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SlideSLAM: Sparse, Lightweight, Decentralized
Metric-Semantic SLAM for Multi-Robot Navigation

Xu Liu*†, Jiuzhou Lei*, Ankit Prabhu*, Yuezhan Tao, Igor Spasojevic,
Pratik Chaudhari, Nikolay Atanasov, Vijay Kumar

Abstract—This paper develops a real-time decentralized
metric-semantic SLAM algorithm that enables a heterogeneous
robot team to collaboratively construct object-based metric-
semantic maps. The proposed framework integrates a data-
driven front-end for instance segmentation from either RGBD
cameras or LiDARs and a custom back-end for optimizing robot
trajectories and object landmarks in the map. To allow multiple
robots to merge their information, we design semantics-driven
place recognition algorithms that leverage the informativeness
and viewpoint invariance of the object-level metric-semantic map
for inter-robot loop closure detection. A communication module
is designed to track each robot’s observations and those of
other robots whenever communication links are available. The
framework supports real-time, decentralized operation onboard
the robots and has been integrated with three types of aerial
and ground platforms. We validate its effectiveness through
experiments in both indoor and outdoor environments, as well
as benchmarks on public datasets and comparisons with existing
methods. The framework is open-sourced and suitable for both
single-agent and multi-robot real-time metric-semantic SLAM
applications.

Index Terms—Metric-Semantic SLAM; Multi-Robot Systems;
Aerial Systems: Perception and Autonomy; SLAM

I. INTRODUCTION

Robotic systems are expected to make an impact in de-
manding applications, such as forest inventory management,
orchard yield estimation, infrastructure inspection and house-
hold assistance. This demands interpreting human instructions
given in semantically meaningful terms relating to objects and
properties in the robot’s environment. To execute such mis-
sions autonomously, robots must understand their environment
beyond its geometric structure and perceive it at a semantic
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Figure 1: Robot platforms used in our experiments. We utilize three
types of robots for our experiments: two aerial platforms, the Falcon
250 UAV (left) and the Falcon 4 UAV (middle), and one ground
platform, the Scarab UGV (right). The Light Detection and Ranging
(LiDAR)-equipped robot (Falcon 4) is primarily used for outdoor
operations due to its size and superior sensing capabilities. The RGB
and Depth (RGBD) camera-based robots (Falcon 250 and Scarab)
are more suitable for cluttered indoor environments due to their
smaller footprints. All three platforms have GPS-denied autonomous
navigation capabilities, enabling them to safely explore cluttered
environments using only onboard computation and sensing.

level. This requires building and maintaining a semantically
meaningful representation of the environment that encodes
actionable information (e.g., timber volume and health in
forests, corrosion in infrastructure, survivors’ locations in nat-
ural disasters). Such a representation has to be storage efficient
for the robots to maintain over large-scale missions, and has
to allow efficient optimization for Simultaneous Localization
and Mapping (SLAM).

While traditional SLAM approaches [1], [2] offer excellent
accuracy in geometric perception, including estimating robot
poses and reconstructing 3D geometric structures (points,
surfaces, voxels), they are often insufficient to support large-
scale missions, particularly when used with multiple het-
erogeneous robots for real-time autonomy. The challenges
include managing the excessive computational load, meeting
the high storage demands of large-scale maps, and handling
loop closure and map merging operations. Moreover, they
offer limited generalizability across different robot platforms
or sensing modalities and lack semantic map representations
required for executing semantically meaningful tasks.

Motivated by this, recent advances in SLAM have pushed
toward constructing metric-semantic maps [13], [11], [10],
[17], [18]. However, they are typically limited to single-
robot setups. For scalability and efficiency, an ideal system
should support deployment across heterogeneous robot teams,
enabling effective collaboration without relying on centralized
communication or global localization infrastructure. Extending
single-robot metric-semantic SLAM to decentralized operation
across multiple heterogeneous robots introduces several unique
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(a) 3D reconstruction (b) metric-semantic map with point cloud

(c) object-level map top view (d) object-level map oblique view

(e) outdoor objects close-up view (f) parking lot close-up view

(g) building close-up view (h) indoor objects close-up view

Figure 2: Metric-semantic SLAM results from seven data sequences collected by heterogeneous robots. Trajectories in different colors
correspond to different data sequences. Fig. 2a shows a 3D reconstruction of the Pennovation campus at the University of Pennsylvania.
Outdoor objects, such as vehicles, tree trunks, and light poles are mapped as shown in 2e. Indoor objects, such as chairs, tables, and monitors
are mapped as shown in Fig. 2h. Fig. 2b shows the same metric-semantic map overlayed on top of an accumulated point cloud constructed
by our Falcon 4 UAV. Fig. 2c shows an orthophoto depicting the merged metric-semantic map of three parking lots and two buildings
constructed by seven robots. Fig. 2g and Fig. 2h show a zoomed-in view of one of the lab buildings

challenges. These include performing efficient place recogni-
tion and map merging among robots, maintaining consistent
and probabilistically sound sensor measurement fusion under
intermittent communication, and enabling collaboration among
heterogeneous platforms.

To address these challenges, we develop a multi-robot
decentralized metric-semantic SLAM system that is open-
sourced1 and suitable for real-time autonomous navigation and
exploration onboard resource-constrained single-robot as well
as heterogeneous multi-robot platforms. We enable this by
mapping the environment using a sparse map representation
that explicitly models objects using simple shapes and can be
used for task planning and long-horizon SLAM. The proposed
sparse object-level map representation offers numerous advan-
tages. First, it avoids the high runtime and memory demands
of using raw point clouds or images, which is particularly im-

1Code: https://github.com/KumarRobotics/SLIDE SLAM. Project website:
https://xurobotics.github.io/slideslam/.

portant for large-scale missions with Size, Weight, and Power
(SWaP) constrained robot teams. Second, the lightweight
nature of our representation ensures that robot-to-robot in-
formation sharing is feasible, even with limited communi-
cation bandwidth. This, coupled with our semantics-driven
place recognition and loop closure algorithm, enables efficient
detection of inter-robot loop closures. Third, it provides a
direct and intuitive representation for robots to accomplish
high-level semantically meaningful tasks, such as actively
exploring to search and reduce uncertainties in objects of
interest. Fourth, unlike traditional approaches based on dense
geometric features that usually have to marginalize variables
frequently, which unavoidably leads to loss of information,
our representation enables us to keep track of actionable
information over a much larger scale. Finally, it provides a
unified representation across different sensing modalities.

We summarize our contributions as follows.

Algorithm: We develop a real-time decentralized metric-
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Table I: Related work. This table compares SlideSLAM against state-of-the-art methods, focusing on key attributes for enabling semantics-in-
the-loop autonomy with robot teams. In this table, decentralized methods support operation with asynchronous observation updates from other
robots. Semantic localization means that objects are used for localization between consecutive key poses. Semantic loop closure indicates that
objects are explicitly used for place recognition and loop closures. Optimization over object models involves explicitly modeling objects as
geometric shapes and optimizing them jointly with robot poses over time. Real-time with autonomy means that the metric-semantic SLAM
system operates in real-time on-board the robots and is fully integrated into an autonomous exploration or navigation system.

Year Multi-Robot
Decentralized,
Asynchronous

Semantic
Localization

Semantic
Loop Closure

Optimization over
Object Models

Real-time w/
Autonomy

SlideSLAM 2024 ✔ ✔ ✔ ✔ ✔ ✔

Tao et al. 3D Active [3] 2024 ✔ ✔ ✔

Chang et al. Hydra-Multi [4] 2023 ✔ ✔ ✔ ✔

Liu et al. Active Metric-Semantic [5] 2023 ✔ ✔ ✔ ✔

Wu et al. An Object SLAM [6] 2023 ✔ ✔ ✔

Tian et al. Kimera-Multi [7] 2022 ✔ ✔

Liu et al. Large-Scale [8] 2021 ✔ ✔ ✔

Shan et al. Orc-VIO [9] 2020 ✔ ✔

Yang et al. Cube SLAM [10] 2019 ✔ ✔

Nicholson et al. Quadric SLAM [11] 2019 ✔ ✔

Choudhary et al. Distributed Mapping [12] 2017 ✔ ✔ ✔

Bowman et al. Probabilistic [13] 2017 ✔

Salas-Moreno et al. SLAM++ [14] 2013 ✔ ✔

Cunningham et al. DDF-SAM [15], [16] 2013 ✔ ✔

semantic SLAM framework that supports heterogeneous aerial
and ground robots, which includes
(a) a computationally efficient back-end that uses our object-

level metric-semantic map representation, and a flexible
front-end that supports both LiDAR and RGBD sensors,

(b) semantics-driven place recognition algorithms that use
sparse object-level maps for map merging,

(c) a decentralized multi-robot collaboration module that
facilitates information sharing, even under intermittent
communication conditions.

System integration: We integrate and deploy the proposed
framework on a heterogeneous team of robots, demonstrat-
ing its capacity to enable semantics-in-the-loop autonomous
navigation and exploration in various indoor and outdoor en-
vironments. The system operates in real time onboard SWaP-
constrained robots, while maintaining moderate computation
and memory demands.

Experiments: We conduct extensive real-world experiments
and provide thorough empirical results and analysis that high-
light the efficiency, accuracy, and robustness of our system.
We have also made our framework available to the public.

II. RELATED WORK

In this section, we categorize the related works into four key
areas: metric-semantic SLAM, place recognition, multi-robot
SLAM, and semantics-in-the-loop navigation. Table I provides
a quick summary of several key related works. The rest of this
section provides a more comprehensive overview of the related
works in each category.

