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Abstract
This paper develops methods for proving Lyapunov stability of dynamical systems subject to dis-
turbances with an unknown distribution. We assume only a finite set of disturbance samples is
available and that the true online disturbance realization may be drawn from a different distribu-
tion than the given samples. We formulate an optimization problem to search for a sum-of-squares
(SOS) Lyapunov function and introduce a distributionally robust version of the Lyapunov function
derivative constraint. We show that this constraint may be reformulated as several SOS constraints,
ensuring that the search for a Lyapunov function remains in the class of SOS polynomial opti-
mization problems. For general systems, we provide a distributionally robust chance-constrained
formulation for neural network Lyapunov function search. Simulations demonstrate the validity
and efficiency of either formulation on non-linear uncertain dynamical systems.
Keywords: Lyapunov stability, distrib. robust optimization, sum of squares, neural networks.

Supplementary Material

Open-source implementation available at https://github.com/KehanLong/DR-Lyapunov-Function.

1. Introduction

A Lyapunov function (LF) is one of the main tools for analyzing the stability of nonlinear dynam-
ical systems (Khalil, 1996). Similarly, control synthesis for open-loop control-affine systems is
often done using a control Lyapunov function (CLF) (Artstein, 1983) since a stabilizing controller
can be obtained from a CLF using a universal formula (Sontag, 1989a) or quadratic programming
(Galloway et al., 2015). Various techniques exist for obtaining LF or CLF candidates but the ma-
jority assume that the system model is known. In this paper, we study the problem of synthesizing
a Lyapunov function when the system model is uncertain.

Synthesizing a valid LF for a linear system can be formulated as a semi-definite program (SDP)
(Boyd et al., 1994). Parrilo (2000); Papachristodoulou and Prajna (2002) generalized the formula-
tion for non-linear polynomial systems by using sum-of-squares (SOS) polynomials to represent an
LF candidate. For polynomial systems with uncertainty, Ahmadi and Majumdar (2016); Lasserre
(2015) extended SOS techniques to find robust LFs based on known error bounds, see Laurent
(2009) for a general exposition. The lack of a valid SOS LF does not imply that the system instabil-
ity since there exist positive-definite functions that are not representable as SOS (Hilbert, 1888).

Using a neural network as a more general LF representation than an SOS polynomial has
been gaining increasing popularity. Richards et al. (2018) proposed a neural network approach
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for discrete-time non-linear systems that learns the region of attraction of a given controller. Boffi
et al. (2020); Gaby et al. (2022) improved the efficiency of learning LFs by incorporating positive-
definiteness and equilibrium conditions directly into the network architecture. Chang et al. (2019);
Dai et al. (2021) considered learning neural network CLFs and controllers by minimizing violations
of the conditions for a valid LF. Dawson et al. (2022b) extended the idea to learn safety certificates
as control Lyapunov-barrier functions and also considered control-affine systems with convex-hull
uncertainty. The survey by Dawson et al. (2022a) provides a recent account of this line of research.
Despite their expressiveness, neural network methods do not offer theoretical guarantees for the
validity of the learned Lyapunov function over the entire state space.

The stability guarantees provided by either SOS or neural network LFs are sensitive to uncer-
tainty or disturbances in the system model. A related body of work (Choi et al., 2020; Taylor et al.,
2019; Castañeda et al., 2021; Dhiman∗ et al., 2021; Long et al., 2022a) assumes that an LF certificate
is given for a nominal system and develops approaches to adapt it by taking the model uncertainty
into account during deployment. In input-to-state stability (ISS) (Sontag, 1989b), one deals directly
with an uncertain dynamical system to provide robustness guarantees on graceful degradation of
stability as a function of the disturbance input magnitude. This can be ensured via an ISS-Lyapunov
function (Sontag and Wang, 1995), e.g., constructed using SOS techniques (Hespanha et al., 2008;
Voßwinkel and Röbenack, 2020). Without assuming any known distribution or error bounds on the
model uncertainty, in this paper, we utilize distributionally robust constraints (Shapiro et al., 2014;
Esfahani and Kuhn, 2018) to enforce LF conditions for an uncertain system model with only finitely
many uncertainty samples obtained offline.

