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Abstract— This paper studies the well-posedness and
regularity of safe stabilizing optimization-based controllers
for control-affine systems in the presence of model un-
certainty. When the system dynamics contain unknown
parameters, a finite set of samples can be used to formulate
distributionally robust versions of control barrier function
and control Lyapunov function constraints. Control syn-
thesis with such distributionally robust constraints can be
achieved by solving a (convex) second-order cone pro-
gram (SOCP). We provide one necessary and two sufficient
conditions to check the feasibility of such optimization
problems, characterize their computational complexity and
numerically show that they are significantly faster to check
than direct use of SOCP solvers. Finally, we also analyze
the regularity of the resulting control laws.

Index Terms— Safety-critical control, control barrier
functions, distributionally robust control synthesis.

I. INTRODUCTION

RECENT years have seen increasing deployment of con-
trol systems and robots to aid transportation, warehouse

management, and home automation. In these applications, it
is crucial to implement controllers with provable safety and
stability guarantees despite uncertainty in the system models
and operational conditions. Recent work [1]–[6] tackles this
when some prior information about the uncertainty is known.
Instead, here we rely on a line of work initiated in [7] that
circumvents the need for knowledge about the uncertainty
distribution and uses only uncertainty samples to formulate
distributionally robust constraints for control synthesis. This
approach is robust to distributional shift at deployment time
and enjoys provable out-of-sample performance. However, it
also introduces several challenges, which we focus on here:
the characterization of the quality and number of uncertainty
samples needed to guarantee the feasibility of the safety and
stability constraints, and the study of the regularity properties
of the resulting controllers.

Literature Review: Control Lyapunov functions (CLFs) [8]
are a well-established tool to design stabilizing controllers
for nonlinear systems. More recently, control barrier functions
(CBFs) [9] have gained popularity as a tool to render a desired
subset of the system state space safe. If the system is control
affine, CLF and CBF constraints are linear in the control input
and can be incorporated in a quadratic program (QP) [10] that,
if feasible, can be solved efficiently to obtain control inputs
guaranteeing safety and stability. Recent work has explored
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alternative optimization formulations when the system model
is uncertain. Under the assumption that the uncertainty follows
a Gaussian Process (GP) or satisfies worst-case bounds, [1]–
[3], [5], [11], [12] formulate second-order cone constraints that
can be used to design controllers achieving safe stabilization
of the true system. The paper [4] gives sufficient conditions
for the feasibility of such second-order cone constraints. Our
work here is closely related to [7], which leverages ideas from
distributionally robust optimization (DRO) [13], [14] to model
the uncertainty. The DRO framework constructs an ambiguity
set of probability distributions that contains the true (unknown)
one with high confidence. Such ambiguity sets are constructed
with only finitely many samples and are used to formulate
distributionally robust versions of the control design problem.

Statement of Contributions: We study the problem of safe
stabilization of control-affine systems under uncertainty. We
assume that the distribution of the uncertainty is unknown
and formulate a second-order cone program (SOCP) using
distributionally robust versions of the CLF and CBF con-
straints constructed on the basis of uncertainty samples. Our
first contribution is the derivation of a necessary condition and
two sufficient conditions for the feasibility of the optimization
problem. We characterize the computational complexity of
these conditions and show that, for a large number of samples,
it is significantly smaller than solving the SOCP directly,
which makes them useful to efficiently check whether the
problem is feasible without having to solve it. Our first suffi-
cient condition is dependent on the quality of the uncertainty
samples but is limited to a single control objective. Our
second sufficient condition is only dependent on the number
of samples but can be used for any number of constraints.
Our final contribution shows that the solution of this distri-
butionally robust optimization problem is point-Lipschitz, and
hence continuous, which means that solutions of the closed-
loop system are guaranteed to exist and the controller obtained
from it can be implemented without inducing chattering.

II. PRELIMINARIES

We review distrib. robust chance-constrained programs and
control Lyapunov and barrier functions under uncertainty.

A. Distributionally Robust Chance Constrained
Programs

Given a random vector ξ following distribution P∗ sup-
ported on set Ξ ⊆ Rk and a closed convex set Z ⊂ Rn, let
G : Z ×Ξ→ R define a probabilistic constraint G(z, ξ) ≤ 0.
We are interested in satisfying this constraint with a prescribed
confidence 1− ε, with ε ∈ (0, 1), while minimizing a convex
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objective function c : Z → R. To achieve this1, define the
chance-constrained program:

min
z∈Z

c(z) (1)

s.t. P∗(G(z, ξ) ≤ 0) ≥ 1− ε.