A. Metric-semantic SLAM

Unlike traditional SLAM, metric-semantic SLAM con-
structs a map that encodes geometric features and semantic
information on objects of interest. Metric-semantic SLAM
has gained significant success and popularity in the past
decade [21], driven by the rapid development of deep learning

techniques that extract semantic information from sensor data.
A variety of map representations are used in existing metric-
semantic SLAM literature. Some use dense semantic maps,
such as meshes [17], volumetric maps [22], [23], surfels [24],
and 2.5D grid maps [25], [26], [27]. Others use sparse object-
level maps with prior information of object shapes, such as
centroids [13], cubes [10], ellipsoids [11], cylinders [28],
structured object models with prior shape constraints [29], [9],
and mesh-based object models [30], [14]. Following the recent
trends in neural implicit representation, some prior works [31],
[32], [33] have also incorporated it into a map representation
capable of metric-semantic SLAM, where objects are modeled
implicitly using latent features from neural networks and used
as localization constraints and for object association. While
dense metric-semantic maps are suitable for obstacle avoid-
ance and facilitate more fine-grained modeling of objects, their
computational and memory demands, especially in SWaP-
constrained platforms, can be significant. Thus, sparse object-
level maps are desirable for real-time downstream tasks such
as active information gathering, object manipulation and multi-
robot collaboration. This is because semantic information is
necessary for robots to perceive their environment and execute
tasks in a semantically meaningful manner. Sparsity helps
robots reduce resource demands on computation, storage, and
communication. A recent work in this space is ConceptGraphs
[18], which builds open-vocabulary, semantically rich 3D
object maps. However, ConceptGraphs is not designed for real-
time, onboard operations on resource-constrained robots. Its
detection and 3D object mapping pipelines require extensive
computational resources. By contrast, our work seeks to de-
velop a metric-semantic SLAM framework that utilizes sparse
explicitly modeled objects and supports real-time decentralized
operations within a heterogeneous robot team.

B. Place recognition

Place recognition and loop closure address the challenge
of identifying whether a robot revisits a previously mapped
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Figure 3: System Diagram. Our system takes in data streams from each robot’s onboard sensors, which can be either an RGBD camera
or a LiDAR, and performs instance segmentation to extract semantic object features. Meanwhile, low-level odometry, either Visual-Inertial
Odometry (VIO) [19] or LiDAR-Inertial Odometry (LIO) [20], provides relative-motion estimates between consecutive key poses. Next, the
metric-semantic SLAM algorithm takes in such semantic observations and relative motion estimates, and constructs a factor graph consisting
of both robot pose nodes and object landmark nodes. Meanwhile, our multi-robot communication module (see Fig. 4) opportunistically
leverages connectivity to share lightweight semantic observations among robots in a decentralized way. Based on this shared information,
our metric-semantic place recognition algorithm constantly checks for possible inter-robot loop closures at a fixed rate. Once a loop closure
is detected, the resulting transformation between each pair of robots is used to transform all observations into each robot’s reference frame.
These observations are then added to their own factor graphs, forming a merged metric-semantic map. Note that the entire perception-action
loop runs in a decentralized manner onboard each robot. Besides the obvious differences in control algorithms, the planning modules and
the front-end processing algorithms are also different across each robot platform. This is due to the need to accommodate the differences
in sensing modalities (RGBD and LiDAR), operating environments (indoor, urban, and forest), and traversal modes (ground and aerial).
However, the core metric-semantic SLAM framework remains the same.

location. This enables odometry drift correction in single-robot
systems (intra-robot loop closure) and map merging in multi-
robot systems (inter-robot loop closure). Prevalent approaches
typically use consistency graphs. These methods operate on
the assumption that pairwise distances between points or
landmarks remain unchanged across two candidate maps [34],
[35], [36], [37]. The largest set of consistent associations
is then identified and used to estimate the transformation.
However, this assumption is invalid with the object-level
map representations, where object detection and localization
errors introduce additional inconsistency. Some geometric-
based place recognition methods, such as [38], design hand-
crafted features for LiDAR point clouds that are translation and
rotation invariant to match them accurately and establish robust
place recognition. Other methods like [39] generate similar
global matching features and perform relative pose refinement
using deep neural networks. While these methods demonstrate
impressive place recognition performance, they may have high
memory usage when storing a large number of geometric
features or require large amounts of data to fine-tune the
neural network for place recognition in novel environments.
Conversely, semantic maps are much sparser, provide richer
information and can be abstracted from any sensing modality,
LiDAR or camera. Some approaches leverage this fact and
propose descriptor-based methods based on the spatial rela-
tionship of semantic objects. In [40], a random walk descriptor
encoding semantic labels of neighboring nodes is designed for
each semantic node. A semantic histogram-descriptor-based
method is proposed in [41], which improves the efficiency of

graph matching compared to the random-walk-based method.
[6] also leverages random walk descriptors with semantic
information but further adds information on object parameters,
angles, and distance between an object node and its neigh-
boring nodes to filter out false candidates. In [42], Urquhart
tessellations are derived based on the positions of semantic
landmarks (tree trunks in forests). Polygon-based descriptors
are then computed to describe the local neighborhood of the
robot, which are then used for place recognition. Hierarchical
descriptors consisting of appearance-based descriptors like
Distributed Bag of Words (DBoW2) [43] and higher level
descriptors encoding information about a node’s neighboring
objects or places are designed in [44], [4]. Drawing inspiration
from some of these prior works, we design two complementary
place recognition algorithms that leverage our metric-semantic
map representation from diverse sensing modalities (LiDAR
and RGBD Camera) and adopt exhaustive search-based and
descriptor-based strategies, respectively.

C. Multi-robot SLAM

Multi-robot SLAM systems expand upon their single-robot
counterparts by incorporating two crucial modules: inter-robot
loop closure and multi-agent graph optimization. Numerous
studies address the challenge of place recognition, as detailed
in Section II-B. Representative works in multi-robot SLAM
include [45], [46], which rely on a central base station or
agent to merge measurements from multiple robots, and [47],
[48], [49], [50], which operate in a distributed or decentralized
manner. Distributed multi-robot systems involve robots that
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Figure 4: Multi-robot collaboration module for decentralized metric-semantic SLAM. The robots share lightweight metric-semantic
observations necessary for constructing the factors between object landmarks and robot poses in the factor graph, which include the detected
objects and the odometry relative motion estimate (w.r.t. the previous pose) associated with each key pose in the factor graph. Once the
metric-semantic place recognition module successfully finds a loop closure with another robot, the shared observations from that robot will
be transformed into the current robot’s reference frame and added to the factor graph of the current robot.

coordinate through message passing, possibly with central
nodes, while decentralized systems operate without a central
decision point, enhancing robustness by allowing each robot to
make independent decisions. Decentralized multi-robot SLAM
is a promising framework in multi-robot SLAM research.
It enables robots to operate independently and collaborate
opportunistically when communication links are established,
allowing them to accomplish complex tasks such as large-scale
collaborative exploration without relying on infrastructure.

However, the prior works mentioned above only contain
geometric information during mapping. Recent efforts ex-
tend the field to metric-semantic mapping. [7] presents a
system producing a dense 3D semantic mesh, incorporating
distributed loop closure detection and distributed robust pose-
graph optimization based on Riemannian block coordinate
descent [51]. However, semantic information is used primarily
in the map representation rather than for localization and
loop closure. Another related work, [52], proposes a dis-
tributed Pose Graph Optimization (PGO) framework based
on a distributed Gaussian-Seidel approach [53] by considering
only overlapping constraints among robots in the optimization
and extracting objects as landmarks. Object-level semantic
landmarks, because they are viewpoint invariant, can facilitate
collaboration among heterogeneous robots. Few works exist to
solve the problem of collaborative SLAM using heterogeneous
sensors. Among them, [54] fuses local pose graphs from
different SLAM algorithms into a global pose graph. However,
it is limited to vision-based sensors, which require sharing
images associated with each pose for map merging. Our
work proposes a more generic and efficient system towards
decentralized metric-semantic SLAM that supports real-time
operation on SWaP-constrained heterogeneous robot platforms
with either RGBD or LiDAR sensors.

D. Semantics-in-the-loop navigation and exploration
Most autonomous navigation systems rely on geometric

maps. Although such maps are reliable for obstacle avoidance,

they lack semantic information that robots can leverage to
improve their state estimation and planning while navigat-
ing the environment. Object-based landmarks help minimize
odometry drift, thus benefiting autonomous navigation if ex-
ecuted onboard in real-time [8]. Recent work goes beyond
improving odometry but uses semantic information for active
uncertainty reduction planning [55], [56], [5], and multi-robot
collaborative planning [27]. The use of semantic information
in active SLAM is relatively uncommon [57]. Some represen-
tative work in this field includes [58], [59]. However, there has
not yet been a real-time decentralized metric-semantic SLAM
framework that enables a team of heterogeneous robots to
explore GPS-denied environments while reasoning about the
semantic information and leveraging it to facilitate multi-robot
collaboration. Our work seeks to develop such a framework.

III. PROBLEM FORMULATION

Given an unknown environment and a team of hetero-
geneous robots, our objective is to construct a hierarchical
metric-semantic map of the environment without relying on
any infrastructure. The robots can communicate with each
other opportunistically. Each robot must estimate its pose
and the state of the environment and use this information to
determine actions for navigation and exploration in real time.

A. Preliminaries

Consider K robots, indexed from 1 through K. The map
of the k-th robot M(k) consists of a set of object landmarks
{ℓk1 , ℓk2 , . . . , ℓknk

} belonging to a set of pre-defined classes (i.e.,
object categories). An object is described by its class and
a state vector, including its position, orientation, and shape
information. For example, a cuboid has three shape parameters
describing its width, length, and height. A cylinder has one
parameter describing its radius (we do not estimate its height
as it is unobservable for the majority of measurements due to
limited field of view). Ellipsoid models are simplified to have
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two shape parameters (radius and height) and known identity
orientation. Objects of each class are modeled using one of
the aforementioned three shapes as specified by the user. For
each key pose of robot k, denoted by xk

t , the associated
measurements include object detections from this pose and
the relative motion from the previous key pose. The details of
the shape models, robot measurements, and the factor graph
used for optimization are presented in Section IV.

B. Dec-Metric-Semantic SLAM for multi-robot exploration

In this section, we state the general active decentral-
ized metric-semantic SLAM problem (Dec-Metric-Semantic
SLAM). Let I(k)

t be all past observations that robot k has
accrued by time t, from its own measurements, as well as
from messages it has received from other robots. At time t,
every robot k executes an exploration or navigation policy:

µ
(k)
t : I(k)

t → A, (1)

where A is an action set of robot k that can include, for
example, waypoints to follow or low-level control inputs. We
formulate the exploration problem as:

max
(µ

(k)
t )1≤t≤T,

1≤k≤K

E

[
K∑

k=1

T∑
t=1

Ut(x
(k)
t ,M; I(k)

t )

]
, (2)

where M represents the (static) map of the environment, and
x
(k)
t the state of robot k at time t. The function Ut is a

(potentially) time-varying utility function that quantifies the
accuracy with which a robot can estimate specified quantities
of interest given all the information it has amassed thus far.