Distributionally robust chance-constrained programming (DRCCP) deals with uncertain vari-
ables in the constraints using finitely many available samples. The main idea is to construct an
ambiguity ball centered at the empirical distribution of the observed samples using a distribution
distance function, such as Wasserstein distance (Esfahani and Kuhn, 2018; Hota et al., 2019). Then,
the constraints are required to be satisfied with high probability for all distributions in the ambiguity
ball. Given its powerful guarantee to handle uncertainty with an unknown or shifting distribution,
DRCCP has been applied in several areas in systems and control (Coulson et al., 2019; Boskos et al.,
2021; Long et al., 2022b; Coppens et al., 2020). However, its application to LF search here is novel.

Contributions: 1) We formulate a distributionally robust version of the Lyapunov function
derivative constraint for uncertain dynamical systems using finitely many offline samples. 2) For
polynomial systems, we show that the distributionally robust constraint can be reformulated as
multiple SOS constraints, ensuring that LF synthesis with uncertainty remains an SOS polynomial
optimization. 3) For general nonlinear systems, we propose a distributionally robust neural network
approach for learning Lyapunov functions.

2. Background

Here1, we give an overview of sum-of-squares (SOS) techniques for Lyapunov function synthesis
and distributionally robust chance constraints.

1. The sets of non-negative real and natural numbers are denoted R≥0 and N. For N ∈ N, [N ] := {1, 2, . . . N}. We
denote the distribution and expectation of a random variable Y by P and EP(Y ), resp. For a scalar x, (x)+ :=
max(x, 0). We use 0 to denote the n-dimensional vector with all entries equal to 0. The gradient of a differentiable
function V is denoted by ∇V , and its Lie derivative along a vector field f by LfV = ∇V · f . We denote a uniform
distribution on [a, b] as U(a, b) and a Gaussian distribution with mean µ and variance σ2 as N (µ, σ2).
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2.1. Lyapunov Theory and Sum-of-Squares Optimization

Consider a dynamical system, ẋ = f(x), with state x ∈ X ⊆ Rn. Assume f : Rn 7→ Rn is
locally Lipschitz and the origin x = 0 is the desired equilibrium , i.e., f(0) = 0. A valid Lyapunov
function, ensuring the stability of the origin, satisfies:

V (0) = 0, V (x) > 0 and V̇ (x) < 0, ∀x ̸= 0, (1)

where V̇ (x) = LfV (x). If the LF is also radially unbounded (V (x) → ∞ as ∥x∥ → ∞), then its
existence implies global asymptotic stability. The second and third conditions in (1) are implied by

V (x)− ϵ∥x∥22 ≥ 0 and − V̇ (x)− ϵ∥x∥22 ≥ 0, ∀x ̸= 0, (2)

for some ϵ ∈ R>0. A natural way of imposing non-negativity is by using SOS polynomials. A
polynomial η(x) of degree 2d is called an SOS polynomial if and only if there exist polynomi-
als s1(x), . . . , sp(x) of degree at most d such that η(x) =

∑p
i=0 si(x)

2. Based on the positive-
definiteness property of SOS polynomials, Parrilo (2000); Papachristodoulou and Prajna (2002)
proposed the following SOS conditions, which are sufficient to imply (1),

V (x) =

2d∑
k=0

ckx
k, c0 = 0; V (x)− ϵ∥x∥22 ∈ SOS(x); −V̇ (x)− ϵ∥x∥22 ∈ SOS(x), (3)

where SOS(x) denotes the set of SOS polynomials in variable x. By fixing a polynomial degree d,
one can search for an SOS LF using a semidefinite program (Laurent, 2009) enforcing (3).

2.2. Conditional Value-at-Risk and Distributionally Robust Chance Constraint

We review chance-constraint formulations that will be useful to handle model uncertainty. Consider
a complete separable metric space Ξ with metric d, and associate to it a Borel σ-algebra F and the
set P(Ξ) of Borel probability measures on Ξ. A chance constraint can be written as,

P∗(G(z, ξ) ≤ 0) ≥ 1− β, (4)

where the constraint function G(z, ξ) ∈ Rn × Ξ 7→ R depends both on a decision vector z and a
random variable ξ with distribution P∗ ∈ P(Ξ), and β ∈ (0, 1) is a user-specified risk tolerance.
The feasible set for z defined by (4) is not convex. (4), Nemirovski and Shapiro (2006) proposed a
Conditional Value-at-Risk (CVaR) approximation of the chance constraint, which results in a convex
feasible set and is sufficient for (4) to hold:

CVaRP∗
1−β(G(z, ξ)) ≤ 0. (5)

For a random variable ξ ∈ R with distribution P̂, the Value-at-risk (VaR) at confidence level 1 − β

is VaRP̂
1−β(ξ) := inft∈R{t | P̂(ξ ≤ t) ≥ 1 − β}. The CVaR of ξ is CVaRP̂

1−β(ξ) := EP̂[ξ | ξ ≥
VaRP̂

1−β(ξ)] and can be formulated as a convex program (Rockafellar and Uryasev, 2000):

CVaRP̂
1−β(ξ) = inf

t∈R
[β−1EP̂[(ξ + t)+]− t]. (6)

The chance constraint in (4) or (5) cannot be specified if the distribution P∗ of ξ is unknown.
In robotics and control applications, it is common that only finitely many samples {ξi}Ni=1 from
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P∗ are available. This motivates a distributionally robust formulation of the chance constraint (Es-
fahani and Kuhn, 2018; Xie, 2021). Let Pp(Ξ) ⊆ P(Ξ) be the set of Borel probability measures
with finite p-th moment for p ≥ 1. The p-Wasserstein distance between two probability mea-
sures µ, ν in Pp(Ξ) is defined as (see, for example Chen et al., 2018; Xie, 2021): Wp(µ, ν) :=(
infγ∈Q(µ,ν)

[ ∫
Ξ×Ξ d(x, y)pdγ(x, y)

]) 1
p , where Q(µ, ν) denotes the collection of all measures on

Ξ× Ξ with marginals µ and ν on the first and second factors, and d denotes the metric in Ξ.
We denote by P̂N := 1

N

∑N
i=1 δξi the discrete empirical distribution of samples {ξi}Ni=1. Using

the Wasserstein distance, we define an ambiguity set Mr
N := {µ ∈ Pp(Ξ) | Wp(µ, P̂N ) ≤ r} as a

ball of distributions with radius r centered at P̂N . We write a distributionally robust version of the
chance constraint in (4) as infP∈Mr

N
P(G(z, ξ) ≤ 0) ≥ 1−β or equivalently supP∈Mr

N
P(G(z, ξ) ≥

0) ≤ β. Thus, similar to the CVaR approximation in (5)-(6), one considers the sufficient constraint
supP∈Mr

N
inft∈R[β

−1EP[(G(z, ξ) + t)+]− t] ≤ 0, which is convex in z.

3. Problem Formulation

We aim to analyze Lyapunov stability for a dynamical system subject to model uncertainty:

ẋ = f(x) +
m∑
i=1

di(x)ξi = f(x) + d(x)ξ, (7)

where di : Rn 7→ Rn is locally Lipschitz. We assume that d(x) = [d1(x), . . . , dm(x)] ∈ Rn×m

is known or estimated from state-control trajectories (Harrison et al., 2020; Duong and Atanasov,
2022). We do not assume any known error bounds or distribution for the parameter ξ ∈ Ξ ⊆
Rm. Instead, we consider a finite data set of samples {ξi}Ni=1 that may be used for LF synthesis.
The uncertainty model in (7) captures the commonly considered additive disturbance, which in our
formulation corresponds to m = n and d(x) = In. The matrix d(x) allows specifying particular
system modes affected by the disturbance ξ depending on the state x.

Problem 1 (Lyapunov Function Search For Uncertain Systems) Given a finite set of uncertainty
samples {ξi}Ni=1 from the uncertain system in (7), obtain a Lyapunov function V : Rn 7→ R that
can be used to verify the stability of the origin while taking the uncertainty into account.

4. Lyapunov Function Search For Systems with Model Uncertainty

We present an SOS approach (Sec. 4.1) and a neural network approach (Sec. 4.2) to address Prob-
lem 1. Our methodology is based on finding a function V : Rn 7→ R that satisfies the Lyapunov
conditions in (1). The uncertainty in the dynamical system (7) appears in the term V̇ (x), which
presents a challenge for ensuring that the condition V̇ (x) < 0, ∀x ̸= 0 is satisfied.