The feasible set of (1) is not convex in general. Nemirosvski
and Shapiro [15, Section 2] propose a convex approximation
of the feasible set of (1) by replacing the chance constraint
with a conditional value-at-risk (CVaR) constraint. CVaR of
G(z, ξ) can be formulated as the following convex program:

CVaRP∗
1−ε(G(z, ξ)) := inf

t∈R
[ε−1EP∗ [(G(z, ξ) + t)+]−t]. (2)

The resulting problem

min
z∈Z

c(z) (3)

s.t. CVaRP∗
1−ε(G(z, ξ)) ≤ 0,

is convex and its feasible set is contained in that of (1).
Both (1) and (3) assume that P∗ is known. Instead, suppose

that it is unknown and we only have access to samples
{ξi}i∈[N ] from P∗. We describe a way of constructing a set of
distributions that could have generated the samples. Let Pp(Ξ)
be the set of probability measures with finite p-th moment
supported on Ξ. Let P̂N := 1

N

∑N
i=1 δξi

be the empirical
distribution constructed from the samples {ξi}Ni=1. Let Wp be
the p-Wasserstein distance [14, Definition 3.1] between two
probability measures in Pp(Ξ) and let Mr

N := {µ ∈ Pp(Ξ) :
Wp(µ, P̂N ) ≤ r} be the ball of radius r centered at P̂N . We
define a distributionally robust chance-constrained program:

min
z∈Z

c(z) (4)

s.t. inf
P∈Mr

N

P(G(z, ξ) ≤ 0) ≥ 1− ε.

We can use CVaR to obtain a convex conservative approxima-
tion of (4):

min
z∈Z

c(z) (5)

s.t. sup
P∈Mr

N

CVaRP
1−ε(G(z, ξ)) ≤ 0.

If (5) is feasible, then (4) is also feasible [15, Section 2].
We say that a distribution P is light-tailed if there exists a >

0 such that A := EP[exp ‖ξ‖a] =
∫

Ξ
exp ‖ξ‖aP(dξ) < ∞. If

P∗ is light-tailed, the following observation specifies how the
radius of Mr

N should be selected so that the true distribution
lies in the ball with high confidence.

1We denote by Z>0, R and R≥0 the set of positive integers, real, and
nonnegative real numbers, resp. We denote by 0n the n-dimensional zero
vector. We write ∂S for the boundary of the set S. Given N ∈ Z>0, we
denote [N ] = {1, . . . , N}. Given x ∈ Rn, ‖x‖ denotes the Euclidean norm
of x. For x ∈ R, we define (x)+ = max(x, 0). A function β : R≥0 → R
is of class K∞ if β(0) = 0, β is strictly increasing and lim

t→∞
β(t) = ∞.

A function V : Rn → R is positive definite if V (0) = 0 and V (x) > 0
for all x 6= 0, and proper in a set Γ if {x ∈ Γ : V (x) ≤ c} is compact
for any c ≥ 0. Given an m × n matrix A and two integers i, j such that
1 ≤ i < j ≤ m, Ai:j denotes the (j−i+1)×n matrix obtained by selecting
the rows from i to j of A. A function f : Rn → Rq is point-Lipschitz at
a point x0 ∈ Rn if there exists a neighborhood U of x0 and a constant
Lx0 > 0 such that ‖f(x)− f(x0)‖ ≤ Lx0 ‖x− x0‖ for all x ∈ U .

Remark 2.1: (Choice of Wasserstein ball radius): If the true
distribution P∗ is light-tailed, the choice of r = rN (ε̄) given
in [14, Theorem 3.5],

rN (ε̄) =

{
( log(c1ε̄

−1)
c2N

)
1

max{k,2} if N ≥ log(c1 ε̄
−1)

c2
,

( log(c1ε̄
−1)

c2N
)

1
a else,

(6)

where c1, c2 and a are positive constants that only depend on a,
A and k (cf. [14, Theorem 3.4]), ensures that the ballMrN (ε̄)

N

contains P∗ with probability at least 1 − ε̄. Then, a solution
z∗ of (5) satisfies the constraint CVaRP∗

1−ε(G(z∗, ξ)) ≤ 0
with probability at least 1− ε̄. Note that c1, c2 and a can be
computed by knowing the class of distributions to which P∗
belongs to, without having actual knowledge of P∗. If exact
values are not known, but upper and lower bounds are, these
can be used instead to compute an upper bound of rN (ε̄). •

Remark 2.2: (Choice of ε): The parameter ε determines the
confidence level 1− ε for constraint satisfaction. Throughout
the paper, we assume ε ≤ 1

N , albeit results are valid generally,
with explicit expressions becoming more involved. •

B. Distributionally Robust Safety and Stability
The notions of CLF [8] and CBF [9] can be used to design

controllers in uncertainty-free systems that enforce stability
and safety, resp. Here we extend these notions for systems
with uncertainty in the dynamics. Consider a nominal model
F and a linear combination of k perturbations,