In our metric-semantic SLAM formulation, the quantities
of interest include the robot poses x

(k)
t and the map of the

environment M. At each time t, robot k receives odometry
measurements

h
(k)
t = x

(k)
t ⊖ x

(k)
t−1 +w

(k)
t , (3)

where ⊖ computes the relative pose between two key poses,
and map measurements

m
(k)
t = h(x

(k)
t ,M) + v

(k)
t . (4)

We assume (w
(k)
t )t≤T,k≤K and (v

(k)
t )t≤T,k≤K are indepen-

dent random variables with zero mean and covariance Λk

and Γk, respectively. Currently, both variables w
(k)
t and v

(k)
t

are set to constant values since key poses x
(k)
t are sampled

at a fixed robot travel distance interval. However, in our
implementation, we provide an interface to allow scaling w

(k)
t

according to travel distance and modify v
(k)
t accordingly to

account for sensor and object detection noise.
We let Ct ∈ {0, 1}K×K be the time-varying symmetric

adjacency matrix of the undirected graph modeling the robot’s
communication. At every time t, any distinct pair of robots i
and j communicate if and only if (Ct)i,j = (Ct)j,i = 1. We
denote the message that robot i sends to robot j at time t via
r(i→j)(t). We denote the neighbors of any robot k in the graph
at time t via

N (k)
t = {j ∈ [K] \ {k} : (Ct)j,k = 1}, (5)

where [K] := {1, . . . ,K}. For any distinct pair of robots (i, j),
we denote their last meeting time up to time t as

L
(i,j)
t = max{s ≤ t : (Cs)i,j = 1}, (6)

noting the symmetry in the superscript, i.e., L(i,j)
t = L

(j,i)
t .

Then, the information state of robot k may be defined recur-
sively as

I(k)
t =

⋃
j∈[K]\{k}

I
L

(k,j)
t

∪
⋃
s∈[t]

(
{h(k)

s } ∪ {m(k)
s }

)
, (7)

with initial condition I(k)
0 = ∅ for all k ∈ [K].

We develop an approach that uses a set of policies µ (e.g.,
active SLAM, exploration, etc.) that take as input compressed
representations of M using a custom data structure, i.e., a set
of object landmarks with corresponding poses, shapes, and
class labels, as well as a custom rule for updating the data
structure both using new measurements from the robot and
information from its communication with other robots. The
exploration or navigation policy of robot k may then be defined
via

µ
(k)
t (I(k)

t ) := µ
(k)
t (Π(I(k)

t )), (8)

where the information projection operator Π is given by

Π(I(k)
t ) = (x̂

(k)
1:t ,M̂

(k)
t ). (9)

Π extracts an estimate of the previous trajectory of robot k,
as well as its estimate of the map via

x̂
(k)
1:t ,M̂

(k)
t = argmax

x
(k)
1:t ,M

P (x
(k)
1:t ,M | I(k)

t ), (10)

where P (x
(k)
1:t ,M | I(k)

t ) represents the joint probability
distribution of the robot k’s trajectory from the start up to
time t, and the map M, which includes object landmarks,
conditioned on the information state I(k)

t of the robot k.
Finally, we use the following form of messages

r(i→j)(t) = (I(i)
t ,M̂(i)

t ). (11)

In principle, robot j can construct M̂(i)
t from I(i)

t . Given
the fact that the compressed representation M̂(i)

t we use is
memory efficient, we directly share this information to avoid
the extra computation brought about by the reconstruction
step. The map M̂(i)

t is shared only for checking inter-robot
loop closures and estimating the transformations. Once a valid
inter-robot loop closure is established, I(i)

t is used to form the
updated I(j)

t as mentioned in Eq. (7). I(j)
t will then be used

to update M̂(j)
t .

IV. METRIC-SEMANTIC SLAM

A. Approach overview

We next turn to an overview of the approach for computing
the information projection operator Π, which is one of the core
contributions of this paper. Unlike traditional geometric-only
methods such as point cloud registration, our method leverages
both geometric and semantic information to find common
components of maps estimated by different robots, and then
refines such estimates using both its own measurements and
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measurements made by other robots. We illustrate this idea
with a pair of robots k and j at time t, though the argument
can be readily generalized to simultaneous interactions of
a larger number of robots. Robot k solves the maximum
likelihood state estimation problem at time t as follows. For
every robot j ∈ N (k)

t , we consider the message rj→k(t) =

(I(j)
t ,M̂(j)

t ). First we determine common map observations
made by robots k and j up to time t by performing inter-
robot loop-closure detection on M̂(j)

t and M̂(k)
t . The output

of the loop-closure module yields an estimate of the relative
transformation (k)T(j) = ((k)R(j),

(k)t(j)) ∈ SE(3) between
reference frames of robot j and robot k. In particular, a point
with coordinates (j)p in the reference frame of robot j has
coordinates (k)p = (k)R(j)

(j)p+ (k)t(j) in the reference frame
of robot k. This transformation is then used to determine which
landmarks in the map of robot j correspond to landmarks that
also exist in the map of robot k. Thereafter, the trajectories
of both robot j and k are optimized together with the union
of object models in the map, taking care to associate mea-
surements of the same landmark taken by two robots with the
same variable in the factor graph:

x̂
(j)
1:t , x̂

(k)
1:t ,M̂

(k)
t = argmax

x
(j)
1:t ,x

(k)
1:t ,M

P (x
(j)
1:t ,x

(k)
1:t ,M | I(k)

t ).

(12)
The above equation provides details on the information pro-
jection operator Π.

Our system works on robots with different types of sen-
sors, including RGBD cameras and LIDARs, as illustrated
in Fig. 3 and detailed in Section V-A. Our metric-semantic
SLAM framework handles such heterogeneity by using dif-
ferent front-end pipelines. We integrate the proposed metric-
semantic SLAM framework with our autonomous exploration
and navigation stack as detailed in Section V-B. In the rest of
this section, we will provide details on individual modules of
the proposed framework.

B. Map representation

Table II: Requirements for map representation. Generic implies
that the map must be adaptable to various sensing modalities and
environments. Informative means that the map should contain both
metric and semantic information. Sparse indicates that the map needs
to be memory efficient for storage and sharing.

Heterogeneous robots
and environments

Place recognition
and loop closure

Real-time explora-
tion and navigation

Generic ✔ ✔
Informative ✔ ✔

Sparse ✔ ✔ ✔

The metric-semantic SLAM framework needs to satisfy
several design attributes. These include (1) support for het-
erogeneous robot teams, where the robots may carry different
sensors, operate in different environments, and share infor-
mation with each other via intermittent communication, (2)
support for inter-robot place recognition for map merging,
(3) capability of real-time operation under the constraints of
onboard computation and memory resources, so that the robot
can use the estimated pose and the metric-semantic map to
guide its navigation.

As summarized in Table II, to support different kinds of
sensors (RGBD cameras and LiDARs) and objects in different
environments, we require the map representation to be generic.
To work with multiple robots and allow the sharing of in-
formation with limited communication bandwidth, we require
the map representation to be sparse. To enable efficient and
accurate place recognition and loop closure, we additionally
require the map representation to be informative so that the
robots can distinguish different semantic objects even under
perceptually aliased conditions. Finally, to enable efficient,
large-scale, and real-time autonomous exploration, we also
require the map to be sparse and informative. The informa-
tiveness allows the exploration planner to better understand the
environment, such as the uncertainties in the semantic objects,
and generate informative paths.

Therefore, we design a generic, sparse, and informative
metric-semantic map representation. It contains a set of ob-
jects, each represented by a semantic class and a state vector
that describes its model parameters, including position, orien-
tation, and shape information. Such a map representation, as
illustrated in Fig. 2, can be maintained throughout the entire
mission of the robot while enabling tasks such as localization,
mapping, map sharing, place recognition, map merging, and
active exploration over a large scale and in real time.

The metric-semantic SLAM problem can be broken down
into two subproblems: (a) determining the discrete semantic
labels and data association of detected objects and (b) opti-
mizing over the continuous variables of robot poses and object
model parameters (pose and shape). In this work, we approach
problem (a) using deep neural networks for detection and
assignment algorithms for data association, and problem (b)
by first converting object observations into factors in a factor
graph and then using an incremental smoothing and mapping
algorithm (iSAM2) [60], [61] to optimize it. In the rest of this
section, we provide details on these two steps.

C. Object detection and modeling

The front-end of our SLAM framework is responsible for
processing raw data from different sensors and converting it
into object-level observations. The process is broken down into
three components: 1) object detection or instance segmenta-
tion; 2) object instance tracking to accumulate observations
from different views; 3) shape model fitting to the instances
based on the class labels.

For semantic segmentation on point cloud from LiDAR,
we trained RangeNet++ [62] with a small modified back-
bone. This model performs segmentation on the range im-
age, which is a spherical projection of a point cloud. This
operation drastically decreases the inference time compared
to performing inference on a 3D data structure such as a
point cloud and makes real-time inference onboard SWaP-
constrained platforms possible.

For the RGBD sensor, we use YOLOv8 [63] to perform
instance segmentation on RGB images and backproject the
pixels in each object instance’s segmented mask into point
clouds using depth information. We apply depth-based thresh-
olding within each object instance’s mask, keeping only the
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points within a certain range of depth percentile, to avoid
including noisy pixels.

In addition to supporting the aforementioned closed-set
object detection methods that only enable the robot to per-
ceive a subset of the semantic information in the world
characterized by pre-identified labels, we provide support to
incorporate open-vocabulary object detectors into our system.
Specifically, we utilize the YOLO-World model [64] as our
open-vocabulary object detector due to its real-time onboard
performance. The YOLO-World model processes pairs of
images and a list of text prompts, where we specify a set
of object categories of interest. The model then outputs object
detections corresponding to each query in the text prompts.
We apply depth thresholding to these detections, similar to
the approach used for YOLOv8.

Once the point cloud per detection is extracted, these
detected objects are tracked over time using the Hungarian
assignment algorithm [65]. Tracking instances across time and
from different viewpoints ensures robust geometry of objects
and minimizes false positives by rejecting those tracks that
only appeared once or very few times, which is necessary
for metric-semantic mapping. Finally, the algorithm also helps
with robustness against moving objects by tracking and ac-
cumulating their point clouds. For example, an accumulated
instance of a moving object appears elongated when compared
to its true size, and such objects can then be filtered out
by simply applying a threshold on their dimensions. This
preliminary tracking step is used to more robustly obtain
object-level observations. In the factor graph optimization back
end, there is a separate object tracking step that associates
these object observations with existing object landmarks to
construct factors in the factor graph.