4.1. Sum-of-Squares Approach For Lyapunov Function Search

We first introduce our SOS approach for LF synthesis under model uncertainty. The Lyapunov
conditions in (2), taking the uncertainty in (7) into account, become:

V (0) = 0; ∀x ̸= 0, V (x)− ϵ∥x∥22 ≥ 0 and P∗(−V̇ (x, ξ)− ϵ∥x∥22 ≥ 0) ≥ 1− β, (8)

where P∗ denotes the true distribution of ξ.
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To simplify the presentation, let G(x, ξ) = V̇ (x, ξ)+ϵ∥x∥22 = ∇V (x)⊤(f(x)+d(x)ξ)+ϵ∥x∥22,
so that the chance-constraint in (8) becomes P∗(−G(x, ξ) ≥ 0) ≥ 1 − β, ∀x ̸= 0. Based on the
discussion in Sec. 2.2, the CVaR approximation provides a sufficient condition for enforcing the
chance constraint: inft∈R

[
β−1EP∗ [(G(x, ξ) + t)+]− t

]
≤ 0, for all x ̸= 0. If the true distribution

P∗ were known, this formulation could be used to deal with the uncertainty. However, we are only
provided with samples {ξi}Ni=1 from P∗. We thus rewrite the condition by multiplying by β on both
sides and using the empirical expectation to approximate the true expectation,

inf
t∈R

[
1

N

N∑
i=1

(G(x, ξi) + t)+ − tβ

]
≤ 0, ∀x ̸= 0. (9)

Due to the infimum term in the constraint, one cannot directly write (9) as an SOS condition, as
in (3). The following result provides an alternative SOS condition that ensures (9) holds.

Proposition 1 (CC-SOS Condition) Assume β ≤ 1
N , the constraint in (9) is equivalent to:

max
i

β(V̇ (x, ξi) + ϵ∥x∥22) ≤ 0, ∀x ̸= 0, (10)

Furthermore, if f and di are polynomials, the following N SOS conditions are sufficient for (10),

−V̇ (x, ξi)− ϵ∥x∥22 ∈ SOS(x), ∀i = 1, 2 . . . , N. (11)

Proof Denote by t∗ the value when the infimum is attained in (9). Without loss of generality, we
assume that for a given x, G(x, ξi) ≥ G(x, ξj), for all 1 ≤ i < j ≤ N . Observe that for each
x ̸= 0, the function 1

N

∑N
i=1(G(x, ξi) + t)+ − tβ is piecewise-linear in t with N + 1 intervals

and N breakpoints, given by {−G(x, ξi)}Ni=1 and the slope for the i-th interval is i−1
N − β. Thus,

the optimal solution is t∗ = −G(x, ξk), where k satisfies k−1
N − β < 0 and k

N − β ≥ 0. The
constraint in (9) can be rewritten as 1

N

∑k
i=1(G(x, ξi) − G(x, ξk)) + βG(x, ξk) ≤ 0, ∀x ̸= 0.

Since β ≤ 1
N , only the first interval has negative slope and this constraint can be written as (10).

Inspired by the SOS formulation in (3), (10) is implied by the N SOS constraints in (11).

Using Proposition 1, we propose a chance-constrained (CC)-SOS formulation to search for a
valid Lyapunov function for the uncertain system in (7):

V (x) =

2d∑
k=0

ckx
k, c0 = 0; V (x)− ϵ∥x∥22 ∈ SOS(x); −V̇ (x, ξi)− ϵ∥x∥22 ∈ SOS(x), (12)

for all i ∈ [N ]. Note that by using CVaR approximations in (9) and assuming β ≤ 1
N , the CC-

SOS formulation becomes equivalent to the formulation that is robust against the provided samples
{ξi}Ni=1, as shown in (11). This CC-SOS formulation overcomes the lack of knowledge of the
true uncertainty distribution P∗ by using the available samples ξi to conservatively approximate
the probabilistic constraint in (8) with N SOS conditions. Nonetheless, the test-time validity of a
Lyapunov function satisfying (12) is not guaranteed because the CC-SOS condition does not account
for the error between the empirical P̂N and the true P∗ distributions. Moreover, the distribution P∗

that generates the uncertainty samples may change at deployment time. This motivates the following
distributionally robust chance-constrained formulation:

V (0) = 0; ∀x ̸= 0, V (x)− ϵ∥x∥22 ≥ 0 and inf
P∈Mr

N

P(−V̇ (x, ξ)− ϵ∥x∥22 ≥ 0) ≥ 1− β, (13)
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where Mr
N denotes the Wasserstein ambiguity set around the empirical distribution P̂N with user-

defined radius r. Based on the discussion in Sec. 2.2, the following constraint is a sufficient condi-
tion for the distributionally robust chance constraint in (13) to hold,

sup
P∈Mr

N

inf
t∈R

[EP[G(x, ξ) + t)+]− tβ] ≤ 0, ∀x ̸= 0. (14)

As before, (14) is not amenable to a SOS formulation. The following result presents SOS conditions
which are sufficient to ensure that (14) holds.

Proposition 2 (DRCC-SOS Condition) Assume β ≤ 1
N , consider the 1-Wasserstein distance with

L1 norm as the metric d. The following is a sufficient condition for (14) to hold,

r max
1≤j≤k

|∇V (x)⊤dj(x)|+max
i

β(V̇ (x, ξi) + ϵ∥x∥22) ≤ 0, ∀x ̸= 0, (15)

where ∇V (x)⊤dj(x) denotes the j-th element of the row vector. If Ξ = Rm, then (15) is equivalent
to (14). Also, if f and di are polynomials, (15) is implied by the following SOS conditions,

±r∇V (x)⊤dj(x)− β(V̇ (x, ξi)− ϵ∥x∥22) ∈ SOS(x), ∀i = 1, 2 . . . , N, ∀j = 1, 2 . . . ,m. (16)

Proof Based on (Hota et al., 2019, Lemma V.8) and (Esfahani and Kuhn, 2018, Theorem 6.3), the
supremum over the Wasserstein ambiguity set, i.e., condition (14), can be written conservatively
as the sample average inft∈R

[
1
N

∑N
i=1(G(x, ξi) + t)+ − tβ

]
and a regularization term rLG(x),

where LG(x) : X 7→ R>0 is the Lipschitz constant of G(x, ξ) in ξ. If Ξ = Rm, then (14) is
equivalent to the sample average plus rLG(x). Since the Lipschitz constant of a differentiable
affine function equals the dual norm of its gradient, and the dual norm of the L1 norm is the L∞
norm, we can define the convex function LG : X 7→ R>0 as LG(x) = ∥∇V (x)⊤d(x)∥∞ =
max1≤j≤m |∇V (x)⊤dj(x)|, which satisfies the property that ξ 7→ G(x, ξ) is Lipschitz in ξ with
Lipschitz constant LG(x). With the assumption that β ≤ 1

N , we use Proposition 1 and conclude
that (15) is a sufficient condition for (14) and they are equivalent if Ξ = Rm. Finally, inspired by
the SOS relaxations of (1) to (3), we can relax (15) to the 2Nm SOS constraints in (16).

Based on Proposition 2, we propose a DRCC-SOS formulation to find a Lyapunov function,

V (x) =

2d∑
k=0

ckx
k, c0 = 0; V (x)− ϵ∥x∥22 ∈ SOS(x); (17)

± r[∇V (x)]⊤dj(x)− β(V̇ (x, ξi)− ϵ∥x∥22) ∈ SOS(x), ∀i = 1, 2 . . . , N, ∀j = 1, 2 . . . ,m.

The next result identifies conditions under which the resulting Lyapunov function solves Problem 1.

Proposition 3 (Stability guarantee of DRCC-SOS formulation) Let the distribution P∗ of ξ in
(7) be light-tailed, i.e., there exists an exponent ρ such that C := EP∗ [exp(∥ξ∥ρ)] < ∞ . Let the
Wasserstein radius r∗ be given by:

r∗N (α) :=


(
log(c1α−1)

c2N

)1/max(m,2)
, N ≥ log(c1α−1)

c2
,(

log(c1α−1)
c2N

)1/ρ
, N < log(c1α−1)

c2
,

(18)
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for N ≥ 1, m ̸= 2, and α ∈ (0, 1) being a user-specified risk parameter. The constants c1, c2 are
positive and only depend on ρ, C and m. Under those conditions, the Lyapunov function obtained
from the DRCC-SOS formulation (17) satisfies P∗(−V̇ (x, ξ)− ϵ∥x∥22 ≥ 0) ≥ 1− α− β.