ẋ = (F (x) +

k∑
j=1

Wj(x)ξj)
¯
u, (7)

where for 1 ≤ j ≤ k, Wj(x) ∈ Rn×(m+1) denotes known
model perturbations, and ξj ∈ R denotes the corresponding
unknown weight, and

¯
u = [1;u] ∈ Ū := {1} × Rm. We let

ξ = [ξ1, ξ2, . . . , ξk]T ∈ Ξ ⊆ Rk. We assume that ξ follows
an unknown distribution P∗ but a set of samples {ξi}Ni=1 is
available. We are interested in extending the notions of CLF
[8] and CBF [9] for systems of the form (7). To do so, note
that as shown in [7, Section IV], the CBF condition for a
system of the form (7) and a function h : Rn → R reads as
CBC(x,

¯
u, ξ) :=

¯
uT qh(x) +

¯
uTRh(x)ξ ≥ 0, where the exact

forms of qh and Rh are given in [7, Section IV] and depend
on h and its gradient. Now, since ξ follows a distribution P∗,
we extend the definition of CBF by requiring that for all x in
the safe set, there exist

¯
u ∈ Ū such that

P∗(CBC(x,
¯
u, ξ) ≥ 0) ≥ 1− ε. (8)

The CLF condition for (7) takes a similar form and is written
as CLC(x,

¯
u, ξ) ≤ 0 (cf. [7, Section IV]). As shown in

Section II-A, CVaR can be used as a convex approximation
of (8) and its analogue with CLC. We use

CVaRP∗
1−ε(CBC(x,

¯
u, ξ)) ≥ 0, (9a)

CVaRP∗
1−ε(CLC(x,

¯
u, ξ)) ≥ 0, (9b)

as the distributionally robust analogues of the CLF and CBF
conditions from [8] and [9], resp. The existence of a controller
satisfying (9) implies the existence of a controller that makes
the CLC (resp. the CBC) condition hold at every point with
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probability at least 1 − ε, paving the way for the design
of controllers that make the system stable (resp. safe) with
arbitrarily high probability.

III. PROBLEM STATEMENT

Consider the system model in (7) with distributional uncer-
tainty, meaning that the true distribution P∗ of the parameter
ξ is unknown. We assume that the system admits a CLF
and a CBF, which allow us to formulate the constraints (9).
Given a nominal controller specified by a smooth function

¯
k : Rn → Ū , we would like to synthesize a controller closest
to it that respects safety and stability constraints. Using (2),
this problem can be written in general form as

min
¯
u∈

¯
U
‖
¯
u−

¯
k(x)‖2 (10)

s.t. sup
P∈Mr

N

inf
t∈R

[ε−1EP[(Gl(x,
¯
u, ξ) + t)+]− t] ≤ 0, ∀l ∈ [M ],

where M ∈ Z>0 and each Gl : Rn × Ū ×Ξ→ R is an affine
function in

¯
u and ξ, Gl(x,

¯
u, ξ) =

¯
uT ql(x) +

¯
uTRl(x)ξ, for

smooth functions ql : Rn → Rm+1 and Rl : Rn → R(m+1)×k.
With M = 2 and constraints corresponding to CBC and CLC,
this corresponds to a stable and safe control synthesis problem.
The case M = 1 with the constraint CBC corresponds to a
distributionally robust version of a safety filter of

¯
k.

Although the constraints in (10) are convex, the program is
intractable due to the search of suprema over the Wasserstein
set. Fortunately, [7, Proposition IV.1] shows that when Ξ = Rk
and p = 1, the following SOCP is equivalent to (10):

min
¯
u∈

¯
U,y∈R,t∈R,si∈R

y (11a)

s.t. r
∥∥RTl (x)

¯
u
∥∥+

1

N

N∑
i=1

si − tε ≤ 0, ∀l ∈ [M ], (11b)

si ≥ Gl(x,
¯
u, ξi) + t, ∀i ∈ [N ], ∀l ∈ [M ], (11c)

si ≥ 0, ∀i ∈ [N ], (11d)

y + 1 ≥
√
‖2(

¯
u−

¯
k(x))‖2 + (y − 1)2 . (11e)

We refer to (11) as the DRO-SOCP and take Ξ = Rk and
p = 1 Wasserstein distance throughout the paper.

A critical observation about problem (11) is that, in general,
it might be infeasible, leading to controllers that are undefined.