Once a robust object instance is obtained, depending on the
type of object, a shape model is fitted to the instance. Objects
such as vehicles use a cuboid model, tree trunks and light
poles use a cylinder model, and irregularly shaped objects that
cannot be properly categorized into either a cuboid or cylinder
use an ellipsoid model. Having determined an appropriate
model for the object instance, these models are converted into
factors to be added to the factor graph for the SLAM back-end
optimization.

We highlight that we do not rely on a specific object
detector. Our implementation has a modular front-end design,
enabling the seamless integration of alternative object detec-
tors in the future.

D. Factor graph optimization with object models

After acquiring the object detections associated with each
pose of the robot, we now formulate the back-end optimization
problem for the metric-semantic SLAM. When a new object
detection arrives, we first check if we can associate it with
existing object landmarks in the map. Upon the first observa-
tion of the object, we will initialize an object landmark. After
that, once we associate new object models with existing object
landmarks, we use the detection-landmark matches to form
factors between the current pose and the matched landmarks in
the factor graph. A valid object detection-landmark association

needs to meet two criteria: (1) they have the same semantic
label, and (2) their distance and model difference are within
a certain threshold.

A critical step to form such factors is to define the con-
straining relationship (i.e., graph edges) between the object
and robot pose graph vertices. This means we need to define
the measurement models that convert observations of relative
odometry and object models into factors. We denote the matrix
form of the robot pose xt as Hw

s , where Rw
s is the rotational

component and tws is the translational component. In the rest
of this section, we will describe this process in detail.

1) Cuboid factors: First, we define the state vector of the
cuboid object model as: ℓg = [r; t;d], where r = [rx, ry , rz]⊺

is the rotation vector, t = [tx, ty , tz]⊺ is the translation vector,
and d = [dx, dy , dz]⊺ is the size.

We first recover the cuboid’s SE(3) pose based on its state
vector ℓgi = [r; t;d], and transform it from the reference frame
to the body frame using Hs

cub = Hs
wH

w
cub. The error function

for cuboidal objects is as follows:

ecub =

[
log((Hs

cub(z))
−1(Hs

wH
w
cub))

∨

d− d(z)

]
, (13)

where ∨ is vee operator that maps the SE(3) transformation
matrix into 6 × 1 vector, log is the log map, and (·)(z) are
corresponding measurements.

2) Cylinder factors: First, we define the state vector of the
cylinder object model as: ℓgi = [b;n; r], where b = [bx, by ,
bz]⊺ is the origin of the axis ray, n = [nx, ny , nz]⊺ is the
direction of the axis ray, and r is the radius.

Similarly, the treatment of cylinder factors has been derived
in [5]. We calculate the expected measurement and actual
measurement of cylinder objects from ℓgi and ℓgi (z). We define
the error function for cylindrical objects as:

ecyl =

(Rs
wb+ tsw)− b(z)
Rs

wn− n(z)
r − r(z)

 , (14)

where (·)(z) are corresponding measurements.
3) Ellipsoid factors: All objects that are not associated

with a cylinder or cuboid shape are represented by ellipsoid
landmarks. Note that our ellipsoid model is simplified to have
only two dimensions (i.e., the cross-section is a circle) and
identity orientation. For each ellipsoid object, the state vector
is: ℓgi = [c,de]

⊺, where c = [cx, cy , cz]⊺ represents 3D
position of the centroid, and de = [dr,dh]⊺ represents the
radius and height.

Given the expected ellipsoid landmark model ℓgi = [c,de]
⊺

and the actual measurements which consists of range-bearing
measurements rg(z), θ(z), ϕ(z) as well as the dimension mea-
surements de(z) = [dr(z), dh(z)]⊺, the measurement error
eellip is derived as follows:

Let [c′x, c
′
y, c

′
z] = R⊤

t (c − tt) denote the landmark trans-

formed into the body frame, rgexp =
√

c′x
2 + c′y

2 + c′z
2 repre-

sent the expected range measurement, and θexp = tan−1
(

c′y
c′x

)
and ϕexp = tan−1

(
c′z√

c′x
2+c′y

2

)
indicate the expected bearing
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measurements. The measurement error for centroids of ellip-
soid objects is as follows:

eellip =

rgexp − rg(z)
θexp − θ(z)
ϕexp − ϕ(z)

 . (15)

Since the GTSAM solver [61] already provides range and
bearing measurement models, we directly utilize these for
optimizing the centroid positions. For dimension estimation,
we use the moving average method as follows: dupdated

e =
(1−α) ·de +α ·de(z), where α controls the weight given to
new measurements.

4) Odometry factors: The robot state at time t is repre-
sented by xt, which contains the SE(3) pose. For each key
pose xt, we compute the relative motion from its preceding
key pose using the low-level odometry readings from either
VIO [19] or LIO [20], depending on the sensor that the robot
carries. Specifically, this is calculated as ∆xt = (xodom

t−1 )−1 ◦
xodom
t . Our factor graph incorporates this relative motion as an

odometry factor. This approach mitigates the cumulative drift
commonly associated with low-level odometry systems by not
directly using the low-level odometry as pose priors. Instead,
we utilize the odometry estimates to interpolate between
consecutive key poses that are proximate in both space and
time, where the precision of the low-level odometry provides
reliable measurements.

We use the measurement models defined above to convert
the observations and build a factor graph with nodes for
both robot poses and object landmarks and factors between
them, as illustrated in Fig. 3. We implemented our custom
cuboid and cylinder factors to be compatible with the GTSAM
factor graph optimization library [61]. In addition, we use
GTSAM’s built-in relative SE(3) pose measurement model for
the odometry factor and the range-bearing measurement model
for ellipsoid object landmarks.

E. Place recognition and loop closure

Our system is designed with a modular architecture, en-
abling users to integrate alternative place recognition and
loop closure algorithms to meet their unique requirements. In
this paper, we have developed two example algorithms that
leverage our object-level metric-semantic map representation.
At a high level, they can be summarized as follows:

1) SlideMatch: This approach uses an exhaustive search
strategy by sampling candidate transformations, applying
them to the first metric-semantic map, and matching
the transformed map against the second map to identify
potential loop closures.

2) SlideGraph: This descriptor-based approach begins by
performing data association through the matching of
triangle descriptors derived from each metric-semantic
map, using both class labels and position information
of the objects. The initial associations are then refined
using a graph-theoretic framework [36], which effectively
eliminates outliers.

The two example algorithms exhibit different behaviors and
offer complementary performance across various scenarios.

Generally, we recommend using SlideGraph as the primary
algorithm, with SlideMatch serving as an alternative option,
as further discussed in detail in Section V-J.

1) SlideMatch: The SlideMatch algorithm takes a pair of
object-level metric-semantic maps from either the same robot
(i.e., historical map and current map for loop closure) or a
pair of different robots. SlideMatch algorithm checks within a
search region if a valid loop closure is found and outputs the
relative transformation between the reference frames of these
two maps. The search region of the algorithm encompasses
continuous ranges of X and Y positions and yaw angles, where
the relative transformation between the two maps may exist.
The search procedure is carried out over the search region
using a user-defined search resolution for discretization.

Preprocessing: For inter-robot place recognition, we de-
signed a preprocessing step that zero-centers the two object-
level maps before performing data association. This step
reduces the search region and computation of the SlideMatch
algorithm, especially when the two robots start far apart. Fur-
thermore, it enables the algorithm to automatically calculate
the search region by setting the X and Y search ranges to
encompass the region where the two maps overlap and the
yaw search range to (−π, π].

Anytime implementation: The anytime implementation pro-
gressively improves the quality of place recognition until
the user-specified compute budget is exhausted. Quality is
measured by the number of inlier matches. This approach
guarantees the algorithm returns the best estimate within
the given computation time budget. A valid loop closure is
considered to be found if the matching score of the best
estimate exceeds the valid loop closure inlier threshold, which
is described in more detail below. This anytime procedure is
achieved by gradually increasing the search region for data
association until it covers the entire region or the compute
budget is used up.

Data association: The data association step involves finding
the possible set of landmarks that are common in both maps.
Candidate transformation samples are generated from the
search region by discretizing the search space across the X, Y,
and yaw dimensions, based on the user-specified resolutions.
Specifically, the algorithm iterates through all possible X and
Y position and yaw angle samples within the current region
calculated by the anytime process. Within each iteration, the
objects in the first map are transformed using the sampled X,
Y, and yaw, and matched against the objects in the second map.
The algorithm then evaluates the matching score, which is the
total sum of all valid object matches between the two maps.
Similar to the data association in Section IV-D, a valid object
model match must have the same semantic label, and their
centroid distance and model difference are within the given
threshold. At the end of each iteration, if the matching score
exceeds the current best matching score, it will be recorded
along with the valid object matches. After all iterations, the
best matching score will be compared with the valid loop
closure threshold to determine whether a valid loop closure
has been identified.

2) SlideGraph: The SlideGraph algorithm, unlike the
exhaustive search-based SlideMatch algorithm, adopts a
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descriptor-based matching approach and combines it with a
robust outlier rejection method, CLIPPER [36], for efficient
and robust loop closures. While the CLIPPER framework can
achieve robust data association by formulating the problem
as a maximum clique search in a weighted graph, when an
initial data association is unavailable, CLIPPER can still op-
erate under an all-to-all association assumption. However, this
quickly becomes too memory demanding and computationally
expensive as the number of object landmarks increases in the
map.

To address these limitations, we propose a method for
generating initial data associations using descriptor matching.
Inspired by prior research [42], our descriptor design applies
Delaunay triangulation to two sets of object landmarks de-
rived from metric-semantic maps. Candidate simplices, either
triangles (2D landmarks) or tetrahedrons (3D landmarks), from
each set are compared based on their sorted vertex-to-centroid
distances. A valid match is found if the distance metrics
between two simplices fall within a predefined threshold.
From these matched simplices, the corresponding vertices are
extracted as an initial set of object landmark associations.
The semantic class labels of the object landmarks are used to
further reject false candidate matches. This initial matching
step significantly reduces the search space for the CLIP-
PER framework, which subsequently refines these matches
by filtering out false associations through its graph-theoretic
optimization. The total number of valid matches resulting
from this refinement is treated as the matching score, which
is then compared against a threshold to determine whether
a valid loop closure has been detected. This two-stage
approach ensures robust data association while maintaining
computational feasibility, even for large landmark sets.

3) Least square optimization: Finally, a least-squares op-
timization is applied to obtain the relative transformation
estimates between the reference frames of the two metric-
semantic maps, using the data associations provided by either
the SlideMatch or SlideGraph algorithm. Note that we only use
estimates for X, Y, Z, and yaw. This is because roll and pitch
are directly observable from the IMU, and their estimates from
VIO or LIO drift negligibly over time. This optimization aims
to minimize the Euclidean distance between pairs of matched
landmarks found in the data association step.

