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Abstract— In this paper, we develop an approach that enables
autonomous robots to build and compress semantic environ-
ment representations from point-cloud data. Our approach
builds a three-dimensional, semantic tree representation of the
environment from raw sensor data which is then compressed
by a novel information-theoretic tree-pruning approach. The
proposed approach is probabilistic and incorporates the un-
certainty in semantic classification inherent in real-world envi-
ronments. Moreover, our approach allows robots to prioritize
individual semantic classes when generating the compressed
trees, so as to design multi-resolution representations that
retain the relevant semantic information while simultaneously
discarding unwanted semantic categories. We demonstrate the
approach by compressing semantic octree models of a large
outdoor, semantically rich, real-world environment. In addition,
we show how the octree abstractions can be used to create
semantically-informed graphs for motion planning, and pro-
vide a comparison of our approach with uninformed graph
construction methods such as Halton sequences.

I. INTRODUCTION

Dense volumetric environment representations such as
occupancy grid maps [1], [2], multi-resolution hierarchical
models [3], [4], and signed distance fields (SDF) [5], [6],
provide valuable information to both human and autonomous
robots, as evidenced by their utility in search and rescue [7],
safe navigation [8], and terrain modeling [9]. Moreover,
the inclusion of semantic information, such as in metric-
semantic SLAM methods of [10]–[12], allows robots to build
more sophisticated world models by affording autonomous
systems the ability to not only discern occupied from free
space, but to also distinguish between the types of objects
in their surroundings. Recent work has leveraged Bayesian
statistics to develop algorithms that build semantic environ-
ment representations, encoding categorical (semantic) infor-
mation using probabilistic methods which naturally capture
the uncertainty robots hold regarding their world [10], [11].
These models supply autonomous robots an abundance of
information, enabling them to intelligently reason about their
surroundings with details such as the location, geometry and
size of obstacles, or the presence of humans, cars, and other
semantic information.

While constructing environment models is an important
step for mobile robot autonomy, sensors provide overabun-

This research was funded by Office of Naval Research award N00014-18-
1-2375 and by the Army Research Laboratory under DCIST CRA W911NF-
17-2-0181.

1The authors are with the D. Guggenheim School of Aerospace Engi-
neering, Georgia Institute of Technology, Atlanta, GA, 30332-0150, USA.
{dlarsson3,jaeinlim126,tsiotras}@gatech.edu

2The authors are with the Department of Electrical and Computer
Engineering, University of California San Diego, San Diego, CA 92093,
USA. {aasghari,natanasov}@ucsd.edu

dant, and often redundant, information for a specific task. It
is therefore of interest to not only build environment models
but to also compress them to form abstracted representations,
allowing robots to focus their (possibly scarce) resources
on the relevant aspects of the operating domain. The use
of abstractions in the form of multi-resolution environment
model compressions have seen widespread deployment in
the autonomous systems community. Examples include [13]–
[18], where abstractions are leveraged in order to alleviate
the computational cost of planning and decision making in
both single and multi-robot applications. Abstractions have
also been utilized to reduce the memory required to store
environment representations [19], [20] and to alleviate the
computational complexity of evaluating cost functions in
active-sensing applications [21]. However, while identifying
the relevant aspects of a problem to generate task-relevant
abstractions has long been considered vital to intelligent
reasoning [22]–[27], the means by which they are generated
has traditionally been heavily reliant on user-provided rules.

To this end, a number of studies have considered the gen-
eration of task-relevant abstractions for control and decision-
making that model relevant information via the statistics
of the process. Examples of such works include [28]–
[30], where ideas from information theory, specifically rate-
distortion [31] and the information bottleneck method [32],
are employed to develop approaches that identify and pre-
serve task-relevant information by modeling the relevant
information as a random variable that is correlated with the
source (i.e., the original representation). While the above
studies consider frameworks that form abstractions that pre-
serve relevant information, they do not result in represen-
tations of any particular structure (e.g., quadtrees, octrees).
To address this issue, the work of [33], [34] uncovered
connections between hierarchical tree structures and signal
encoders to formulate an information-theoretic compression
problem that allows optimal task-relevant tree abstractions to
be obtained as a solution to an optimization problem. More-
over, extensions of the tree abstraction problem from [33]
that consider generating tree abstractions in the presence of
both relevant and irrelevant information sources has recently
appeared in the literature [35]. Importantly, the frameworks
developed in [33]–[35] require minimal input from the sys-
tem designer, enabling robots to generate compressed tree
representations of their world that are driven by task-specific
information.