Furthermore, even if the problem is feasible, the controller
obtained from it might not be continuous, hence resulting in
implementation problems (it might induce chattering behavior
when implemented on physical systems) and theoretical prob-
lems (lack of existence of solutions of the closed-loop system).
Hence, our goal in this paper is twofold. First, we derive condi-
tions to ensure the feasibility of (11). Given the complexity of
obtaining characterizations for the feasibility of such problems,
we focus on identifying conditions that are easy to evaluate
computationally as opposed to directly attempting to solve the
optimization problem: either sufficient conditions, to quickly
ensure feasibility, or necessary, to quickly discard it. Second,
assuming that the problem (11) is feasible, we characterize the
regularity properties of the resulting controller.

IV. FEASIBILITY ANALYSIS

In this section, we study the feasibility properties of (11).
We start by giving a necessary condition for its feasibility.

Proposition 4.1: (Necessary condition for feasibility of
DRO-SOCP): Let ε ∈ (0, 1

N ] and r > 0. For x ∈ Rn, let

Q̄l(x) = rRl(x)2:(m+1) ∈ Rm×k, r̄l(x) = rRl(x)1 ∈ R1×k,

w̄l,i(x) = (−εql(x)− εRl(x)ξi)2:(m+1) ∈ Rm,
v̄l,i(x) = (−εql(x)− εRl(x)ξi)1 ∈ R,
F̄l,i(x) = Q̄l(x)Q̄l(x)T − w̄l,i(x)w̄l,i(x)T ∈ Rm×m,
J̄l,i(x) = r̄l(x)Q̄l(x)T − v̄l,i(x)w̄Tl,i ∈ R1×m,

H̄l,i(x) =

(
r̄lr̄

T
l − v̄2

l,i)(x) J̄l,i(x)

J̄Tl,i(x) F̄l,i(x)

)
∈ R(m+1)×(m+1)

for l ∈ [M ] and i ∈ [N ]. Let λ̄l,i(x) be the minimum
eigenvalue of F̄l,i(x) and suppose Q̄l(x)Q̄l(x)T is invertible
for all l ∈ [M ]. If (11) is feasible, then for each l ∈ [M ], there
exists i ∈ [N ] such that H̄l,i(x) is not positive definite and
one of the following holds:

(i) λ̄l,i(x)<0,
(ii) λ̄l,i(x)>0 and

(
v̄l,i− w̄Tl,iF̄

−1
l,i (Q̄lr̄

T
l −w̄l,iv̄l,i)

)
(x)≥0,

(iii) λ̄l,i(x) = 0, and
(
v̄l,i − w̄Tl,i(Q̄lQ̄Tl )−1Q̄lr̄

T
l

)
(x) > 0.

Proof: Note that (10) (and hence (11)) is equivalent to

min
¯
u∈

¯
U
‖
¯
u−

¯
k(x)‖2 (12)

s.t. r
∥∥RTl (x)

¯
u
∥∥+ inf

t∈R

[ 1

N

N∑
i=1

(Gl(x,
¯
u, ξi) + t)+ − tε

]
≤ 0,

for l ∈ {1, . . . ,M}, cf. [7, Proposition IV.1]. For (x,
¯
u) ∈

Rn×Ū , the function Alx,
¯
u(t) = 1

N

∑N
i=1(Gl(x,

¯
u, ξi)+ t)+−

tε is a piecewise linear function in t. Since ε ≤ 1
N , it is

decreasing for t < t∗l (x, ¯
u) := mini∈[N ]−Gl(x, ¯u, ξi) and

increasing for t > t∗l (x, ¯
u). Hence, it achieves its minimum at

t∗l (x, ¯
u). Thus, (11) is feasible if and only if for all l ∈ [M ]

the following inequalities are simultaneously feasible:

r
∥∥RTl (x)

¯
u
∥∥+ ε

¯
uT ql(x) + εmax

i∈[N ] ¯
uTRl(x)ξi ≤ 0. (13)

Note that, if for some l ∈ [M ], the constraint r
∥∥RTl (x)

¯
u
∥∥+

ε
¯
uT ql(x) + ε

¯
uTRl(x)ξi ≤ 0 is infeasible for all i ∈ [N ],

then (11) is infeasible. Note that this is only a sufficient, but
not necessary, condition for infeasibility (or equivalently, a
necessary, but not sufficient, condition for feasibility). The
result follows from [2, Theorem 2], which characterizes the
feasibility of a single second-order cone constraint.

Next, we state a sufficient condition for the feasibility of
(11) in the case M = 1.