Proof Consider the events A := {P∗ ∈ Mr∗
N } and B := {−V̇ (x, ξ) − ϵ∥x∥22 ≥ 0}. Note that

P∗(A∩B) = P∗(A)+P∗(B)−P∗(A∪B) ≥ P∗(A)+P∗(B)− 1. On the one hand, we have from
(Esfahani and Kuhn, 2018, Theorem 3.4) that, under (18), P∗(P∗ ∈ Mr∗

N ) ≥ 1 − α. On the other,
from Proposition 2, the LF resulting from (17) with r∗ satisfies infP∈Mr∗

N
P(−V̇ (x, ξ) − ϵ∥x∥22 ≥

0) ≥ 1− β. Hence, P∗(A ∩B) ≥ 1− α+ 1− β − 1 = 1− α− β.

The DRCC-SOS formulation (17) provides a stability guarantee (Proposition 3) if there is no
uncertainty distributional shift, i.e., P∗ does not shift outside of Mr∗

N at deployment time. However,
similar to other SOS approaches, the formulation is restricted to polynomial systems and the non-
existence of an SOS LF does not imply the non-existence of other valid LFs. This motivates us to
consider next a more general candidate LF candidate, represented as a neural network.

4.2. Neural Network Approach For Lyapunov Function Search

We propose a neural network approach that encourages the satisfaction of Lyapunov conditions
by minimizing a loss function that quantifies their violation. Consider a neural network Lyapunov
function (NN-LF) representation of the form Vθ(x) := ∥ϕθ(x) − ϕθ(0)∥2 + α̂∥x∥2, where ϕθ :
Rm 7→ R is a fully-connected neural network with parameters θ and tanh activations, and α̂ is a
user-chosen parameter (Gaby et al., 2022). By construction, this function is positive definite and
Vθ(0) = 0. We obtain a training set DLF := {xi}Mi=1 by sampling uniformly from the domain of
interest Xδ and then minimize the following empirical loss function:

ℓLF(θ) =
1

M

M∑
i=1

(V̇θ(xi) + γ∥xi∥)+, (19)

where γ is user-defined. This loss encourages a decrease of Vθ along the system trajectories. To deal
with the model uncertainty in (7), we develop chance-constrained (CC) NN-LF and distributionally
robust chance-constrained (DRCC) NN-LF formulations. In both cases, we also have the offline
uncertainty training set Dξ := {ξi}Ni=1. For the CC-NN-LF formulation, we require

P∗(V̇θ(x, ξ) + γ∥x∥ ≤ 0) ≥ 1− β, ∀x ∈ Xδ. (20)

However, we are only given samples Dξ from P∗. Assuming β ≤ 1
N , similarly to Proposition 1, we

approximate (20) conservatively as, ∀xi ∈ DLF, maxj(V̇θ(xi, ξj) + γ∥xi∥) ≤ 0. Thus, to aim for
the satisfaction of (20) for the training set DLF, we construct the loss function,

ℓCC-LF(θ) =
1

M

M∑
i=1

(max
j

(V̇θ(xi, ξj) + γ∥xi∥))+. (21)

For the DRCC-NN-LF formulation, to account for errors between the empirical distribution P̂N and
the true distribution P∗ as well as possible distribution shift during deployment, we require:

inf
P∈Mr

N

P(V̇θ(x, ξ) + γ∥x∥ ≤ 0) ≥ 1− β, ∀x ∈ Xδ. (22)

7
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Table 1: Comparison of Cases 1 and 2 under different online true distributions. Here, “vio. rate” denotes
violation rate: (validations with V̇ > 0)/(total validations), and “vio. area” denotes average violation area
over all simulations: (data points with V̇ > 0)/(total data points). 5000 realizations of the online true
uncertainty ξ∗ are sampled from uniform and Gaussian distributions: ξ∗ ∼ [U(1, 4),U(1, 2)]⊤ and ξ∗ ∼
[N (4, 1.5),N (1, 1.5)]⊤ for Case 1, ξ∗ ∼ [U(5, 7),U(−1, 1)]⊤ and ξ∗ ∼ [N (7, 1),N (1, 1)]⊤ for Case 2.