F. Decentralized graph optimization for multi-robot SLAM

As overviewed in Section III-B, for multi-robot scenarios,
each robot will exchange information with other robots to
find inter-robot loop closures and perform decentralized factor
graph optimization. When communication is established, the
robots will share the lightweight observations stored in their
databases, which include object models detected by each key
pose and the relative odometry between each pair of key
poses. Besides, the robots will also share a metric-semantic
map containing all object models so that inter-robot loop
closure can be effectively performed. Messages received from
other robots are saved in the database before an inter-robot
loop closure is found. Once the transformation between the
reference frames of two robots is found, all the previously

received key poses and object detections from other robots
will be transformed into the host robot’s reference frame. In
this way, we can add both the pose nodes and the nodes for
detected object models associated with them from other robots
to the host robot’s factor graph in a similar way as described
in Section IV-D. This process is illustrated in Fig. 3. The
communication and decentralized graph optimization module
is illustrated in Fig. 4. Although each robot needs to perform
a pose graph optimization using information from all other
robots, the induced burden on computation and communication
bandwidth is still small due to the sparsity and memory-
efficient representation of object models.

One natural question that may arise is why we share such
lightweight observations between robots instead of sharing
marginalized factor graphs (e.g., as in [15], [16])? We justify
our design choice by the fact that the object-level metric-
semantic map that we use is significantly sparser than tradi-
tional geometric representations such as point, line, or planar
features. In addition, the number of objects detected at each
pose is much smaller compared to geometric features (e.g.,
corner points). In terms of performance, our representation
allows us to be memory and computationally efficient, as
supported by the experimental results in Table VI. In terms
of statistical consistency, our approach does not suffer from
spurious information loss due to linearization.

V. RESULTS AND ANALYSIS

A. Robot platform overview

Our robot team consists of three types of aerial and ground
robots: the Falcon 250 UAV, the Falcon 4 UAV, and the Scarab
UGV, as illustrated in Fig. 1. The specifications of these robots
are provided in Table III.

The Falcon 250 UAV [3] is a lightweight vision-driven aerial
platform capable of autonomous exploration and navigation in
cluttered, multi-floor indoor environments. It carries an Intel
Realsense D435i RGBD camera, which is the primary sensor

Figure 5: Metric-semantic SLAM results on the KITTI dataset. The
top, middle, and bottom panels show the results of experiments
involving one, two, and three robots, respectively. Each cuboid
represents a vehicle while each cylinder represents either a tree trunk
or a light pole. The estimated robot trajectories are shown in orange,
red, and blue for the first, second, and third robots, respectively.
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Table III: Robot platform details. Specifications on three types of robot platforms used in our experiments.

Compute Primary Sensor Battery Life Autonomous Navigation Speed
Falcon 4 UAV Intel i7-10710U CPU Ouster OS1-64 30 mins 3-10 m/s

Falcon 250 UAV Intel i7-10710U CPU Intel Realsense D435i 7 mins 2-5 m/s
Scarab UGV Intel i7-8700K CPU Intel Realsense D455 45 mins 0.5 m/s

for metric-semantic SLAM and autonomous exploration. It is
equipped with a VOXL board, which is used for VIO.

The Falcon 4 UAV [8] is equipped with a 3D LiDAR, a
VectorNav VN-100 IMU, and a Pixhawk 4 flight controller.
The platform has a flight time of ∼30 minutes with all onboard
sensors and computer running.

The Scarab UGV platform is a ground wheeled robot
carrying an Intel Realsense D455 camera, which is the primary
sensor for metric-semantic SLAM and autonomous explo-
ration. It is also equipped with a 2D Hokuyo LIDAR for low-
level odometry and obstacle avoidance.

All modules in our software system, including instance
segmentation, metric-semantic SLAM, exploration, planning,
and control, as shown in Fig. 3, execute in real time onboard
the robots.

B. Deployment for autonomous exploration

We integrate the metric-semantic SLAM algorithm with our
autonomous exploration and navigation systems for all three
types of robot platforms. The integration process and the use
of semantic maps differ for different sensing modalities. In
[5], an active metric-semantic SLAM system with similar
map representations is proposed for LiDAR-based UAVs.
In contrast, the RGB-D-based UAV and UGV platforms in
[3] face larger odometry drifts. To address this, they use
the outputs of the metric-semantic SLAM framework to not
only explore frontiers to gather more information but also
to actively establish semantic loop closures so that the state
estimation uncertainty can be reduced. We extend [3] by
(a) upgrading the SLAM module with the metric-semantic
SLAM framework proposed in this work so that multi-robot
collaboration can be achieved, (b) deploying the active metric-
semantic SLAM system that was originally designed for
Falcon 250 UAV on a UGV platform (i.e., the Scarab UGV
platform), and (c) supporting a heterogeneous team of aerial
and ground robots to share information and collaboratively
construct metric-semantic maps.

C. Experiment design

We designed and conducted a set of experiments to evaluate
our framework and its modules. We conducted four sets of ex-
periments. Here, we provide an overview of each experiment:

1) Experiment 1: This experiment is designed to evaluate
our decentralized metric-semantic SLAM framework in both
indoor and outdoor environments. We utilize the RGBD-
equipped Falcon 250 UAV and Scarab UGV, along with
the LiDAR-equipped Falcon 4 UAV, each operated by hand-
carrying, autonomous navigation, and manual piloting, re-
spectively. These experiments demonstrate the versatility of
our metric-semantic SLAM system across heterogeneous plat-
forms and environments. The experimental setup is divided
into two distinct sub-experiments.

(1.a) The Falcon 4 UAV is manually piloted across three
different parking lots, while the Falcon 250 is hand-carried
through four sequential runs inside two buildings. Each of the
seven runs starts with a pre-defined pose. To test the capabili-
ties of our semantics-driven place recognition and loop closure
algorithms, we create unknown initial poses for each run by
streaming the data from different starting timestamps. During
data playback, the sensor data from each robot is processed on
a base station with an i7-10750H CPU (comparable to CPUs
onboard the robots), where each robot operates on a sepa-
rate ROS node. We enable communication between the ROS
nodes of different robots at predetermined intervals, effectively
replicating an intermittent and opportunistic communication
paradigm. This setup allows us to evaluate the robustness and
efficacy of our decentralized metric-semantic SLAM frame-
work across heterogeneous robots and environments.

(1.b) This sub-experiment begins with the Falcon 4 UAV
and the Scarab UGV inside a building. The Falcon 4, hand-
carried, maps the entire first floor, while the Scarab au-
tonomously navigates and maps the same area. The initial
poses of the robots are unknown, posing a challenge in place
recognition and map merging. This experiment demonstrates
the effectiveness of our semantics-driven place recognition and
map merging module in handling data from heterogeneous
sensing modalities, including LiDARs and RGBD cameras.

2) Experiment 2: A multi-robot simultaneous indoor au-
tonomous exploration experiment where the Falcon 250 and
Scarab platforms actively explore the building and jointly
construct a metric-semantic map. All robots in the experiment
explore the environment fully autonomously and share infor-
mation through either constantly communicating with each
other or communicating with the base station at the end of the
mission. The robots leverage the metric-semantic map in real
time for their active SLAM systems, which trades off between
exploration and uncertainty reduction. This experiment can be
further broken down into two sub-experiments.

(2.a) The Falcon 250 and Scarab platforms start at dif-
ferent locations on the first floor of a building. They then
autonomously explore the environment to the best of their
abilities and build a metric-semantic map. At the end of
the mission, they share their information to the base station
in an attempt to merge them. The transformation between
the initial starting positions of the two robots is unknown.
This experiment demonstrates the ability of our system to
operate on a heterogeneous team of robots and be efficient and
lightweight enough to leave enough computational headroom
to support their autonomy stack.

(2.b) Three Scarab platforms are tasked with the operation
of autonomously exploring the first floor of a building. They
build a metric-semantic map in a decentralized manner and
share information through constant communication using Wi-
Fi in an attempt to construct a merged map. In addition
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Figure 6: Exploration and metric-semantic SLAM with heterogeneous
robot teams. This figure shows the trajectories and metric-semantic
map constructed from autonomous exploration experiments by aerial
and ground robots. The Falcon 250 UAV explores in 3D (orange
trajectory), while the Scarab UGV explores in 2D (blue trajectory).
Our method can merge maps across UAVs and UGVs by leveraging
the viewpoint invariance of semantic landmarks.

to demonstrating efficient operations on resource-constrained
robots, this experiment also highlights our multi-robot decen-
tralized metric-semantic SLAM module and how it processes
sensor information to facilitate online collaborative SLAM
with inter-robot loop closures and map merging.

3) Experiment 3: An experiment in forest environments
where the Falcon 4 is manually piloted to different sections
of a forest for a total of three sequential runs to map all
the tree trunks. The Falcon 4 platform starts from the same
position for each run (for ground truthing purposes) but the
data is processed in a manner that mimics a three-robot
simultaneous operation with an unknown initial transformation
between the robots. This was achieved by processing the three
bags of data and streaming them from different timestamps
such that it replicates the situation of three robots starting at
various locations with a sufficient translation between them.
Forest environments are a steep contrast to urban environments
as they are more cluttered with dense and homogeneous
object landmarks (i.e. tree trunks). By experimenting in such
environments, we showcase our large-scale mapping efficiency
and our ability to merge maps from multiple robots in dense
and perceptually aliased environments. In addition, obtaining
information on semantic objects in forests, such as tree trunks
and branches, can enhance silviculture practices, quantifying
carbon sequestration, and combating climate change.

4) Experiment 4: In the final experiment, we tested the
proposed framework on the publicly available Semantic KITTI
dataset. This allowed us to demonstrate the algorithm’s versa-
tility and effectiveness in scenarios beyond our custom robot
platforms and experimental setups.