Proposition 4.2: (Sufficient condition for feasibility of
DRO-SOCP with one constraint): Let r > 0, M = 1, and
0 < ε ≤ 1

N . Given x ∈ Rn, define

Q̂(x) = (r + εmax
i∈[N ]

‖ξi‖)R1(x)2:(m+1) ∈ Rm×k,

r̂(x) = (r + εmax
i∈[N ]

‖ξi‖)R1(x)1 ∈ R1×k,

ŵ(x) = −εq1(x)2:(m+1) ∈ Rm, v̂(x) = −εq1(x)1 ∈ R,
F̂ (x) = Q(x)Q(x)T − w(x)w(x)T ∈ Rm×m,
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Ĵ(x) = r̂(x)Q̂(x)T − v̂(x)ŵ(x)T ∈ R1×m,

Ĥ(x) =

(
(r̂r̂T − v̂2)(x) Ĵ(x)

Ĵ(x)T F̂ (x)

)
∈ R(m+1)×(m+1).

Let λ̂(x) be the minimum eigenvalue of F̂ (x). Suppose that
Q(x)Q(x)T is invertible, Ĥ(x) is not positive definite and one
of the following holds:

(i) λ̂(x) < 0,
(ii) λ̂(x) > 0 and

(
v̂ − ŵT F̂−1(Q̂r̂T − ŵv̂

)
(x) ≥ 0,

(iii) λ̂(x) = 0 and
(
v̂ − ŵT (Q̂Q̂T )−1Q̂r̂T

)
(x) > 0.

Then, (11) is feasible at x.
Proof: By repeating an argument similar to the one in the

proof of Proposition 4.1, (11) is feasible in the case M = 1
if and only if the following inequality is feasible:

r
∥∥R(x)T

¯
u
∥∥+ ε

¯
uT q(x) + εmax

i∈[N ] ¯
uTR(x)ξi ≤ 0. (14)

Using the Cauchy-Schwartz inequality, the following inequal-
ity being feasible implies that (14) is feasible,

(r + εmax
i∈[N ]

‖ξi‖)
∥∥R(x)T

¯
u
∥∥+ ε

¯
uT q(x) ≤ 0. (15)

If (15) is feasible, there exists ˆ
¯
u such that r

∥∥ˆ
¯
uTR(x)

∥∥ +
εˆ
¯
uT q(x) + εˆ

¯
uTR(x)ξi ≤ 0 for all i ∈ [N ], and thus ˆ

¯
u

satisfies (14). The result follows by [2, Thm. 2].
Remark 4.3: (More data leads to better feasibility guaran-

tees): For a fixed r, the addition of new data points (larger
N ) implies that there are more chances that either of (i)-
(iii) in Proposition 4.1 are satisfied for each l ∈ {1, . . . ,M}.
Moreover, if P∗ is light-tailed, rN (ε̄) decreases with N . The
choice r = rN (ε̄) means that for each fixed i ∈ [N ] and
l ∈ [M ], the feasible set of the inequality r

∥∥Rl(x)T
¯
u
∥∥ +

ε
¯
uT ql(x) + ε

¯
uTRl(x)ξi ≤ 0 increases, which from the proof

of Proposition 4.1, also means that there are more chances
that either of (i)-(iii) are met. Similarly, under the assump-
tion that the norm of additional samples is upper bounded
by maxi∈[N ] ‖ξi‖, the choice r = rN (ε̄) also leads to a
larger feasible set of (15) and thus the sufficient condition
in Proposition 4.2 has more chances of being satisfied. •

We next give a sufficient condition for the feasibility of (11)
with high probability for an arbitrary number of constraints.

Proposition 4.4: (Sufficient condition for feasibility of
DRO-SOCP): Let r > 0, ε ∈ (0, 1) and ε̄ ∈ (0, 1). Suppose
that there exists a controller k̂ : Rn → Ū and non-negative
functions Sl : Rn → R≥0 for l ∈ [M ] satisfying

CVaRP∗
1−ε(Gl(x, k̂(x), ξ)) ≤ −Sl(x), ∀l ∈ [M ]. (16)

Moreover, suppose that P∗ is light-tailed and let rN (ε̄) be
defined as in (6). Let x ∈ Rn be such that ‖Rl(x)‖ 6= 0 for
all l ∈ [M ], and let B : Rn → R≥0 be an upper bound on the
norm of k̂. Then, if

rN (ε̄) < min
l∈[M ]

εSl(x)

2 ‖Rl(x)‖B(x)
, (17)

(11) is strictly feasible at x with probability at least 1− ε̄ for
any r ≤ rN (ε̄).