Formulations
Case 1 Uniform Case 1 Gaussian Case 2 Uniform Case 2 Gaussian

vio. rate vio. area vio. rate vio. area vio. rate vio. area vio. rate vio. area

SOS 14.28% 0.94% 12.14% 1.53% 100% 15.52% 100% 18.55%
CC-SOS 11.78% 0.89% 8.30% 1.24% 0.00% 0.00% 5.10% 0.04%

DRCC-SOS 0.02% 0.00% 5.24% 0.80% 0.00% 0.00% 1.64% 0.01%
NN 31.80% 1.95% 16.66% 1.65% 100% 17.10% 100% 19.53%

CC-NN 1.82% 0.01% 6.24% 0.72% 0.00% 0.00% 1.26% 0.01%
DRCC-NN 0.00% 0.00% 3.22% 0.38% 0.00% 0.00% 0.72% 0.00%

Note that (22) can be tightened in terms of the CVaR approximation as:

sup
P∈Mr

N

inf
t∈R

[
EP(V̇θ(x, ξ) + γ∥x∥+ t)+ − tβ

]
≤ 0, ∀x ∈ Xδ. (23)

Next, using the uncertainty set Dξ and the training dataset DLF and assuming β ≤ 1
N , similarly to

Proposition. 2, we rewrite the inequality conservatively as (equivalently if Ξ = Rm), ∀xi ∈ DLF,
r∥∇V (xi)

⊤d(xi)∥∞+βmaxj(V̇θ(xi, ξj))+γ∥xi∥ ≤ 0. Thus, we design the following empirical
loss function for the DRCC-NN-LF formulation,

ℓDRCC-LF(θ) =
1

M

M∑
i=1

(r∥∇V (xi)
⊤d(xi)∥∞ + βmax

j
(V̇θ(xi, ξj)) + γ∥xi∥)+. (24)

The neural network approach, with the novel loss function designs in (21) and (24), overcomes
the issues noted above for the SOS approach. In particular, we do not require the dynamics to be
described by polynomials and avoid scalability problems.

5. Evaluation

We apply the SOS approach (Sec. 4.1) and the neural network approach (Sec. 4.2) to synthesize LFs
for a polynomial system and a pendulum system under model uncertainty.

Third-degree Polynomial System: Consider a two-dimensional polynomial system (Jasour, 2019):[
ẋ1
ẋ2

]
=

[
−1

2x
3
1 − 3

2x
2
1 − x2

6x1 − x2

]
+

2∑
i=1

di(x)ξi, (25)

with two cases for the model uncertainty:
• Case 1: r = 0.25, d1(x) = −[x1, x2]

⊤, d2(x) = −[x2, 0]
⊤, ξ ∼ [N (5, 1),N (3, 1)]⊤.

• Case 2: r = 0.15, d1(x) = −[(x31 + x2), x2]
⊤, d2(x) = −[x2, x1]

⊤, ξ ∼ [N (6, 1),N (0, 1)]⊤.
Suppose that 9 samples {ξi}9i=1 are available offline and set the confidence level to β = 0.1.

We compare the SOS search results with polynomial degree of 4 for the original SOS formu-
lation in (3), the CC-SOS formulation in (12), and the DRCC-SOS formulation in (17). We also

8
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(a) Original SOS Search (b) CC-SOS Search (c) DRCC-SOS Search

(d) Original NN Search (e) CC-NN Search (f ) DRCC-NN Search

Figure 1: Results from SOS and NN formulations to design LF certificates for the polynomial system with
Case 2 perturbations and online uncertainty ξ∗ = [1.9, 3.0]⊤. The plots display the value of V̇ over the
domain, where the red areas indicate positive values (violation of the LF derivative requirements).

include results from the NN formulation in (19), the CC-NN formulation in (21), and the DRCC-
NN formulation in (24). For the neural network approach discussed in Sec. 4.2, we parametrize
Vθ(x) = |ϕθ(x) − ϕθ(0)| + α̂∥x∥, where ϕθ(x) is a fully connected three-layer neural network
with 2-D input, two 16-D hidden layers, and 1-D output, with tanh activations. We train the network
with the ADAM optimizer (Kingma and Ba, 2015) with learning rate 0.005 and Xavier initializer,
and set the parameter α̂ = 0.05.