The goal of this paper is to bridge the gap between map
building and abstraction construction by developing a frame-
work that performs both tasks simultaneously. The proposed
approach employs an information-theoretic tree compression



method to find provably optimal tree abstractions of large
environments that both retain information regarding task-
relevant semantic classes and remove those that are consid-
ered task-irrelevant. We demonstrate our approach in a real-
world outdoor environment, and show how the framework
can be employed to generate semantically-informed (colored)
graphs to reduce the computational effort required for motion
planning.

II. PROBLEM STATEMENT

Let (Ω,F ,P) be a probability space. The Shannon en-
tropy [36, p. 14] of a discrete random variable X : Ω →
R with probability mass function p(x) = P{ω ∈ Ω :
X(ω) = x} is denoted H(X).1 Provided two distributions
p(x) and p̄(x) over the same set of outcomes, the Kullback-
Leibler divergence [36, p. 19] is DKL(p(x), p̄(x)) =∑

x p(x) log[p(x)/p̄(x)]. Given a collection of distribu-
tions p1(x), . . . , pℓ(x) over the same set of outcomes,
the Jensen-Shannon divergence [37] with respect to the
weights Π ∈ Rℓ

+ is given by JSΠ(p1(x), . . . , pℓ(x)) =∑ℓ
i=1 ΠiDKL(pi(x), p̄(x)), where p̄(x) =

∑ℓ
i=1 Πipi(x),

0 ≤ Πi ≤ 1 for all 1 ≤ i ≤ ℓ and
∑ℓ

i=1 Πi = 1.
We assume a grid-world representation of the environment

W ⊂ R3, where each cell contains semantic information
regarding one or more of K possible semantic classes
contained in the set K = {0, 1, . . . ,K}. In the sequel,
we let the semantic class 0 ∈ K denote free space and
each k ∈ K \ {0} represent a distinct semantic category
(e.g., building, vegetation, road, etc). A hierarchical, three-
dimensional (3-D) multi-resolution octree representation of
W is a tree2 T consisting of a set of nodes N (T ) and
edges E(T ) that describe the node interconnections, where
each non-leaf node in the tree has exactly 8 children. We
denote the set of children of any node n ∈ N (T ) by
C(n), the leaf nodes by Nleaf(T ), and the interior nodes by
Nint(T ) [35]. Lastly, we let TW denote the finest-resolution
octree representation of W; that is, TW is the octree whose
leaf nodes coincide with the unit cells of W .

Our goal is to develop a perception and abstraction ap-
proach that allows for semantic octree representations to be
built from sensor data while simultaneously being optimally
compressed in a low-cardinality tree data structure. For
this, we require two components: (i) the source (i.e., the
quantity to be compressed); and (ii) any relevant or irrelevant
information that is to be retained or removed, respectively. To
this end, the source, relevant and irrelevant information are
represented by the random variables X : Ω → Nleaf(TW)
with distribution p(x) (i.e., the outcomes x of X are the
finest-resolution cells), Yi : Ω → {0, 1}, i ∈ KY and Zj :
Ω → {0, 1}, j ∈ KZ , respectively, where the sets KY and
KZ are subsets of K that contain the indices of the relevant
and irrelevant semantic classes. The relationship between
source, relevant and irrelevant information is specified by
p(x, y1:|KY |, z1:|KZ |). We consider the following problem.

1if the distribution p(x) is understood from context we may write H(p)
in place of H(X).

2a tree is an a-cyclic connected graph [38].

Semantic Octree Building-Compression: Given an octree
representation TW and the joint probability distribution
p(x, y1:|KY |, z1:|KZ |) from perceptual data, find a compressed
multi-resolution octree T from TW by solving the problem:

max
T ∈T O

∑
i∈KY

βiIYi
(T )−

∑
j∈KZ

γjIZj
(T )− αIX(T ), (1)

where T O is the space of all octree representations of W ,
β ∈ R|KY |

+ , γ ∈ R|KZ |
+ and α ∈ R+ specify the relative

importance of relevant information retention, irrelevant in-
formation removal, and compression, respectively, and the
functions IYi

: T O → R+, IZj
: T O → R+ and IX :

T O → R+ quantify the amount of relevant, irrelevant and
compression information contained in the octree (see [35,
p. 9]). Note that p(x, y1:|KY |, z1:|KZ |) enters into (1) via
IYi(T ), IZj (T ) and IX(T ).