Proof: Note that by definition, the first component of
k̂(x) is 1 for all x ∈ Rn. Hence, B(x) ≥

∥∥∥k̂(x)
∥∥∥ ≥ 1 for all

x ∈ Rn so (17) is well-defined. Let t∗1 ∈ R be such that

CVaRP∗
1−ε(G1(x,

¯
u, ξ)) =

1

ε
EP∗ [(G1(x,

¯
u, ξ) + t∗1)+]− t∗1,

and define Ĝ(x, ξ) = 1
ε (G1(x, k̂(x), ξ) + t∗1)+− t∗1. Note that

for any ξ, ξ
′ ∈ Rk,

|Ĝ(x, ξ)−Ĝ(x, ξ
′
)|≤ 1

ε
‖R1(x)‖·

∥∥∥k̂(x)
∥∥∥·∥∥∥ξ − ξ

′
∥∥∥ , (18)

where we have used the fact that the operator (·)+ is Lipschitz
with constant 1. Using (18) in [14, Theorem 3.2], we conclude
that for any P̂ ∈ Pp(Ξ), |EP∗(Ĝ(x, ξ))− EP̂(Ĝ(x, ξ))| ≤
1
ε ‖R1(x)‖·

∥∥∥k̂(x)
∥∥∥·W1(P∗,P̂).

From (17), together with the fact that MrN (ε̄)
N contains P∗

with probability at least 1 − ε̄, cf. Remark 2.1, and since the
maximum Wasserstein distance between two distributions in
MrN (ε̄)

N is 2rN (ε̄), with probability at least 1− ε̄,

|CVaRP∗
1−ε(G1(x, k̂(x), ξ))−EP̂(Ĝ(x, ξ))| < S1(x). (19)

for any P̂ ∈ MrN (ε̄)
N . By definition of CVaR, cf. (2), for

any P̂ ∈ Pp(Ξ), CVaRP̂
1−ε(G1(x, k̂(x), ξ)) ≤ EP̂(Ĝ(x, ξ)).

Combining this with (19) and (16), we get that with probability
at least 1 − ε̄, CVaRP̂

1−ε(G1(x, k̂(x), ξ)) < 0 for all P̂ ∈
MrN (ε̄)

N . This argument holds for l ∈ {2, . . . , N}, implying
that k̂(x) is strictly feasible for (10) (and hence, (11)) with
probability at least 1− ε̄ for any r ≤ rN (ε̄).

Remark 4.5: (Dependency of sufficient condition on slack
terms): Condition (16) on the controller k̂ guarantees the
satisfaction of the constraints in (10) with a slack term Sl(x)
on the righthand side. Larger values of these slack terms mean
that fewer samples are needed to satisfy (17). Moreover, for
the constraints in (9), [4, Remark 2.3] shows how to obtain
such functions Sl, even without knowledge of k̂. •

Remark 4.6: (Applicability of the sufficient condition):
Checking condition (17) does not require precise knowledge
of k̂, just an upper bound of its norm. In particular, if bounds
on the control norm are included as constraints in (11), those
can be used to construct B. Moreover, unlike Proposition 4.2,
condition (17) is agnostic to the samples {ξ1, . . . , ξN} and
instead solely depends on its number N . Note that for each
x ∈ Rn with ‖Rl(x)‖ 6= 0 for all l ∈ [M ], if Sl(x) > 0 for
all l ∈ [M ], there exists N̂x such that condition (17) holds for
all N ≥ N̂x. This is because rN (ε̄) is decreasing in N and
limN→∞ rN (ε̄) = 0. The value N̂x is state-dependent, larger
for smaller values of ε, Sl(x) and larger values of B(x). •

Remark 4.7: (Checking for (in)feasibility efficiently): A
commonly used algorithm for solving SOCPs is the method
in [16]. For an SOCP with rS constraints and optimization
variable of dimension nS , it requires solving

√
rS linear sys-

tems of dimension nS , and hence has complexity O(
√
rSn

3
S),

cf. [17]. Therefore, (11) has complexity O(
√
MN(m+N)3).

Instead, since checking the positive definiteness of a symmet-
ric matrix of dimension nP can be done by checking if its
Cholesky factorization exists (which has complexity O(n3

P )),
the complexity of checking the condition in Proposition 4.1 is
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TABLE I: Complexity of SOCP solver versus the results in this section.

Method Necessary/Sufficient Complexity M

Prop. 4.1 Necessary O(NMm3) any
Prop. 4.2 Sufficient O(N +m3) 1
Prop. 4.4 Sufficient O(M) any

SOCP solver Necessary and sufficient O(
√
NM(m+N)3) any

O(NMm3). Hence, for large N , it is much more efficient than
solving the SOCP (11) directly. We also note that the scaling in
M for the complexity of the SOCP solver is more favorable
than that of checking the necessary condition. On the other
hand, the complexity of checking the sufficient condition in
Proposition 4.2 reduces to finding a maximum of N numbers
(which has complexity linear in N ) and checking the positive
definiteness of two symmetric matrices of dimension m + 1
and m, resp. Hence, its complexity is O(N + m3), which is
also more efficient than solving the SOCP. Finally, note that
the complexity of checking the conditions in Proposition 4.4 is
constant in N and m, and is linear in M due to the minimum
in (17). Table I summarizes this complexity analysis. •

Proposition 4.1 provides necessary conditions for feasibility.
If the conditions are not met, it is reasonable to gather more
data for verifying feasibility without having to directly solve
the program. Moreover, if the conditions in Propositions 4.2
and 4.4 are not met (which does not mean that (11) is not
feasible), this might be an indication that more data is needed
to certify feasibility, cf. Remarks 4.3 and 4.6.

