk determines zk(ζk) and zk(tk+1). See
Fig. 4 for an illustration. The surface constants can then be
obtained:

1: Since xk(tk) = 0 from (7) ν1 = zk(tk). Using xk(ζk),
computed from (11), and zk(ζk), available from vk, γ1
is determined from (7).

2: Substituting the values xk(ζk), zk(ζk), xk(tk+1) = lk
(from uk) and zk(tk+1) (from vk) in (7) results in two
equations with two unknowns ν2 and γ2.

C. CoM-State Dynamics

Eq. (8) may be re-written in state-space form using the
local CoM-state coordinates ξk(t) = (xk(t)T , ẋk(t)T)T :

ξ̇k(t) =

[
0 I
Wi 0

]
︸ ︷︷ ︸

Ai

ξk(t)−
[

0
RTz (ψk)

]
︸ ︷︷ ︸

B

di, (12)

where d1 = 0 and d2 = (pk+1 − pk). The solution to this
linear time-invariant system is:

ξk(t) =

eA1(t−tk)ξk(tk) tk ≤ t < ζk
eA2(t−ζk)ξk(ζk)

+

∫ t

ζk

eA2(t−s)dsB(pk+1 − pk)
ζk ≤ t ≤ tk+1

(13)

Then, the global coordinates c(t) of the CoM state may be
obtained:

c(t) =

[
Rz(ψk) 0

0 Rz(ψk)

]
ξk(t) +

[
I
0

]
pk, t ∈ [tk, tk+1].

(14)

V. LTL TASK PLANNING

Having defined the hybrid locomotion dynamics and their
spatial discretization via keyframe states θk, we are now
ready to address Problem 1. The keyframe states were
designed to limit the evolution of the CoM dynamics to a
finite set of possible trajectories. This reduces Problem 1 to a
deterministic shortest path (DSP) problem over the graph of
possible CoM states c(tk) composed with the task automaton
Aϕ. The DSP problem may be solved by a standard motion
planning algorithm, such as A* [28] or RRT [29]. In detail,
the state of the DSP problem consists of the automaton
state q(tk), the step state sk, and the CoM state c(tk). The
discrete-time state evolution is described by the automaton
transition function h, the discrete locomotion dynamics f in
eq. (1), and the CoM state trajectory in eq. (13) and (14).
This may be used to define the EXTEND function in RRT or
the SUCCESSORS function in A* (see Alg. 1).

Inspired by [11], we use the A* algorithm because an
accurate heuristic function may be designed to guide the
planning process based on the level sets of the automaton Aϕ.
The automation states Q are partitioned into level sets where
Q0 := QF and for i > 0 Qi+1 := {q ∈ Q\

⋃i
k=0Qk|∃q′ ∈

Qi, p ∈ 2AP , such that h(q, p) = q′}. From the description
of the levels, it can be seen that the automation state has to
pass through the level sets sequentially in order to reach the
accepting set QF . Given (q(tk), sk, c(tk)) with q(tk) ∈ Qi,
a heuristic function that underestimates the cost in eq. (4)
may be obtained by computing the cost from c(tk) to the set
of CoM states c(t) that produce labels `(c(t)) triggering a
transition to Qi−1. If the cost function ρ is a distance metric,
a more precise heuristic can be obtained by adding the
set-to-set distances between the CoM-state sets that trigger
transitions to Qi−1, followed by Qi−2, . . ., until Q0.