III. INFORMATION-THEORETIC ABSTRACTION OF
SEMANTIC OCTREES

We first provide some theoretical background on tree
compression. We will employ the G-tree search algorithm
[35] to solve the compression problem in (1). The goal
of the G-tree search algorithm is to find a compressed
representation N : Ω → Nleaf(T ), T ∈ T O, of the source
X (i.e., the leaf cells of TW ) in the form of an octree T of
W according to (1), where the distribution p(n) is related to
the source according to:

p(n) =
∑

x∈Nleaf(TW(n))

p(x), (2)

and Nleaf(TW(n)) ⊆ Nleaf(TW) are the leaf nodes of the
subtree of TW rooted node n ∈ Nleaf(T ). Since the octree
solution T ∈ T O to (1) is not known a-priori, we may
compute the value of p(n) for all nodes n ∈ N (TW)
recursively according to

p(n) =
∑

n′∈C(n)

p(n′). (3)

The objective of G-tree search is to determine which
nodes of the original octree TW should be leaf nodes of the
compressed representation T . To accomplish its goal, G-tree
search exploits the structure of problem (1) to devise a node
pruning rule, called the G-function, defined by:

G(n;β, γ, α) =

max{∆J(n;β, γ, α) +
∑

n′∈C(n)

G(n′;β, γ, α), 0}, (4)

if n ∈ Nint(TW) and p(n) > 0, and G(n;β, γ, α) =
0 otherwise. The function ∆J(n;β, γ, α) is the one-step
reward for expanding node n ∈ Nint(TW) and is given by

∆J(n;β, γ, α) =∑
i∈KY

βi∆IYi(n)−
∑
j∈KZ

γj∆IZj (n)− α∆IX(n), (5)



where the functions ∆IYi
(n), ∆IZj

(n) and ∆IX(n) quantify
the incremental amount of relevant, irrelevant and com-
pression information, respectively, contributed by the node
n ∈ Nint(TW). These functions are, in turn, defined by:

∆IYi(n) = p(n)JSΠ(p(yi|n′
1), . . . , p(yi|n′

|C(n)|)), (6)

∆IZj
(n) = p(n)JSΠ(p(zj |n′

1), . . . , p(zj |n′
|C(n)|)), (7)

∆IX(n) = p(n)H(Π), (8)

where p(yi|n′
u) for n′

u ∈ C(n) are recursively computed via

p(yi|n′
u) =

∑
n′′∈C(n′

u)

Πn′′p(yi|n′′), i ∈ KY , (9)

p(zj |n′
u) =

∑
n′′∈C(n′

u)

Πn′′p(zj |n′′), j ∈ KZ , (10)

and Π ∈ R|C(n′
u)|

+ has entries Πn′′ = p(n′′)/p(n′
u). Once the

G-values (4) are known from an inverse breadth-first node
traversal of TW , G-tree search considers nodes n ∈ Nint(TW)
in a top-down manner to determine whether or not they
should be part of the solution to (1). See [35] for more details
regarding the G-tree search algorithm.

Careful inspection of (4) and (6)-(8) reveals that G-
tree search depends on p(x, y1:|KY |, z1:|KZ |) only via the
distributions p(yi|x), p(zj |x) and p(x). Thus, we assume that
a distribution p(x) over leaf nodes is provided, and determine
p(yi|x) and p(zj |x) from semantic octree perception data.
Our solution consists of two phases: (i) the update pass:
inserts or updates nodes in the current octree based on
semantic perception data, and (ii) the octree compression
pass: executes G-tree search to compress the environment
representation that is built as part of phase 1. Next, we
describe the tree-building process before delineating how
p(yi|x) and p(zj |x) are obtained from perception data.

A. Updating Tree Nodes from Perceptual Data
We adopt the semantic model proposed in [11] to build

a hierarchical Bayesian multi-class octree representation of
the world. The tree-building algorithm builds the finest
resolution octree TW from observations (see Fig. 1), and
maintains a truncated probability distribution over semantic
classes, represented by a random variable S : Ω → K for
each leaf node x ∈ Nleaf(TW). In more detail, given a node
x ∈ Nleaf(TW), if k ∈ K3(x) ∪ {0} then p(S = k|x) is
provided by the octree, where K3(x) is the set of three most
likely classes of node x. The octree also stores a forth entry,
corresponding to p(S ∈ K \ (K3(x) ∪ {0})|x), which is
the probability of the event that the node x belongs to a
semantic class other than the three most likely or free space.
Furthermore, to reduce the memory required to store the
map, the algorithm will prune nodes whose children all have
identical multi-class probability distributions.