D. Indoor-outdoor LiDAR-RGBD metric-semantic SLAM
without inter-robot loop closures

Fig. 6 shows qualitative results on metric-semantic SLAM
for experiment 1.a as described in Section V-C. Outdoor
objects such as cars, tree trunks, and light poles and indoor
objects such as chairs, tables, and monitors are detected and
mapped using our sparse metric-semantic map representation.
Object models for vehicles are represented by blue cuboids,

Figure 7: Multi-robot metric-semantic SLAM in an outdoor exper-
iment. Results from an experiment involving three Falcon 4 UAV
flights. The trajectories, marked by red, blue, and yellow bold lines,
start from different positions (red, blue, and yellow dots) but converge
back to the same end location (red dot). Our semantics-driven place
recognition algorithm was able to detect inter-robot loop closures,
which are then used to merge the maps. In the map, vehicle models
are represented by blue cuboids, and models for tree trunks or light
poles are shown by magenta cylinders.

while tree trunks and light pole landmarks are shown as
pink cylinders. The ellipsoid models of chairs, tables, and
monitors are replaced with corresponding Computer-Aided
Design (CAD) models. This is done only for visualization
purposes and an intuitive interpretation of the metric-semantic
map, especially in highly cluttered indoor environments. These
models are colored blue, green, and red, respectively, accord-
ing to their detected semantic class. This experiment shows
the capabilities of our metric-semantic SLAM framework in
integrating data from multiple robots equipped with either
LiDARs or RGBD cameras, enabling the construction of a
unified metric-semantic map that includes both indoor and
outdoor areas.

E. Urban and forest LiDAR-only metric-semantic SLAM with
inter-robot loop closures

Fig. 7 shows qualitative results on multi-robot metric-
semantic SLAM, demonstrating inter-robot loop closure and
map merging capabilities in outdoor environments using
LiDAR-equipped Falcon 4 UAVs. This experiment utilizes
data from experiment 1.a. In this specific setup, the trans-
formation between the robots is unknown and thus has to
be estimated to merge their maps. Fig. 10 shows qualitative
results for the forest experiments, with the overhead view
illustrating that the environment is large-scale, unstructured,
and features dense homogeneous objects (i.e. trees). In both
experiments, our semantics-driven place recognition algorithm
reliably detects inter-robot loop closures while accurately
estimating relative transformations between the robots.

The quantitative results on inter-robot localization are shown
in Table IV. In urban environments, our algorithm utilizes
semantic object models of various classes and shapes to
estimate the relative 3D position and yaw between each pair of
robots. In forest settings, our method leverages models of tree
trunks for inter-robot localization. The SlideMatch algorithm
achieves an average position error of 0.13 m and a yaw
error of 0.68◦, with standard deviations of 0.07 m and 1.76◦,
respectively. In contrast, the SlideGraph algorithm shows an
average position error of 0.24 m and a yaw error of -0.57◦,
with standard deviations of 0.28 m and 1.60◦, respectively.

Despite significant variations in object classes, appearance,
and density when transitioning from urban to forest environ-
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Table IV: Inter-robot localization errors. SM and SG refer to the SlideMatch and SlideGraph algorithms, respectively. Position error is
calculated as the L2 norm of the errors in the X, Y, and Z coordinates of the relative transformation between two robots’ reference frames.
In general, the SlideGraph algorithm is more efficient and requires less parameter tuning compared to SlideMatch, while still providing
comparable results. However, both algorithms encounter difficulties in scenarios where object landmarks are noisy, particularly with RGBD-
based sensing. SlideGraph is relatively more prone to failures in such conditions due to insufficient pairwise consistency in the positions of
object landmarks.

Experiment (Sensor) Position Err. (SM) [m] Yaw Err. (SM) [◦] Position Err. (SG) [m] Yaw Err. (SG) [◦]
Outdoor-Urban Falcon 4 #0 to Falcon 4 #1 (LiDAR) 0.235 -0.2 0.074 0.3
Outdoor-Urban Falcon 4 #1 to Falcon 4 #2 (LiDAR) 0.159 -0.3 0.240 0.9
Outdoor-Urban Falcon 4 #0 to Falcon 4 #2 (LiDAR) 0.135 -0.9 0.848 0.7
Outdoor-Forest Falcon 4 #0 to Falcon 4 #2 (LiDAR) 0.040 3.1 0.101 0.3
Outdoor-Forest Falcon 4 #1 to Falcon 4 #2 (LiDAR) 0.159 3.2 0.049 -3.0
Outdoor-Forest Falcon 4 #0 to Falcon 4 #1 (LiDAR) 0.054 -0.8 0.126 -2.6

Cross Sensing Modality (LiDAR-RGBD) 0.542 -4.0 0.578 2.0
Indoor Scarab 45 to Scarab 40 (RGBD) 0.221 -3.4 0.952 -2.3
Indoor Scarab 40 to Scarab 41 (RGBD) 0.165 0.0 0.253 0.1
Indoor Scarab 45 to Scarab 41 (RGBD) 0.460 3.7 1.040 -6.1

Indoor Aerial-Ground (RGBD) 0.245 -2.4 – –

Figure 8: Metric semantic map constructed in real time onboard
three Scarab UGVs. The UGVs autonomously explore the environ-
ment while communicating with each other. Blue, orange and red
trajectories correspond to three trajectories from the three UGVs. Our
semantic place recognition algorithm was able to perform inter-robot
loop closure, which is used to construct a merged metric-semantic
map. The gray-colored accumulated point cloud is not generated
by these UGVs but by a LiDAR robot for visualization purposes.
The figure overlays the trajectories with the metric-semantic map to
qualitatively assess the validity of the results.

ments, both algorithms consistently demonstrate robust and
accurate performance. Furthermore, the SlideGraph algorithm
requires less parameter tuning and, unlike SlideMatch which
relies on a computationally expensive exhaustive search, is
more efficient.

F. Indoor RGBD-only aerial-ground metric-semantic SLAM
with inter-robot loop closures

In this experiment, the starting position and orientation of
the robots vary significantly, with up to 6 m in position and a
90◦ difference in yaw. Fig. 8 shows the results constructed by
merging sensor measurements from three UGVs autonomously
exploring the environment. Our semantics-driven place recog-
nition algorithm was able to detect and accurately estimate
relative transformations as robots accumulate observations.
Based on the estimated relative transformations, our metric-
semantic factor graph fuses the information from multiple
robots to construct a merged metric-semantic map.

The quantitative results are shown in Table IV. For the in-
door experiment with multiple Scarab UGVs, our SlideMatch

algorithm achieves an average position error of 0.28 m and
a yaw error of 0.10°, with standard deviations of 0.13 m
and 2.90°, respectively. Our SlideGraph algorithm achieves
an average position error of 0.75 m and a yaw error of -2.77°,
with standard deviations of 0.35 m and 2.55°, respectively.

Fig. 6 shows the results constructed by the Falcon 250 and
one of the UGVs that autonomously explore the environment.
The invariance of semantic object models to viewpoint changes
enables our algorithm to merge measurements from different
viewpoints as observed by heterogeneous aerial and ground
robots. As shown in the last row of Table IV, the SlideMatch
algorithm successfully identifies inter-robot loop closures and
estimates the relative transformation with a position error of
0.245 m and a yaw error of 2.35◦. However, we observed that
aerial-ground localization exhibits slightly larger errors along
the Z-axis compared to localization errors among identical
robot platforms. This discrepancy arises because aerial robots
primarily observe the upper parts of objects, while ground
robots focus on the lower parts, leading to greater variation in
Z-axis estimates. In contrast, the SlideGraph algorithm fails
to perform inter-robot loop closures between RGBD-based
aerial and ground robots. This limitation is caused by reduced
pairwise consistency between object positions in the map,
which stems from noisy RGB-D sensing combined with the
fact that the aerial and ground robots observe different parts
of the objects.

In summary, while noisy RGBD sensing can introduce inac-
curacies in the localization and modeling of individual objects,
a collection of object landmarks provides the robots with
an informative description of the environment. This enables
them to establish loop closures even under drastic viewpoint
changes. In addition, it is important to note that the increased
noise levels require a careful selection of parameters, such
as the search discretization in SlideMatch or the descriptor
matching threshold in SlideGraph.

G. Indoor LiDAR-RGBD metric-semantic SLAM with inter-
robot loop closures

Fig. 9 shows qualitative results on multi-robot metric-
semantic SLAM on the cross sensing modality experiment
(i.e., experiment 1.b in Section V-C). The accumulated point



14

Figure 9: Cross sensing modality place recognition. A LiDAR-
equipped robot is represented by the orange trajectory and an RGBD-
based robot by the blue trajectory. The rest of the panels show
the merged metric-semantic map constructed by the robots and
overlayed on top of the accumulated LiDAR point cloud. The upper-
right panel illustrates the robots’ trajectories in their own reference
frames. This comparison shows how the place-recognition and loop-
closure algorithm effectively registers the two robots with different
sensing modalities into a common reference frame despite the drastic
differences in raw sensor data and the initial poses.

cloud captured by the LiDAR robot is overlaid on the se-
mantic object models mapped by both the LiDAR and the
RGBD robots. Note that there is a relative transformation
of 2.51 m along X, -5.37 m along Y, and 90◦ along yaw
between the reference frames of the two robots. Our algorithm
leverages the invariance of semantic object models across
sensing modalities. This is a unique advantage of our method
given that geometric features extracted from RGB or depth
images significantly differ from those derived from LiDAR
point clouds. This capability enables accurate estimation of
the transformation between robots equipped with different
sensors—specifically LiDAR and RGBD—allowing us to fuse
their measurements and create a merged metric-semantic map.

Quantitative results are shown in Table IV. Our semantics-
driven place recognition algorithms demonstrate the ability to
establish loop closures between robots equipped with different
sensors. SlideMatch estimates the relative transformation with
a position error of 0.542 m and a yaw error of -4.00◦, while
SlideGraph results in a position error of 0.578 m and a yaw
error of 2.00◦. The accuracy of inter-robot localization in
cross-sensing-modality scenarios is slightly lower compared
to single-modality experiments, particularly those involving
LiDAR-based robots. This performance decline can be at-
tributed to differences in fields of view, object detection
accuracy, and noise levels between LiDAR and RGBD sensors.
These factors lead to greater discrepancies in object modeling,
which, in turn, reduce the precision of inter-robot localization.