Algorithm 1 Determining successors for LTL-constrained A*

1: input: automaton state q(tk), step state sk , CoM state c(tk), keyframe
set Θk

2: Succ← ∅, Cost← ∅
3: for (uk,vk) in Θk do
4: sk+1 ← f(sk,uk)
5: for t = tk, tk + ∆t, . . . , tk+1 −∆t do
6: Compute c(t+∆t) from c(t), sk , sk+1, vk via eq. (14), (13)
7: q(t+ ∆t)← h (q(t), ` (c (t+ ∆t)))
8: if c(t+ ∆t) hits obstacle or q(t+ ∆t) ∈ Qs then
9: break

10: r ← ρ(c(tk), c(tk+1)) + uT
kRuk + vT

k Gvk

11: Succ← Succ∪{q(tk+1), c(tk+1), sk+1}, Cost← Cost∪{r}
12: return Succ, Cost

VI. QUADRATIC PROGRAMMING CONTROL

Quadratic programming (QP) is one of the mainstream
optimal control methods in robot manipulation and locomo-
tion. In this study, we employ QP to achieve multiple-step
dynamic locomotion stabilization on level ground and stairs.
The features of our QP controller are highlighted as: (i)
trajectory replanning for tracking error reduction and robust
walking; (ii) slack variables encoded in the foot contact
constraint for feasibility of numerical optimization; (iii)
controlled point-foot walker maneuvering on rough terrain.

The task planning algorithm developed in Sec. V pro-
vides desired CoM trajectory c(t) and stance foot sequence
pk. Desired swing foot position and velocity trajectory
(fk(t), ḟk(t)) ∈ R6 is obtained in the global frame of refer-
ence using two piece-wise constant acceleration trajectories
such that the velocity and height are 0 at tk and tk+1 and
non-zero in between. Given the robot state (qgc(t), q̇gc(t)) ∈
R22, where qgc(t) are generalized coordinates, consisting of
the 6-D base pose, two knee joints, and three hip joints, and
q̇gc(t) are their velocities, our QP formulation aims to track
the desired CoM, stance foot, and swing-foot trajectories.
The QP controller takes these desired trajectories as inputs,
and optimizes the joint torques τ ∈ R5 subject to the full-
body dynamics and constraints as follows:

min
q̈gc,λ,τ ,ηst,ηsw

wcom

∥∥Jcomq̈gc + J̇comq̇gc − ẍk
∥∥2

+ wτ
∥∥τ − τ pre

∥∥2 + wst

∥∥ηst

∥∥2
+ wsw

∥∥ηsw

∥∥2 (15a)

subject to Hf q̈gc +Cf = JT
f λ (15b)

Haq̈gc +Ca = JT
aλ+Baτ (15c)

J stq̈gc + J stq̇gc = −αJ stq̇gc + ηst (15d)

J swq̈gc + J̇ swq̇gc = f̈k + ηsw (15e)

τ ∈ [τmin, τmax] (15f)
qgc,i ∈ [qmin, qmax], ∀i ∈ Iactuated (15g)

λj ∈ F̂j , ∀j ∈ Icontact (15h)

where Hf and Ha are the inertial matrices corresponding
to the under-actuated CoM dynamics and actuated joint dy-
namics, Cf and Ca represent the gravitational and Coriolis
terms, Ba is the actuation selection matrix, and JfT and
Ja

T are external contact-force Jacobian matrices. For our

kneed compass gait walker model, λ =
[
λ1

T λ2
T
]T

is
a contact-force vector acting at two contact points. The
matrices J and J̇ are task-level Jacobians which can be
defined for the CoM, swing foot and stance foot tasks in
Cartesian space. The indices Iactuated and Icontact are the
actuated joint set and contact point set, respectively, and
F̂j =

{
λj |λj ∈ R3, 〈nj ,λj〉< arctanµj

}
is the friction

cone of the jth contact point, where nj and µj are normal
and Columbus coefficient at the jth contact point respec-
tively, angle bracket represents the angle between the two
vector arguments. The constraints (15b) and (15c) enforce
full body dynamics; eq. (15d) is a no-slip constraint to ensure
the stance leg stays on the ground (we set α to 0); eq. (15h)
represents contact-force constraints; eq. (15f) represents joint
torque limits. Finally, eq. (15e) is a swing-leg constraint,
where f̈k is the desired swing-foot trajectory acceleration.