V. REGULARITY ANALYSIS

In this section, we show that the controller obtained by
solving (11) is point-Lipschitz.

Proposition 5.1: (Point-Lipschitzness of SOCP DRO): Let
r > 0, 0 < ε ≤ 1

N and suppose Rl and ql are twice
continuously differentiable for all l ∈ [M ]. Let

¯
u∗ : Rn → Rm

be the function mapping x ∈ Rn to the solution of (11) in
¯
u

at x. If (10) is strictly feasible at x0 ∈ Rn (i.e., there exists
a solution satisfying all the constraints strictly), then

¯
u∗ is

point-Lipschitz at x0.
Proof: We first show the result for M = 1. Let I :=

arg maxi∈[N ]G1(x0,
¯
u∗(x0), ξi), note that the set I is depen-

dent on x0, but we omit this dependency to simplify the nota-
tion. Note also that since G1(x,

¯
u, ξi) is continuous in x and

¯
u

for all i ∈ [N ], there exists a neighborhood N = Nx ×N
¯
u ⊂

Rn × Ū of (x0,
¯
u∗(x0)) such that for all (x̂, ˆ

¯
u) ∈ N , there

exists ix̂,ˆ
¯
u ∈ I such that ix̂,ˆ

¯
u ∈ arg maxi∈[N ]G1(x̂, ˆ

¯
u, ξi).

Recall from the proof of Proposition 4.1 that, for any x,
¯
u ∈

Rn×Ū , the function Ax,
¯
u(t) := 1

N

∑N
i=1(G1(x,

¯
u, ξi)+t)+−

tε attains its minimum at t∗(x,
¯
u) := maxi∈[N ]G1(x,

¯
u, ξi).

Therefore, for (x̂, ˆ
¯
u) ∈ N , t∗(x̂, ˆ

¯
u) = G1(x̂, ˆ

¯
u, ξix̂,ˆ

¯
u
).

For each i ∈ I, let
¯
u∗i : Rn → Rm be defined as:

¯
ui(x) := min

¯
u∈

¯
U
‖
¯
u−

¯
k(x)‖2 (20)

s.t. r
∥∥R1(x)T

¯
u
∥∥+ εG1(x,

¯
u, ξi) ≤ 0.

Note that since (10) is strictly feasible at x0, there exists ˜
¯
u ∈ Ū

such that r
∥∥R1(x0)T

¯
ũ
∥∥ + maxi∈[N ] εG1(x0, ˜

¯
u, ξi) < 0. By

continuity of R1 and G1 in x, there exists a neighborhood
Ñx ⊂ Nx of x0 such that r

∥∥R1(x)T
¯
ũ
∥∥+εG1(x, ˜

¯
u, ξi) < 0 for

all x ∈ Ñx and i ∈ I. This implies that (20) is strictly feasible

for any x ∈ Ñx. Hence, by [4, Proposition 5.4],
¯
u∗i is point-

Lipschitz at x0 for each i ∈ I. Now, since for all y ∈ Nx there
exists i ∈ I such that

¯
u∗(y) =

¯
u∗i (y), and Ñx ⊂ Nx, it follows

‖
¯
u∗(y)−

¯
u∗(x0)‖ = ‖

¯
u∗i (y)−

¯
u∗i (x0)‖ ≤ γi ‖y − x0‖ for

some γi > 0. Now, by taking γ := maxi∈I γi, it follows that
‖
¯
u∗(y)−

¯
u∗(x0)‖ ≤ γ ‖y − x0‖ for all y ∈ Nx and hence

¯
u∗

is point-Lipschitz at x0. The argument if M > 1 is analogous,
defining a set Il similar to I for each l ∈ [M ].

Proposition 5.1 implies in particular that u∗ is continuous
at x0. Note also that the strict feasibility assumption in
Proposition 5.1 is satisfied with a prescribed probability if the
hypothesis of Proposition 4.4 is satisfied.