H. Object mapping quantitative results

We report precision, recall, and F1 scores on object mapping
results of both cars and tree trunks across multiple exper-
iments. We first obtain the ground truth by surveying the
environment and manually marking down the positions of
objects. Here, we focus the object mapping results on cars
and tree trunks since ground truth for them can be reliably
acquired when compared to other objects such as chairs, tables
or monitors. This is because cars are usually parked in clearly
separated parking spaces and tree trunks are often spaced apart

Figure 10: Forest experiments. This figure illustrates the overhead
UAV view of the environment (top left), metric-semantic map with
point clouds (top right), and object-based map constructed by three
under-canopy UAV flights (bottom row). Three robots with their tra-
jectories colored in red, yellow, and blue can merge their information
to the starting location with unknown initial transformations between
their starting poses. The figure shows metric-semantic maps of tree
trunks (modeled as cylinders) overlayed on top of an aggregated point
cloud showing the forest environment. The trajectory of each robot,
in this case, is ∼1 km in length, and 860 trees have been mapped.
The mapped trees span an area of ∼160,000 m2.

at regular intervals. A True Positive (TP), or a valid object
match, occurs when an object in our metric-semantic map is
confirmed to exist at a position that aligns with the ground
truth. A False Positive (FP) refers to an object that appears
in our metric-semantic map but is not present in the ground
truth. Conversely, a False Negative (FN) refers to an object
that is present in the ground truth but does not appear in our
metric-semantic map. These values are then used to calculate
precision, recall, and F1 scores. The results can be found
in Section V-H. Note that those results are acquired using
the smallest backbone (darknet-13 as detailed in [5]) for the
semantic segmentation model, which is less accurate but can
run inference in real time using the onboard NUC computer.
The results can be further improved using larger backbones
such as darknet-26 or darknet-53, which are supported in [62].
As shown in Section V-H, the average precision for cars is
0.967 and for tree trunks is 0.946. The average recall for cars
is 0.881 and for tree trunks is 0.909. The F1 score is 0.922
for cars and 0.927 for tree trunks. In summary, through these
metrics, we demonstrate that our method is able to reliably
detect and map objects that exist in the environment, with very
few false positives or false negatives. This result is important
for downstream tasks such as inventory estimation.

Table V: Quantitative results of object detection: Ground Truth
(G.T.) vs. Estimated (Est.). Precision is evaluated by determining
the proportion of detected objects that accurately match the ground
truth, thus measuring the algorithm’s object mapping accuracy. Recall
indicates the likelihood of the algorithm successfully detecting an
object present in the environment, reflecting the algorithm’s object
mapping sensitivity.

Envir. G.T. Cars Est. Cars Precision Recall F1
Lot 1 42 35 1.00 0.833 0.909
Lot 2 61 59 0.932 0.902 0.917
Lot 3 32 29 1.00 0.906 0.951
Total 135 123 0.967 0.881 0.922
Envir. G.T. Trees Est. Trees Precision Recall F1
Total 77 74 0.946 0.909 0.927
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I. Communication usage and runtime analysis

1) Discussion on scalability: For the factor graph optimiza-
tion, suppose we have G variables for each object landmark
and B total object landmarks. The total number of variables
for all landmarks is S = G · B. When adding a new factor,
the number of variables that need to be solved for is G for
a new object factor, and 9 for a new odometry (i.e., SE(3)
relative pose) factor in the factor graph optimization process
[60]. G is a small number, and specifically in our formulation,
the variables corresponding to each cuboid, cylinder, and
ellipsoid semantic landmark node are 9, 9, and 5, respec-
tively. Therefore, this complexity becomes O(1) for adding
any new factor. Upon loop closure, the optimization runs in
time O

(
max(F, S)1.5

)
[60]. Practically, in traditional SLAM

systems that are based on geometric features, the number of
features usually far exceeds the number of robot poses. As a
result, max(F, S) = S, which is usually at the order of 100F
(i.e. each key frame tracks 100 features) or even larger. Due to
the use of sparse semantic landmarks in the proposed system,
S will usually be of the order O(F ). Therefore, to sum up,
the complexity of factor graph optimization is O(1) during
normal operation and O(F 1.5) during loop closures.

When running with multi-robot teams, the framework runs
in a decentralized manner; therefore, for each robot, the
complexity scales linearly with the size of the robot team
(that is, K). As a result, the complexity of decentralized factor
graph optimization is O(K) when adding new factors coming
from the robot team, and O((K · F )1.5) during loop closures.
In practice, the size of the robot team K is much smaller
than the number of poses for each robot F ; therefore, the
decentralized factor graph optimization can be executed in
real-time onboard the robot.

2) Experimental results: In this section, we show the
computational and communication usage when running our
metric-semantic SLAM framework. All results are obtained
using a computer equipped with an Intel i7-10750H CPU,
without the support of a GPU. This CPU’s performance is
comparable to that of the onboard computers in the robots. In
Table VI, the average and maximum size of communication
packets are summarized when robots operate with intermittent
communication. To replicate intermittent communication, each
robot publishes ROS messages to each other every 10 seconds.
Benefiting from the sparse metric-semantic map representa-
tion, our algorithm is shown to be communication efficient
when deployed on real robots. The similarity in communi-
cation usage across different robots stems from the fact that
we replicate all robots as being within communication range
by streaming their data on different ROS nodes running on a
laptop. For indoor experiments, communication is facilitated
via Wi-Fi. Although each robot shares all the information in its
database with neighboring robots within the communication
range, we can further reduce the communication burden by
implementing a bookmarking system that only publishes new
information since the last communication between robots.

Additionally, the runtime for factor adding and graph op-
timization, and loop closure (if applicable), is reported in
Table VI. Except for the loop closure module, which is used to

identify inter-robot loop closures and operates on a separate
CPU thread, all other modules are triggered each time new
observations arrive.

The front-end runtime depends on the object segmentation
and detection model. Our results show that on a single thread
of Intel i7-10750H CPU, the Rangenet++ [62] front-end with
our custom darknet-13 model runs at 1.5 hertz (Hz). The
front-end with the YOLOv8 [63], specifically, YOLOv8m,
runs at 1 Hz per CPU thread. When multiple CPU threads
are used, the inference speed can be increased. For example,
YOLOv8m can run at 3 Hz using 4 out of 12 CPU threads.
The cuboid, cylinder, and ellipsoid modeling process runs at
the corresponding object detection rate.

The back-end factor graph adding and graph optimization
processes show different patterns across different environ-
ments. For the indoor environment, the average runtime of
graph optimization is 2∼4 ms, with 68 landmarks. The outdoor
urban environment exhibits an average runtime of graph opti-
mization of 10.14 ms, with 249 landmarks. The average time
per landmark in this setting is 0.041 ms. Due to the increased
density of landmarks in the outdoor forest environment, the
average runtime spikes to 36.46 ms, with a significantly higher
number of landmarks at 860.

These results illustrate that the average runtime required
for factor graph adding and graph optimization increases with
the number of landmarks. This relationship is influenced by
the presence of inter-robot loop closures in these experiments,
which makes the computational complexity lie between ob-
serving new landmarks and processing loop closures.

The runtime also increases with the trajectory length, which
is partly due to more pose nodes being added to the graph.
However, the correlation between trajectory length and runtime
is not as strong as the correlation between the number of
landmarks and runtime. An increase in the runtime per meter
traveled by the robot is observed as the environment transitions
from less complex settings (indoor) to more complex ones
(outdoor forest). This trend also shows the challenges and
computational costs associated with large-scale environments.

Although the runtime of the semantics-driven place recog-
nition and loop closure algorithms is longer than that of
factor graph optimization, the resulting latency is acceptable.
In addition, since the semantics-driven place recognition and
loop closure algorithm operate in a separate CPU thread, this
latency does not directly impact real-time localization and
navigation. Once the computation is complete, the estimated
loop closure information can be used by the factor graph to
update both the map and the robot trajectories.

In addition to the importance of sparse semantic landmarks
in facilitating long-range autonomous exploration and naviga-
tion, our results on communication provide another reason for
using semantic landmarks in multi-robot collaboration tasks.
The average communication per landmark is 3.96 kilobytes
(KB) for indoor environments, 1.84 KB for outdoor environ-
ments, and 2.03 KB for forest environments. The average
communication bandwidth per meter traveled by the robot
is 1.65 KB in indoor settings, 1.85 KB in outdoor settings,
and 5.13 KB in forest settings. As the density of landmarks
in the environment increases, communication overhead also
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Table VI: Runtime and communication results. The runtime for factor addition and graph optimization accounts for handling both the
observation of new landmarks and loop closure scenarios. The runtime of semantics-driven place recognition and loop-closure algorithms
includes both loop closure detection and relative transformation estimation. Note that the place-recognition and loop-closure process runs
on a separate thread. Therefore, its latency does not impact real-time operation. SlideGraph requires significantly lower computational
runtime, particularly in environments with fewer object landmarks. This efficiency is attributed to the use of descriptor-based matching,
where computational demands are influenced not by the scale of the environment but only by the number of object landmarks. In contrast,
SlideMatch exhaustively searches across the entire search region, and its runtime depends on various factors, such as the search discretization.
The communication usage is measured by the size of messages published by each robot. Here, the average usage is calculated by dividing
the total size of all messages by the number of messages, while the maximum size corresponds to the size of the last messages since they
usually contain the most observations.

Number of
Objects Robot ID Trajectory

Length [m]
Runtime [ms] Communication Usage [MB]

Factor Adding and
Graph Optimization

Inter-Robot Loop Closure
SlideGraph / SlideMatch

Average
Communication Usage

Maximal
Communication Usage

Indoor 68
0 172.072 2.429 22 / 3638 0.304 0.578
1 155.930 4.008 24 / 1614 0.304 0.575
2 194.625 2.372 28 / 2252 0.309 0.576

Outdoor Urban 249
0 699.543 9.351 95 / 131 0.458 0.725
1 264.264 7.763 86 / 123 0.453 0.727
2 410.194 13.296 91 / 168 0.466 0.725

Outdoor Forest 860
0 326.476 28.702 209 / 1124 1.702 2.686
1 367.798 28.638 406 / 2091 1.735 2.687
2 746.870 52.046 375 / 1836 1.742 2.686

increases. However, the overall communication bandwidth
required remains minimal. This modest communication de-
mand is particularly important when robots operate under
intermittent and bandwidth-limited communication conditions.
In addition, this efficiency in communication also shows
the effectiveness of sparse semantic mapping in minimizing
resource usage.

To sum up, the results show that, although there is some
variance across different environments due to the difference in
density of objects, the use of sparse semantic map representa-
tions offers the robot a rich understanding of its surroundings
while maintaining efficiency in computation, storage, and
communication. Our proposed method not only facilitates real-
time execution of exploration and navigation tasks but also
enables multi-robot collaboration across various environments
on a large scale.