B. Extracting Semantic Information from the Octree Data
Structure

For any i ∈ KY , the conditional distribution p(yi|x) is
derived from the semantic octree according to p(yi = 1|x) =
p(S = i|x), with an analogous expression for p(zj |x), j ∈
KZ . In practice, obtaining the conditional distribution p(yi|x)

A C B D
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Fig. 1: Semantic octree update from a new observation
indicating cell D is blue and C is free space. Each leaf node
with color-encoded object class is depicted as a square, inner
nodes are represented by circles, and unexplored cells are
shown as dots. Multi-class probabilities and G-values along
the paths from leaf nodes to the root, highlighted in red, need
to be updated due to the new perceptual data.

(resp. p(zj |x)) presents a challenge, since the tree-building
algorithm only maintains the truncated semantic probabili-
ties. Thus, we cannot directly obtain p(yi|x) or p(zj |x) from
the semantic octree structure, as the three most likely seman-
tic classes may differ from node to node. Instead, we must
generate the distribution p(s|x) over all semantic classes.
To this end, for each leaf node x ∈ Nleaf(TW), we collect
the truncated semantic probabilities and uniformly distribute
the probability p(S ∈ K \ (K3(x) ∪ {0})|x) among the
outstanding classes. Once the distributions p(yi|x), p(zj |x),
and p(x) are known for the leaf nodes of the octree TW , we
may apply the recursive relations (3) and (9)-(10) to update
the semantic distributions for all interior nodes.

It is worth mentioning that each node n ∈ Nint(TW) may
not always have a full set of children since the tree-building
algorithm instantiates nodes only for the observed locations
in the environment. To see why missing children pose a
challenge, assume node n ∈ Nint(TW) has only a single
child; that is C(n) = {n′}. From (3) and (6)-(10), we see that
if C(n) = {n′}, then we have ∆IX(n) = 0, ∆IYi

(n) = 0
and ∆IZj (n) = 0; so no information is lost in aggregating
the child node n′ to its parent n. In order to remedy this issue,
we account for absent children by instantiating a maximum
entropy distribution (i.e., uniform over K) and a value of
p(n) for nodes not represented in the octree, from which
p(yi|x) and p(zj |x) are obtained analogously to the existing
leaf nodes. Importantly, the recursive structure of (3) and
(9)-(10) implies that only p(yi|n′), p(zj |n′) and p(n′) for
missing child nodes n′ are required to compute the values
of their parent n, thereby alleviating the need to insert the
missing nodes in the octree structure.

C. Updating G-values from Local Tree Information

From (9)-(10) we note that computing p(yi|n) and p(zj |n)
for any n ∈ Nint(TW) can be done from knowledge of
p(yi|n′) and p(zj |n′) for n′ ∈ C(n). Moreover, these updates
do not require p(x) to be a valid probability distribution,
since (9)-(10) depend only the relative weights p(n′)/p(n).
However, this structure is not shared by the G-function (4),



Algorithm 1: Joint semantic-tree construction and
compression

input : Semantic point cloud P , G-tree search
weights (β, γ, α) ∈ R|KY |

+ × R|KZ |
+ × R+.

output: Compressed octree representation T ∗ of W .
1 if point cloud data recieved then
2 x← createOrUpdateNode(P);
3 n← x;
4 GΠ(n;β, γ, α) = 0;
5 while Parent(n) ̸= ∅ do
6 n̄← Parent(n);
7 if C(n̄) ⊆ Nleaf(TW) then
8 (p(yi|n̄), p(zj |n̄), p(n̄))← getDist(n̄);
9 else

10 (p(yi|n̄), p(zj |n̄), p(n̄))← chdDist(n̄);

11 GΠ(n̄;β, γ, α)← updateGvals(β, γ, α);
12 n← n̄;

13 T ∗ ← GtreeSearch(nR);

14 return T ∗

since the latter has an explicit dependence on p(x). It is
therefore of interest to investigate if characteristics of the G-
function, or some equivalent, can be expressed in terms of
only relative weights. To this end, we define GΠ : N (TW)×
R|KY |