The weight parameter, wcom, is used to balance the im-
portance of tracking the CoM trajectory, while wst and wsw,
are used to weight the ground-slip prevention and swing-foot
motion tracking. We set wst = 108 to enforce the no-slip
constraint, while wsw and wcom were set to 105.

VII. RESULTS

This section evaluates the performance of our planner in
satisfying different tasks in different environments and our
controller in achieving periodic and non-periodic locomotion.
We perform simulations in Drake [30] using a kneed compass
gait model [31], [32] to navigate environments containing
obstacles, stairs, and ramps.

A. LTL Task Planning

We consider a task requiring the robot to obtain objects
located in red and blue regions, and deliver them to a yellow
region, while avoiding dangerous obstacle regions. Formally,
we define regions Ri ∈ {Blue, Red, Yellow, Obs}
and associate atomic propositions αBlue, αRed, αYellow, αObs
with them. Two variations of this task are considered.

In the first task, the robot is assumed to have limited
capacity to hold objects. In this case, the robot is tasked
to reach either the blue or the red region before delivering
the object to the yellow region. The specification ϕ1 is:

ϕ1 =(♦αBlue ∧ ♦�αYellow ∧�¬αRed)

∨ (♦αRed ∧ ♦�αYellow ∧�¬αBlue) ∧�¬αObs

(16)

The task ϕ1 automaton is visualized in Fig. 5.
In the second task, the robot is assumed to have sufficient

storage capacity to hold the objects from both red and blue
regions. The robot is tasked to visit both the regions, without
specific order, and finally reach the yellow region, while
avoiding the dangerous regions. The specification ϕ2 is:

ϕ2 = ♦αBlue ∧ ♦αRed ∧ ♦�αYellow ∧�¬αObs (17)

The switching behavior of the keyframe states θk in
response to the environment actions defined in eq. (6) was
evaluated via the SLUGS toolbox [33]. The realizability of

0

1

2

3

4

5

!o&!b&!r

!o&!b&r
!o&!b&r&y

!o&b&!r

!o&b&!r&yo|(b&r)

!o&!b

!o&!b&y o|b

!o&!b&y

o|b|!y

!o&!r

!o&!r&yo|r

!o&!r&y

o|r|!y
1

Fig. 5: Deterministic finite-state automation obtained from the task
ϕ1 in (16) using Spot [25]. The propositions αRed, αBlue, αYellow,
and αObstacle are denoted by r, b, y, o, respectively. Automaton
states 2 and 4 are accepting final states and state 5 is a sink state.

Fig. 6: Mode switching visualized by SLUGS [33]. The top plot
shows the switching of system actions in response to the environ-
ment actions. The environment actions in eq. (6) are numbered
0 to 3 in order. The keyframe states (lk, ẋk(tk+1), zk(tk+1)) ∈
{(h, s, h) , (m, h,m) , (s,m,m) , (m,m,m)} are also numbered 0
to 3 in order. The bottom plot shows the corresponding keyframe
state switching. The keyframe state values 1, 2, 3, correspond to
small (s), medium (m), and high (h), respectively, as in Example 3.

the switching behavior of the step length lk, apex velocity
ẋk(tk+1) and CoM height zk(tk+1) is verified in Fig. 6.

Our task planning approach was used to generate a
discrete-time stance-foot sequence and a continuous-time
CoM trajectory for both tasks in three different environ-
ments: env.1, env.2, and env.3. The generated CoM
trajectories in the three environments are visualized in Fig.
1, Fig. 7, and Fig. 8, respectively. The performance of the
planning algorithm, in terms of motion cost, expanded nodes,
and planning time, was evaluated in these environments
for two different scenarios. In the first scenario (scn.1),
the rules specified in Example 3 for selecting keyframe
states θk = (uTk ,v

T
k)T were used. In the second scenario

(scn.2), the keyframe selection rules in Example 3 were

TABLE I: Planing results for two tasks across two scenarios in
three environments.