J. Analysis of SlideMatch and SlideGraph algorithms

Throughout these experiments, we have observed unique
advantages, limitations, and deployment considerations for
both the SlideGraph and SlideMatch algorithms. SlideGraph
demonstrates superior performance with minimal parameter
tuning in scenarios where the object-level metric-semantic map
experiences relatively low noise in object position estimates.
Therefore, SlideGraph is generally the preferred option, par-
ticularly for LiDAR-based experiments or scenarios involv-
ing large search spaces. On the other hand, the SlideMatch
algorithm can sometimes achieve successful loop closure in
situations where the SlideGraph method fails, particularly in
experiments with large errors in object position estimates.
This is because the pairwise consistency assumption used
in [36] becomes less suitable under such conditions. Such
situations are common in indoor RGBD-based object mapping,
where cluttered spaces lead to small differences in object-
to-object distances and high noise in position estimates due
to noisy depth measurements, noisy local odometry, limited
field of view, and complex object shapes. Although semantic
labels can help disambiguate these measurements to some

extent, it remains challenging to use pairwise consistency
to distinguish outliers from inliers. In contrast, SlideMatch
leverages the entire map and operates similarly to a voting
method, making it more tolerant to noise in local pairwise
object distances. As a result, SlideMatch performs better in
such worst-case scenarios, albeit at the cost of significant
computational overhead.

K. Benchmarks

In this section, we present a series of benchmark ex-
periments evaluating our system’s performance in terms of
localization accuracy, computational efficiency, and memory
usage. We report results from (1) evaluating our framework
on standard public datasets and (2) comparing it with other
open-source methods. We note that benchmarking the entire
system is challenging due to the differences in components
across other metric-semantic SLAM systems. Therefore, we
opt to isolate and benchmark key modules instead. This allows
for a fair and focused comparison of our system.

1) Bechmark on Semantic KITTI: In addition to conducting
experiments with our own robots, we also tested our algorithm
framework on the publicly available Semantic KITTI dataset.
The framework takes in the point clouds, initial pose esti-
mation from SuMa++ [24], and ground truth segmentation,
and estimates the metric-semantic map as well as the robot
trajectory.

The qualitative results, as shown in Fig. 5, demonstrate
the ability of the proposed framework to construct metric-
semantic maps and merge measurements from multiple robots.
We conducted a quantitative evaluation of our SlideGraph
algorithm for inter-robot loop closure using sequences #5 and
#7. Sequence #7 was divided into three intervals, i.e., (0,
600), (400, 1000), and (500, 1100), for the first, second, and
third robots, respectively. Sequence #5 was similarly divided
into three intervals, i.e., (0, 1000), (700, 2000), and (1600,
2760), to create datasets for each of the three robots. Our
algorithm successfully identified inter-robot loop closures and
accurately estimated the relative transformations between the
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Table VII: Benchmark comparison between SlideSLAM (SlideGraph) and existing methods. For these benchmarks, we report results between
robot 0 and robot 1, as referenced by the Semantic KITTI experiments in Section V-K1 and forest experiments in Section V-E. Note that the
map sizes for both CLIPPER and SlideSLAM are the same, as they use the same object maps as inputs. Also, note that for the memory and
runtime benchmarks of LCDNet, the results reported are the memory consumed for each individual point cloud and the runtime to process a
pair of point clouds. In practice, it scales linearly with the number of point clouds. Cells filled with a “-” indicate that the algorithm failed.

Metric Trans. Err (m) Abs. Yaw. Err (degree) Map / Input Size Runtime (ms)
Method CLIPPER LCDNet Ours CLIPPER LCDNet Ours CLIPPER (full maps) LCDNet (per scan) Ours (full maps) CLIPPER (CPU) LCDNet (per scan pair on GPU) Ours (CPU)

KITTI 05 0.04 0.09 0.03 0.04 0.22 0.08 7.2 KB 0.84 MB 7.2 KB 152 1580 40
KITTI 07 0.06 0.05 0.09 0.01 0.21 0.09 7.3 KB 0.84 MB 7.3 KB 202 1580 50

Forest - 1.10 0.13 - 0.1 2.6 16 KB 0.84 MB 16 KB - 1580 209

robots. For sequence #5, the SlideGraph algorithm results in
a position error of 0.03 m and 0.05 m, and a rotation error
of 0.080◦ and 0.065◦ for the transformations between robot 0
and robot 1, and between robot 1 and robot 2, respectively.
In sequence #7, the algorithm results in a position error of
0.093 m and 0.095 m, and a rotation error of 0.096◦ and
0.097◦. For sequence #5 and sequence #7, the total trajectory
lengths of three robots are 2.8 km and 1.2 km. The absolute
trajectory errors of the trajectories of all three robots are 0.998
m (vs. 1.154 m from SuMa++) and 0.962 m (vs. 1.148 m
from SuMa++), respectively. The relative translation errors are
0.111% and 0.255%. The relative rotation errors are 0.0011
degrees/m and 0.00256 degrees/m.

These results not only demonstrate the accuracy of inter-
robot localization but also illustrate the effectiveness of the
proposed algorithm framework when deployed on public
datasets, showing its potential as a plug-and-play tool for
multi-robot metric-semantic SLAM.

2) Benchmark against existing loop closure methods:
To provide a comprehensive comparison, we benchmark
SlideSLAM against two existing approaches from the liter-
ature. These include: (1) LCDNet [39], a deep-learning-based
loop closure method for LiDAR data; and (2) CLIPPER [36],
a graph-theoretic algorithm for data association.

LCDNet performs scan-to-scan place recognition using a
learned 3D feature extractor and registration network. We
benchmark the algorithm using weights that are pretrained on
the KITTI dataset. We use the same sequences and splits of
Semantic KITTI as described in the previous benchmark. We
also benchmark LCDNet on our forest data, as described in
the previous sections. The benchmarks for LCDNet were con-
ducted on a GPU-equipped desktop (with an RTX 3070 GPU).
The inter-robot localization results are shown in Table VII.
The results are comparable in the KITTI environment. How-
ever, for the forest environment, SlideSLAM provides better
localization results. This shows the advantage of our method to
generalize to different environments as long as the objects are
detected. Our method requires no additional fine-tuning data
for the loop closure step, whereas LCDNet does. Moreover,
we also benchmark the memory requirements to store the
observations or maps required for the loop closure step. For
LCDNet, these representations can be individual processed
point cloud scans (0.84 MB), point features extracted from
the PV-RCNN network for each point cloud scan (4.18 MB),
or the final global descriptors of those features for each point
cloud scan (10.0 MB). As a result, enabling inter-robot loop
closure detection with LCDNet requires a minimum bandwidth
of 0.84 MB per LiDAR scan. In contrast, as shown in the
table, the entire object map of SlideSLAM requires less than

10 KB for the KITTI sequences, which contain hundreds of
LiDAR scans. The sparsity of our map representation offers
a key advantage for large-scale multi-robot experiments, as it
significantly reduces both computational and communication
requirements compared to methods operating on less compact
map representations.

CLIPPER [36] serves as the data association backbone of
our SlideSLAM (SlideGraph) module. However, the original
CLIPPER lacks semantic information and relies on exhaustive
pairwise matching over all object pairs, resulting in high
computational demands in complex scenes (e.g., each of
our forest maps consists of hundreds of landmarks). Our
SlideGraph enhances CLIPPER by using semantic class labels
and polygon-descriptor-based initial data association, enabling
us to significantly reduce the hypothesis space. CLIPPER
is benchmarked on similar sequences on Semantic KITTI
as detailed in the previous section, and also on our forest
dataset. The results are shown in Table VII. In challenging
environments such as forests, the original CLIPPER algorithm
encountered memory overflows due to the large number of
landmarks, which significantly expanded the hypothesis space.
Take the forest environment as an example: a pair of maps with
approximately 300 and 800 landmarks would generate around
240,000 hypotheses. In contrast, our SlideGraph algorithm
prunes this raw hypothesis space down to approximately 3,000,
significantly reducing the size of the consistency graph by
2 orders of magnitude. As a result, SlideGraph consistently
achieved robust performance with lower memory usage and
shorter runtimes.

VI. DISCUSSION ON LIMITATIONS AND FUTURE WORK

In this section, we address a few limitations of the current
system and how they motivate our future work. Firstly, the
proposed sparse map representation is limited to three simple
shapes for modeling objects. While it helps maintain sparsity,
the map may not always be visually informative with these
shapes, and they may fail to model the finer metric details
for objects with complex shapes, which are needed for down-
stream tasks such as robot manipulation. In addition, they
may lead to information loss that results in inaccuracies or
failures to identify loop closures, especially in environments
with ambiguous or repetitive object layouts. Semantic aliasing
may also occur when different objects are represented by the
same primitive, increasing dependence on accurate semantic
labeling. Misclassifications in such cases can cause errors.
We are interested in investigating better map representations
that can model generic objects in detail while still maintain-
ing relative sparsity. Secondly, the current inter-robot loop
closure strategy does not follow a conventional “filtering”
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approach, where multiple loop closures are first established
and then a consensus is formed to choose the best loop closure
result and filter out false positives. Currently, we only use
a sufficient inlier threshold to filter out false positives and
establish loop closure in a “one-shot” manner. This may not
always be effective in certain situations where the environment
is cluttered with the same semantic landmarks and similar
pairwise distances (e.g., two conference rooms with similar
table and chair arrangements, or dense forests). Therefore, we
would like to employ a filtering-based approach to our current
loop closure strategy, where the best loop closure candidate
is chosen based on a maximum consensus of potential loop
closure options. Lastly, our current place recognition and
mapping formulation doesn’t account for dynamic objects.
Such objects (e.g., a car changing its parking spot over time)
violate the pairwise distance consistency assumption required
for robust place recognition and can therefore induce faulty
loop closures. In the future, we would like to leverage semantic
knowledge of objects, combined with intelligent agents such
as Large Language Models (LLMs), to better handle dynamic
objects. Using the semantic knowledge, an LLM can infer
which objects can be dynamic in nature and automatically
filter them out during place recognition.

VII. CONCLUSION

In this work, we introduce a real-time decentralized metric-
semantic SLAM framework, along with its integration into
autonomous exploration and navigation systems for aerial
and ground robots. This integrated system enables teams
of heterogeneous robots to autonomously explore and col-
laboratively construct maps with both geometric and open-
vocabulary semantic information across a variety of indoor
and outdoor environments. The robots opportunistically lever-
age communication to exchange sparse, lightweight semantic
measurements, which are used for inter-robot localization and
map merging. Through a comprehensive set of real-world
experiments involving three types of aerial and ground robots,
as well as benchmarks on publicly available datasets and
comparisons against existing methods, we demonstrate the
capabilities, effectiveness, and robustness of our system. Our
runtime and communication analysis also show the importance
of using sparse semantic map representations, especially for
large-scale (over 1 km) metric-semantic mapping tasks in
challenging and dense environments, such as forests with over
1000 object landmarks.
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