+ × R|KZ |
+ × R+ → R+ according to: if n ∈ Nint(TW)

and p(n) > 0 then

GΠ(n;β, γ, α)

= max{
∑
i∈KY

βiJS
Yi

Π (n)−
∑
j∈KZ

γiJS
Zj

Π (n)− αH(Π)

+
∑

n′∈C(n)

Πn′GΠ(n
′;β, γ, α), 0}, (11)

and GΠ(n;β, γ, α) = 0 otherwise, where for i ∈ KY ,
JSYi

Π (n) = JSΠ(p(yi|n′
1), . . . , p(yi|n|C(n)|), n′

u ∈ C(n) with
JS

Zj

Π (n) defined analogously. This brings us to the following
result.

Proposition 3.1: Let n ∈ N (TW). Then GΠ(n;β, γ, α) >
0 if and only if G(n;β, γ, α) > 0.

Proof: The proof is given in the Appendix.
As a result of Proposition 3.1, we may predicate our pruning
on the function GΠ(n;β, γ, α) in place of G(n;β, γ, α)
without sacrificing any of the theoretical guarantees of the
G-tree search method. In the next section, we present the
joint tree-building and compression algorithm.

D. The Joint Tree-Building and Compression Algorithm

The joint semantic octree-building and compression
framework is shown in Algorithm 1. The update pro-
cess (i.e., lines 1-12) is triggered by the availability of
new semantic point-cloud data. Moreover, the function
createOrUpdateNode(P) either creates or updates the
semantic information of an existing leaf node of the octree
TW from the new data (see Fig. 1). Since incoming infor-
mation is always inserted as a leaf of TW , we, in line 4, set

the leaf-node condition for the G-values. We then traverse
the octree bottom-up in lines 5-12, visiting the sequence
of node parents until the root node is reached, updating G-
values and semantic distributions along the way (see Fig. 1).
If the node n̄ is a parent of a leaf node, such that line 7 is
true, then we extract the full semantic distribution as detailed
by Section III-B for the children x ∈ C(n̄). This is done
by the routine getDist(n̄), before applying the recursive
updates (9)-(10). In contrast, if n̄ is not a parent of a leaf,
then p(yi|n′) and p(zj |n′) are known for all n′ ∈ C(n̄),
and thus, chdDist(n̄) retrieves the distributions of the
children and applies (9)-(10), before updating the G-values in
line 11 according to (11). We then call the tree-compression
algorithm in line 13 by passing the root node of TW , denoted
nR, to G-tree search.

In the language employed at the start of this section,
lines 2-12 comprise the update pass (phase 1) and line 13
constitutes the octree compression step (phase 2). Note that
the bottom-up recursion defined by lines 5-12 of Algorithm 1
is made possible by the following two observations. First, at
each time instance for which point cloud information is avail-
able, the semantic tree-building algorithm inserts (or updates)
exactly one leaf node of the current octree representation of
W . Secondly, the function GΠ(n;β, γ, α) and distributions
p(yi|n), p(zj |n) and p(n) can all be updated from, and only
depend on, immediate child information. Thus, the nodes
traversed by the recursion in lines 5-12 of Algorithm 1 are
precisely those whose G-values and semantic distributions
are effected by the new perceptual data received (see Fig. 1).

IV. REAL-WORLD EXPERIMENTS

In this section, we present and discuss the results ob-
tained from field-test experiments utilizing our proposed
tree compression pipeline, illustrated in Fig. 2. The outdoor
environment contains a number of elevation changes and
a combination of urban and rural elements. The FCHarD-
Net classifier [39] pre-trained on RUGD dataset [40] is
employed for semantic classification, providing 24 possi-
ble categorizations (i.e., K = {0, . . . , 24}). The output of
classification is combined with range sensing to produce
range-category observations in the form of semantically-
annotated 3-D point clouds, which are used to estimate the
finest-resolution semantic octree TW (see Fig. 2c). Finally,
the compressed multi-resolution octree is obtained via the
framework presented in Section III. Results are presented
for two scenarios: (i) to study the semantic tree-building
and compression algorithm detailed in Section III, and (ii)
to demonstrate how the abstractions can be employed in
semantically-informed planning problems.