Environment Scenario Task Cost
Expanded

Nodes
Planning
Time(s)

env.1
scn.1

ϕ1 53.86 32569 0.17
ϕ2 93.71 194790 1.2

scn.2
ϕ1 53.17 55488 0.99
ϕ2 89.69 246239 3.38

env.2
scn.1

ϕ1 44.578 24184 0.12
ϕ2 ∞ 403601 -

scn.2
ϕ1 43.091 13592 0.36
ϕ2 ∞ 3849118 -

env.3
scn.1

ϕ1 186.3 2185502 19.6
ϕ2 235.801 3354012 35.1

scn.2
ϕ1 182.3 2398659 42.1
ϕ2 232.699 3658481 68.2

modified to allow the step length lk ∈ {s,m,h} to be
optimized during planning. The allowable keyframe values
were δψk ∈ {−0.3, 0, 0.3}, lk ∈ {0.4, 0.5, 0.6}, xk(tk+1) ∈
{0.4, 0.5, 0.6}, zk(tk+1) ∈ {0.6, 0.65, 0.7} and zk(ζk) ∈
{0.63, 0.65, 0.68}. The following motion cost was used:

ρ(c(tk), c(tk+1)) = ‖c(tk)− c(tk+1)‖2

R :=

[
3.33 0

0 0

]
G := 03×3

(18)

The time complexity of the proposed planning algorithm is
O(|Θ|K) where |Θ| is the number of motion primitives and
K is the number of steps in the optimal path. The number of
steps K is proportional to the sum of the distance between
the atomic propositions that trigger level set transitions.
Hence, K is dependent both on the size of the map, number
of level sets introduced by the LTL formula and the distance
between them as seen in Table I.

The computation time and the number of expanded nodes
are considerably higher for env.3 as it is 5 times larger
than env.1 and planning is more challenging due to its
maze-like structure. Since the task ϕ2 has an extra level set
when compared to ϕ1, it can be seen that the planning time
and the expanded nodes is higher for ϕ2. For both tasks
and in all environments, the path cost for scn.1 is slightly
larger than for scn.2 because in the latter the step length lk
is optimized. However, the value of the keyframe constraints
can be seen in that the planning time and number of expanded
nodes are much smaller for scn.2 due to the reduction of
the number of motion primitives considered for expansion,
while the generated paths are of negligibly lower quality.
Well-defined keyframe rules may significantly decrease the
computational complexity of the task planning problem.

B. QP Implementation
A kneed bipedal robot model with point feet and five point

masses on its hip and legs was used (see Fig. 1). Locomotion
of the robot is studied on flat and rough terrain. In both
scenarios, our QP controller employs a replanning strategy
for the CoM and foot trajectories to reduce the tracking error
after each step. The desired foot location is modified using
a bisection method to ensure that the keyframe state of each
step remains within a bounded region.

For flat terrain walking, we study a scenario with a
constant heading angle and step length. Desired trajectories

Fig. 7: Planned task execution in env.2 for task specification ϕ1

in (16). Task ϕ2 in (17) does not generate a feasible path as Blue
region is not present.

Fig. 8: Planned paths in env.3 for the LTL task specification ϕ1

in (16) represented by the blue curve and the task specification ϕ2

in (17) represented by the magenta curve.

are extracted from the task planner and tracked by the
QP controller. Although the CoM and stance foot position
tracking is challenging due to point-feet and under-actuated
dynamics, the QP controller generates torque commands that
accomplish the stabilization of a 10-step dynamic walking
process, as illustrated in Fig. 9. We also evaluate our QP
controller for walking upstairs, and Fig. 10 shows a four-
step walking process of this scenario.

As an on-going work, we aim at applying this QP con-
troller to an infinite number of steps while steering the
heading angle. In this case, the QP controller would be
capable of stabilizing the robot for long-distance dynamic lo-
comotion. During our experiments, we realized that the crux
of achieving this goal is to devise a robust contact switching
and a lateral foot placement strategy. We are implementing
a lateral foot placement search algorithm according to the
work [27] and a robust hybrid trajectory tracking strategy
based on sensitivity analysis [34].Fault Diagnosis [35] [36]
will also be an important topic in the future control design.