We report qualitative results in Fig. 1 for Case 2 with online uncertainty ξ∗ = [1.9, 3.0]⊤. We
uniformly sample {xi}5000i=1 states in the region x1, x2 ∈ [−2, 2]. For the first-column plots, the
resulting LFs from the baseline SOS and NN formulation fail to satisfy the Lyapunov condition for
uncertain systems of the form (25), and the violation area is large since neither formulation takes
uncertainty into account. For the second-column plots, the resulting LF from the CC-SOS or CC-NN
formulation is less sensitive to uncertainty, since both take offline uncertainty samples into account.
However, the resulting V still fails to satisfy the Lyapunov condition for (25). The LF resulting from
our DRCC-SOS and DRCC-NN formulations in the last column satisfies the Lyapunov conditions
for (25), even with out-of-distribution uncertainty. Table 1 shows quantitative results. We report
the violation rate and average violation area for each of the 6 formulations: in all cases, the DRCC
formulations outperform the CC and baseline formulations (no uncertainty considered) using either
the SOS or the neural network approach in terms of violation rate and mean violation area.

Pendulum: Consider a pendulum with angle θ and angular velocity θ̇ following dynamics:[
θ̇

θ̈

]
=

[
θ̇

−mgl sin θ−bθ̇
ml2

]
+

[
0 0

−0.05bθ̇
ml2

−0.05mgl sin θ
ml2

]
ξ, (26)

9
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(a) Original SOS Search (b) CC-SOS Search (c) DRCC-SOS Search

(d) Original NN Search (e) CC-NN Search (f ) DRCC-NN Search

Figure 2: Results from SOS and NN formulations to design LF certificates for a pendulum with perturbation
in the damping and length and online uncertainty ξ∗ = [−3.6, 1.4]⊤. The plots display the value of V̇ over
the domain, where the red areas indicate positive values (violation of the LF derivative requirement).

where g = 9.81 is the gravity acceleration, m = 1.0 is the ball mass, l = 0.5 is the length, b = 0.1
is the damping, and d(x) = [d1(x), d2(x)] is the perturbation matrix with d1 and d2 representing
perturbations in damping and length, respectively. We use 3 offline uncertainty samples {ξi}3i=1

with ξi ∼ [N (0, 1),N (0, 1)]⊤, and set the confidence level β = 0.1. The SOS search polynomial
is set to have a degree 4 with Wasserstein radius r = 0.03. The neural network ϕθ consists of a
fully connected four-layer architecture, featuring a 3-D input, three 64-D hidden layers, and a 2-D
output. The network employs tanh activations, and the pendulum state θ is rewritten as two states,
sin θ and cos θ. The Wasserstein radius is set to r = 0.12. We train the network with the ADAM
optimizer with learning rate 0.002 and Xavier initializer, and set the parameter α̂ = 0.5.

We compare the qualitative results between the SOS-based approaches and the NN-based ap-
proaches in Fig. 2 with the online uncertainty ξ∗ = [−3.6, 1.4]⊤. Similar to Fig. 1, only the DRCC-
SOS and DRCC-NN formulations meet the Lyapunov conditions within the domain of interest. The
derivative violations observed near the small neighborhood of the equilibrium in the DRCC-NN for-
mulation are a common issue in neural network-based Lyapunov functions, as reported in previous
studies (Gaby et al., 2022; Chang et al., 2019).

6. Conclusions

We investigated the synthesis of Lyapunov functions for uncertain closed-loop dynamical systems.
With only finitely many offline uncertainty samples, we derived novel distributionally robust formu-
lations of sum-of-squares and neural-network approaches. The evaluation shows that LFs learned
with our DRCC formulations are valid even for out-of-sample model errors. Future work will
consider joint CLF and control policy search under distributional uncertainty and applications to
higher-dimensional robotic control systems.
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Fernando Castañeda, Jason Choi, Bike Zhang, Claire Tomlin, and Koushil Sreenath. Gaussian
process-based min-norm stabilizing controller for control-affine systems with uncertain input ef-
fects and dynamics. In 2021 American Control Conference (ACC), pages 3683–3690, 2021. doi:
10.23919/ACC50511.2021.9483420.

Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural Lyapunov control. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Zhi Chen, Daniel Kuhn, and Wolfram Wiesemann. Data-driven chance constrained programs over
Wasserstein balls. arXiv: Optimization and Control, 2018.
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