A. Semantic Perception and Tree Compression
Figure 3 shows the normalized degree of information

retained regarding each of the visible semantic classes of
the environment in Fig. 2, as a function of the G-tree
search weights (solution number) depicted in Fig. 4. By
comparing Figs. 3 and 4 we make a few observations. First,
we observe that solution 5 considers all semantic classes as
relevant, and thus the abstraction returned by G-tree search
retains all information. Secondly, we see the impact of the



Range-category Observation

Semantic Octree 
Estimation

G-Tree Search 
Compression

(a) (b) (c) (d)
Fig. 2: Summary of the semantic octree building and compression framework. (a) The robot navigates in a large, semantically-
rich, outdoor environment. (b) Range-category observations are gathered to build a semantic octree of the environment (c)
that is then compressed by G-tree search (d). While shown here sequentially, the semantic octree estimation and G-tree
search compression may run concurrently as described in Section III. Colors in the trees (c)-(d) correspond with semantic
classes.
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Fig. 3: (top) Percentage of information retained for each
semantic class as a function of the G-tree search weights
(solution number) with respect to the corresponding quan-
tities in the finest-resolution tree TW . (bottom) Percentage
of leaf nodes and approximate memory required to store the
compressed tree relative to the corresponding values of the
finest resolution octree TW . Memory results assume each tree
node requires 256 bits of memory.

weights on the octree solution by considering solutions 2 and
4. To this end, note that solution 4 contains considerably
less information regarding the tree and grass classes as
compared with solution 2, which occurs since the 4th solution
penalizes the retention of both grass and trees (dark and light
green, respectively) to a much higher degree than solution
2. Notice also that solution 4 contains less information
regarding all classes compared with solution 2, since the
priority of information removal outweighs the importance
of information retention resulting with a more compressed
octree, confirmed by Fig. 3(bottom). Moreover, observe that
the G-tree search method is able to find a compressed
octree that retains most of the semantic information, as seen
by solution 5. To understand why this is the case, recall
that node information ∆IYi(n) and ∆IZj (n) in the G-tree
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(R) (R)
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Fig. 4: Weights for G-tree search. Colors correspond with
the semantic class coloring, (R) is a relevant class, and (D)
is an irrelevant one. In solutions 2 and 4, the (D) near the
top corresponds to the red class (building). Note that classes
marked (R) have weights βi, whereas those marked (D) have
weights γj in (1). Classes not shown have weight zero.

search method is quantified by the JS-divergence. Thus,
nodes with smaller values of ∆IYi

(n) and ∆IZj
(n) imply

that the semantic distributions p(yi|n) and p(zj |n) are more
similar to the distributions p(yi|n′) and p(zj |n′) of their
children n′ ∈ C(n) as compared with nodes having greater
values of ∆IYi

(n) and ∆IZj
(n). Contrast this with the ad-

hoc pruning rule employed by the tree-building process of
Section III-A (see Fig. 1), which prunes nodes based on
individual elements of the distributions p(yi|n) and p(zj |n).
Consequently, it may happen that nodes are not pruned by
the ad-hoc pruning rule but contain little to no information
due to the similarity of the semantic probability distributions
of its immediate children. The G-tree search method is able
to exploit these redundancies, leading to the high degrees of
compression seen in Fig. 3.

B. Semantic Perception, Abstraction and Planning
Lastly, we discuss how the perception-abstraction frame-

work developed in Section III can be employed to construct
a more (semantically) informed graph than conventional
techniques (e.g., Halton sequence [41]) for use in colored
graph-search planning algorithms. We consider the Class-
Ordered A* (COA*) algorithm [42], which computes a
semantically-informed path and allows for both desired (i.e.,



(a) (b)

Fig. 5: (a) The optimal path found by COA* in the graph
constructed with a Halton sequence. (b) The optimal path
found by COA* in the graph constructed based on the
compressed octomap nodes.

relevant) and undesired semantic classes to be specified.
The COA* algorithm searches a weighted colored (semantic)
graph to find the shortest path that contains the least number
of edges in unwanted classes [42]. Vertices in the search
graph correspond to a two-dimensional coordinate and head-
ing configuration of a non-holonomic ground robot, that is
(x, y, θ), and edges represent the Reeds-Shepp curve [43].
Thus, all paths in the graph are dynamically feasible. Graph
vertices are classified (i.e., given a color) according to the
semantic information contained in the (semantic) octree node
corresponding to the volumetric region containing the (x, y)-
coordinate which the vertex represents.