VI. SIMULATIONS

In this section, we evaluate our results in a ground-robot
navigation example. We model the robot motion using unicycle
kinematics and take a small distance a = 0.05 off the wheel
axis, cf. [18] to obtain a relative-degree-one model:ẋ1

ẋ2

θ̇

 =

(0 cos(θ) −a sin(θ)
0 sin(θ) a cos(θ)
0 0 1

+

3∑
j=1

Wj(x)ξj)

)1
v
ω

 ,
where v, ω are the linear and angular velocity, and

W1(x)=

[
0.02 0 0
0.02 0 0
0.01 0 0

]
, W2(x) =

[
0 0 0
0 0 0
0 0 −0.02

]
,

W3(x)=

[
0 0.02 cos(θ) −0.02a sin(θ)
0 0.02 sin(θ) 0.02a cos(θ)
0 0 0

]
,

represent the model perturbations in the drift, angular veloc-
ity, and orientation. We consider uncertainty samples: ξ1 ∼
N (0.5, 1), ξ2 ∼ U(−1, 1), and ξ3 ∼ B(2, 0.2), where N , U ,
B denote normal, uniform, and beta distributions, resp. The
optimization programs are solved using the Embedded Conic
Solver in CVXPY [19] with an Intel i7 9700K CPU.

We first consider the problem of stabilizing the uncertain
unicycle system to a goal position [x∗1, x

∗
2] = [7, 7] with initial

state [0, 0, 0], so we take M = 1 in (10). At the initial state,
the robot is assumed to have 3 samples {ξi}3i=1 and initial
Wasserstein radius r = 0.5 with risk tolerance ε = 0.01. As
the robot moves, each unsuccessful solver attempt prompts
the collection of additional samples, and a corresponding
reduction in the ambiguity radius as prescribed by (6). In
all the figures presented, the x-axis represents the simulation
timestep, where each timestep is equivalent to 0.02 seconds,
and the y-axis denotes the time spent for carrying out the
necessary and sufficient condition checks, as well as for
running the solver at each timestep.

The time complexity, validity, and precision of Proposi-
tion 4.1 are explored in Fig. 1a and Fig. 1b. Fig. 1a compares
the time complexity of checking the necessary condition in
Proposition 4.1 and of solving the corresponding SOCP along
the whole robot trajectory. Notably, the SOCP becomes infea-
sible at around t = 3 s and more uncertainty samples are given
until feasibility is regained. As expected, when Proposition 4.1
predicts the program is infeasible, such inference is consis-
tently mirrored by the solver. Fig. 1b specifically emphasizes
the time complexity during data collection stages. As the
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(a) (b) (c)

Fig. 1: (a): Time complexity comparison between necessary condition verification (cf. Proposition 4.1) and SOCP solver along the robot trajectory. The label
“undetermined” means that the necessary condition is met, from which we may not know if the problem is feasible or not. The label “precision” represents
the ratio of instances where the necessary condition indicated infeasibility against the total number of instances where the SOCP was actually infeasible.
(b): Time complexity of necessary condition verification and SOCP solver with increasing uncertainty samples (constraints). (c): Log-scaled time complexity
comparison of two sufficient conditions (cf. Proposition 4.2 and Proposition 4.4) with the SOCP solver along the robot trajectory.

Fig. 2: Time complexity comparison of necessary (cf. Proposition 4.1) and
sufficient (cf. Proposition 4.4) conditions.

number of samples increases, the SOCP’s time complexity
escalates at a much faster rate than the necessary condition
verification, in agreement with Remark 4.7.

Fig. 1c compares the time complexity of solving the SOCP
and of checking the sufficient conditions in Propositions 4.2
and 4.4. As expected, feasibility validation by either result
ensures the actual feasibility of the program by the solver.
Checking Proposition 4.2 is more time-consuming than check-
ing Proposition 4.4, cf. Remark 4.7, but has greater accuracy
in validating feasibility. Notably, both checks are significantly
more efficient than solving the SOCP problem.

We also consider the safe stabilizing problem of the unicycle
system. The stabilization goal is [x∗1, x

∗
2] = [5, 5] while

the safety goal is to avoid a circular obstacle centered at
[3, 2] with radius 1. Fig. 2 compares the time complexity
and conservativeness of Proposition 4.1 and Proposition 4.4
for the case M = 2 in (10). Proposition 4.1 is valid and
requires significantly less time than solving the SOCP, while
Proposition 4.4 is also valid and even more efficient.

VII. CONCLUSIONS

We studied the feasibility of SOCP problems whose solution
provide safe stabilizing controllers for uncertain systems with
no prior knowledge of the uncertainty distribution and only a
finite number of samples available. We provided a necessary
condition and two sufficient conditions to check feasibility,
characterized their computational complexity, and showed
through simulations their usefulness in practical scenarios. We
also showed that the controller obtained by solving the SOCP
is point-Lipschitz under fairly general conditions. Future work
will consider leveraging the identified feasibility conditions
to guide online data-gathering policies that aim to reduce
uncertainty about the system dynamics.
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