VIII. CONCLUSION

This work proposed temporal-logic-guided planning and
control techniques to achieve non-periodic locomotion tasks
in cluttered rough terrains. The body of our work is the
design of keyframe states and motion primitives to reduce
LTL task planning with hybrid locomotion dynamics to a
discrete-space planning problem. We also developed a novel
QP control formulation that tracks the planned CoM and
foot trajectories of a kneed bipedal robot. The proposed
method offers a promising direction for achieving complex
semantically meaningful behavior for humanoid robots in

Fig. 9: Walking on level ground using the proposed QP controller.
Yellow dots on the ground represent desired stance foot positions.

Fig. 10: Climbing stairs using the proposed QP controller.

unstructured human environments. Future work will focus
on extensions to full body planning and control, a larger
class task specifications using signal temporal logic.

REFERENCES

[1] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris, Feedback control of dynamic bipedal robot locomotion.
CRC press, 2018.

[2] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous Robots, vol. 40, no. 3, 2016.

[3] M. S. Motahar, S. Veer, and I. Poulakakis, “Composing limit cycles
for motion planning of 3d bipedal walkers,” in IEEE Conference on
Decision and Control (CDC), 2016, pp. 6368–6374.

[4] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional
bipedal walking control based on divergent component of motion,”
IEEE Transactions on Robotics, vol. 31, no. 2, pp. 355–368, 2015.

[5] A. Hofmann, S. Massaquoi, M. Popovic, and H. Herr, “A sliding
controller for bipedal balancing using integrated movement of contact
and non-contact limbs,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2004, pp. 1952–1959.

[6] J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Synthesis of reactive
switching protocols from temporal logic specifications,” IEEE Trans-
actions on Automatic Control, vol. 58, no. 7, pp. 1771–1785, 2013.

[7] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia,
“Reactive synthesis from signal temporal logic specifications,” in In-
ternational Conference on Hybrid Systems: Computation and Control
(HSCC). ACM, 2015, pp. 239–248.

[8] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Reactive
synthesis for finite tasks under resource constraints,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2017.

[9] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[10] Y. Zhao, U. Topcu, and L. Sentis, “High-level planner synthesis
for whole-body locomotion in unstructured environments,” in IEEE
Conference on Decision and Control (CDC), 2016, pp. 6557–6564.

[11] J. Fu, N. Atanasov, U. Topcu, and G. J. Pappas, “Optimal temporal
logic planning in probabilistic semantic maps,” in IEEE Int. Conf. on
Robotics and Automation (ICRA), 2016, pp. 3690–3697.

[12] R. D. Gregg, A. K. Tilton, S. Candido, T. Bretl, and M. W. Spong,
“Control and planning of 3-d dynamic walking with asymptotically
stable gait primitives,” IEEE Transactions on Robotics, vol. 28, no. 6,
pp. 1415–1423, 2012.

[13] K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox, “Motion
planning for legged robots on varied terrain,” The International
Journal of Robotics Research (IJRR), vol. 27, no. 11-12, 2008.

[14] M. J. Powell, H. Zhao, and A. D. Ames, “Motion primitives for human-
inspired bipedal robotic locomotion: walking and stair climbing,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

[15] B. Lim, J. Lee, J. Kim, M. Lee, H. Kwak, S. Kwon, H. Lee,
W. Kwon, and K. Roh, “Optimal gait primitives for dynamic bipedal
locomotion,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2012, pp. 4013–4018.

[16] N. Sun, Y. Wu, H. Chen, and Y. Fang, “An energy-optimal solution
for transportation control of cranes with double pendulum dynamics:
Design and experiments,” Mechanical Systems and Signal Processing,
vol. 102, pp. 87–101, 03 2018.