Shown in Fig. 5 are example paths obtained from employ-
ing COA* on colored (semantic) graphs when paved road is
considered a relevant (preferred) class for planning. For this
planning scenario, we utilize our framework to generate the
semantically-informed colored graph shown in Fig. 5(b) by
specifying the asphalt (paved road) class as relevant, and
those of grass and trees as irrelevant, for G-tree search. As a
result, we see in Fig. 5(b) that areas containing paved road
retain relatively high resolution as compared with areas that
contain little to no paved road and a greater amount of grass
and trees. Contrast these observations with the graph gener-
ated from a Halton sequence in Fig. 5(a), which is agnostic
to the semantic information and contains many vertices that
correspond to irrelevant planning classes. To provide quan-
titative results, we averaged planning results over 50 search
instances for both methods. From our study, we observed
that the optimal path was found about 10% percent faster
on average in the semantically informed (compressed) graph
generated by the framework from Section III. Moreover, we
noted that the standard deviation of the planning time was
reduced by 60% percent when the semantically informed
(compressed) graph was employed for semantic planning.

V. CONCLUSIONS

In this paper, we considered the development of a joint
semantic mapping and compression framework that simul-
taneously builds and compresses 3-D probabilistic seman-
tic octree representations. Our framework consists of two
parts: a Bayesian multi-class tree-building framework, and
an information-theoretic tree-compression scheme. The de-
veloped framework is fully probabilistic and allows multi-

resolution abstractions to be tailored to task-relevant and
task-irrelevant semantic classes and information. To demon-
strate our approach, we compress large semantic maps built
from real-world sensor data, and show how the abstractions
can be used to improve the performance of planning algo-
rithms over colored (semantic) graphs.

APPENDIX

Proof: [Proposition 3.1] To prove the proposition, we
show that G(n;β, γ, α) = p(n)GΠ(n;β, γ, α) for all n ∈
N (TW). There are two cases to consider for any n ∈
Nint(TW): p(n) = 0 and when p(n) > 0.

The first of these cases is straightforward, since by def-
inition G(n;β, γ, α) = 0 and GΠ(n;β, γ, α) = 0. Thus,
G(n;β, γ, α) = p(n)GΠ(n;β, γ, α) = 0 when p(n) = 0.

We now show G(n;β, γ, α) = p(n)GΠ(n;β, γ, α) for any
n ∈ N (TW) for which p(n) > 0. The proof is given by
induction. Consider any n ∈ N (TW) that is a parent of a
leaf, then

G(n;β, γ, α)

= p(n)max{
∑
i

βiJS
Yi

Π (n)−
∑
j

γjJS
Zj

Π (n)− αH(Π), 0},

= p(n)GΠ(n;β, γ, α),

which follows from the properties of maximum since p(n) ≥
0. Now consider any n ∈ Nk(TW) (i.e., any node at depth
k), k ≥ 1, and assume the hypothesis holds for all n′ ∈
Nk+1(TW) for which p(n′) > 0. Then,

G(n;β, γ, α)

= p(n)max{
∑
i

βiJS
Yi

Π (n)−
∑
j

γjJS
Zj

Π (n)− αH(Π)

+
1

p(n)

∑
n′∈S

G(n′;β, γ, α), 0},

where S = {n′ ∈ C(n) : p(n′) > 0}, S ⊆ Nk+1(TW). The
quantity within the max operator can be written as

max{
∑
i

βiJS
Yi

Π (n)−
∑
j

γjJS
Zj

Π (n)− αH(Π)

+
1

p(n)

∑
n′∈S

G(n′;β, γ, α), 0},

= max{
∑
i

βiJS
Yi

Π (n)−
∑
j

γjJS
Zj

Π (n)− αH(Π)

+
1

p(n)

∑
n′∈C(n)

p(n′)GΠ(n
′;β, γ, α), 0},

where the equality holds from the induction hypothesis
and since, for n′ ∈ {n̄ ∈ C(n) : n̄ ̸∈ S}, we
have p(n′)GΠ(n

′;β, γ, α) = 0 by definition, leading to
G(n;β, γ, α) = p(n)GΠ(n;β, γ, α).

To show the proposition, we prove if G(n;β, γ, α) >
0 then GΠ(n;β, γ, α) > 0 and its converse. Pick any
n ∈ N (TW) and assume G(n;β, γ, α) > 0. Then p(n) >
0, and so G(n;β, γ, α) = p(n)GΠ(n;β, γ, α) implying
GΠ(n;β, γ, α) > 0. Repeating the steps for GΠ(n;β, γ, α),
we obtain the result.
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