[17] S. Kuindersma, F. Permenter, and R. Tedrake, “An efficiently solvable
quadratic program for stabilizing dynamic locomotion,” in IEEE
International Conference on Robotics and Automation (ICRA), 2014.

[18] J. Vaillant, A. Kheddar, H. Audren, F. Keith, S. Brossette, A. Escande,
K. Bouyarmane, K. Kaneko, M. Morisawa, P. Gergondet et al., “Multi-
contact vertical ladder climbing with an hrp-2 humanoid,” Autonomous
Robots, vol. 40, no. 3, pp. 561–580, 2016.

[19] S.-C. Hsu, X. Xu, and A. D. Ames, “Control barrier function based
quadratic programs with application to bipedal robotic walking,” in
American Control Conference (ACC), 2015, pp. 4542–4548.

[20] S. Feng, X. Xinjilefu, W. Huang, and C. G. Atkeson, “3d walking
based on online optimization,” in IEEE-RAS International Conference
on Humanoid Robots, 2013, pp. 21–27.

[21] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization
based full body control for the atlas robot,” in IEEE-RAS International
Conference on Humanoid Robots, 2014, pp. 120–127.

[22] H. Audren, A. Kheddar, and P. Gergondet, “Stability polygons re-
shaping and morphing for smooth multi-contact transitions and force
control of humanoid robots,” in IEEE International Conference on
Humanoid Robots (Humanoids), 2016, pp. 1037–1044.

[23] Y. Zhao, B. R. Fernandez, and L. Sentis, “Robust phase-space plan-
ning for agile legged locomotion over various terrain topologies.” in
Robotics: Science and Systems, 2016.

[24] E. A. Emerson, “Temporal and modal logic,” in Formal Models and
Semantics. Elsevier, 1990, pp. 995–1072.

[25] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault,
and L. Xu, “Spot 2.0 — a framework for LTL and ω-automata
manipulation,” in International Symposium on Automated Technology
for Verification and Analysis, ser. Lecture Notes in Computer Science,
vol. 9938. Springer, 2016, pp. 122–129.

[26] L. Sentis and B. Fernandez, “Perturbation theory to plan dynamic loco-
motion in very rough terrains,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2011, pp. 2267–2273.

[27] Y. Zhao and L. Sentis, “A three dimensional foot placement planner
for locomotion in very rough terrains,” in IEEE-RAS International
Conference on Humanoid Robots, 2012, pp. 726–733.

[28] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A*
with Provable Bounds on Sub-Optimality,” in Conference on Neural
Information Processing Systems (NeurIPS), 2003.

[29] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[30] R. Tedrake et al., “Drake: Model-based design and verification for
robotics,” 2019. [Online]. Available: https://drake.mit.edu

[31] H. Dai and R. Tedrake, “L2-gain optimization for robust bipedal
walking on unknown terrain,” in IEEE Int. Conf. on Robotics and
Automation, 2013.

[32] K. Byl and R. Tedrake, “Approximate optimal control of the compass
gait on rough terrain,” in 2008 IEEE International Conference on
Robotics and Automation. IEEE, 2008, pp. 1258–1263.

[33] R. Ehlers and V. Raman, “Slugs: Extensible GR(1) synthesis,” in Int.
Conf. on Computer Aided Verification, 2016, pp. 333–339.

[34] A. Saccon, N. van de Wouw, and H. Nijmeijer, “Sensitivity analysis
of hybrid systems with state jumps with application to trajectory
tracking,” in IEEE Conf. on Decision and Control, 2014.

[35] Y. Wu, B. Jiang, and N. Lu, “A descriptor system approach for
estimation of incipient faults with application to high-speed railway
traction devices,” IEEE Transactions on Systems, Man, and Cybernet-
ics: Systems, 2017.

[36] Y. Wu, B. Jiang, and Y. Wang, “Incipient winding fault detection and
diagnosis for squirrel-cage induction motors equipped on crh trains,”
ISA transactions, 2019.

