
Received: 10March 2017 Revised: 16October 2017 Accepted: 15November 2017

DOI: 10.1002/rob.21774

S Y S T EM S ART I C L E

Fast, autonomous flight in GPS-denied and cluttered
environments

KartikMohta1 MichaelWatterson1 YashMulgaonkar1 Sikang Liu1

ChaoQu1 AnuragMakineni1 Kelsey Saulnier1 Ke Sun1 Alex Zhu1

Jeffrey Delmerico2 Konstantinos Karydis1 Nikolay Atanasov1 Giuseppe Loianno1

Davide Scaramuzza2 Kostas Daniilidis1 Camillo Jose Taylor1 Vijay Kumar1

1GRASP Lab, University of Pennsylvania,

Philadelphia, PA, USA

2Robotics andPerceptionGroup, University of

Zurich, Zurich, Switzerland

Correspondence

KartikMohta,GRASPLab,University of

Pennsylvania, Philadelphia, PA19146,USA.

Email: kmohta@seas.upenn.edu

Funding information

DefenseSciencesOffice,DARPA,Grant/Award

Numbers:HR001151626,HR0011516850

Abstract
One of the most challenging tasks for a flying robot is to autonomously navigate between tar-

get locations quickly and reliably while avoiding obstacles in its path, and with little to no a pri-

ori knowledge of the operating environment. This challenge is addressed in the present paper.We

describe the systemdesign and software architecture of our proposed solution and showcase how

all the distinct components can be integrated to enable smooth robot operation. We provide crit-

ical insight on hardware and software component selection and development and present results

fromextensive experimental testing in real-worldwarehouse environments. Experimental testing

reveals that our proposed solution can deliver fast and robust aerial robot autonomous navigation

in cluttered, GPS-denied environments.

K EYWORDS

aerial robotics, collision avoidance, field robots, localization, mapping, motion and path planning,

motion control, sensor fusion

1 INTRODUCTION

In recent times, there has been an explosion of research onmicroaerial

vehicles (MAVs), ranging from low-level control (Lee, Leok, &McClam-

roch, 2010) to high-level, specification-based planning (Wolff, Topcu,

& Murray, 2014). One class of MAVs, the quadrotor, has become pop-

ular in academia and industry alike due to its mechanical and con-

trol simplicity, high maneuverability, and low cost of entry point com-

pared to other aerial robots (Karydis & Kumar, 2016). Indeed, there

have been numerous applications of quadrotors to fields such as intel-

ligence, surveillance and reconnaissance, aerial photography, struc-

tural inspection (Özaslan et al., 2016), robotic first responders (Mohta

et al., 2016), and cooperative construction (Augugliaro et al., 2014)

and aerial manipulation (Thomas, Loianno, Polin, Sreenath, & Kumar,

2014). Such recent advances have pushed forward the capabilities of

quadrotors.

Most of these works rely on the availability of ground truth mea-

surements to enable smooth robot performance. Ground truth can be

providedbymotion capture systems in lab settings,GPS inoutdoor set-

tings, or by appropriately placed special tags in known environments.

However, real-world environments are dynamic, partially known, and

oftenGPS-denied. Therefore, there is need to push further on develop-

ing fully autonomous navigation systems that rely on onboard sensing

only to fully realize the potential of quadrotors in real-world applica-

tions. Our work aims at narrowing this gap.

Specifically, the focus of this paper is to provide a detailed descrip-

tion of a quadrotor system that is able to navigate at high speeds

to a goal in fully unknown and cluttered 3D environments while

using only onboard sensing and computation for state estimation, con-

trol, mapping, and planning. The motivation for this problem comes

from the recently announced DARPA Fast Lightweight Autonomy

(FLA) program.∗ The main challenge in creating such small, completely

autonomous MAVs is due to the size and weight constraints imposed

on the payload carried by these platforms. This restricts the kinds of

sensors and computation that can be carried by the robot and requires

careful consideration when choosing the components to be used for a

particular application. Also, since the goal is fast flight, wewant to keep

the weight as low as possible to allow the robot to accelerate, deceler-

ate, and change directions quickly.

Any robot navigation system is composed of the standard build-

ing blocks of state estimation, control, mapping, and planning. Each

of these blocks builds on top of the previous ones to construct the

∗ http://www.darpa.mil/program/fast-lightweight-autonomy

J Field Robotics. 2018;35:101–120. c© 2017Wiley Periodicals, Inc. 101wileyonlinelibrary.com/journal/rob

http://orcid.org/0000-0002-0932-6475
http://www.darpa.mil/program/fast-lightweight-autonomy

102 MOHTA ET AL.

full navigation system. For example, the controller requires a work-

ing state estimator whereas the planner requires a working state esti-

mator, controller, and mapping system. Initial works on state estima-

tion for aerial robots with purely onboard sensing used laser range

finders as the sensing modality and had limited computational capac-

ity available on the platforms (Achtelik, Bachrach, He, Prentice, &

Roy, 2009; Bachrach, He, & Roy, 2009; Grzonka, Grisetti, & Burgard,

2009). Owing to the limitations of laser scan matching coupled with

limited computational capability, these works were limited to slow

speeds. Since the small and lightweight laser range finders that could

be carried by the aerial robots only measured distances in a single

plane, these methods also required certain simplifying assumptions

about the environment, for example, assuming 2.5D structure. As the

computational power grew and more efficient algorithms were pro-

posed, it became possible to use vision for state estimation for aerial

robots (Achtelik et al., 2009; Blösch, Weiss, Scaramuzza, & Siegwart,

2010). Using cameras for state estimation allowed flights in three-

dimensional (3D) unstructured environments and also faster speeds

(Shen, Mulgaonkar, Michael, & Kumar, 2013). As the vision algorithms

have improved (Bloesch, Omari, Hutter, & Siegwart, 2015; Forster,

Pizzoli, & Scaramuzza, 2014; Jones & Soatto, 2011; Klein & Murray,

2007; Mourikis & Roumeliotis, 2007; Mur-Artal, Montiel, & Tardós,

2015) and the computational power available on small computers

has grown, cameras have now become the sensor of choice for state

estimation for aerial robots. We use the visual odometry algorithm

described in Forster, Zhang, Gassner, Werlberger, and Scaramuzza

(2017) for our platform due to the fast run time, ability to use wide

angle lenses without requiring undistortion of the full image, allow-

ing the use of multiple cameras to improve robustness of the system,

and incorporation of edgelet features in addition to the usual point

features.

The dynamics of the quadrotor are nonlinear due to the rotational

degrees of freedom. In the control design for these robots, special care

has to be taken to take this nonlinearity into account to utilize the full

dynamics of the robot. Most early works in control design for quadro-

tors (Bouabdallah, Murrieri, & Siegwart, 2004; Bouabdallah & Sieg-

wart, 2005, 2007; Escareno, Salazar-Cruz, & Lozano, 2006; Hoffmann,

Huang,Waslander, &Tomlin, 2007) used the small angle approximation

for the orientation controller to convert the problem into a linear one

and proposed proportional-integral-derivative (PID) and backstepping

controllers to stabilize the simplified system. Owing to the small angle

assumption, these controllers are not able to handle large orientation

errors andhave large tracking errors for aggressive trajectories. A non-

linear controller using quaternions (instead of Euler angles) was devel-

oped in Guenard, Hamel, andMoreau (2005) where the quadrotor was

commanded to follow velocity commands. Lee et al. (2010) defined an

orientation error metric directly in the SO(3) space and proposed a

globally asymptotic controller that can stabilize the quadrotor from

large position and orientation errors. Our controller is based upon this

work and has good tracking performance even when following aggres-

sive trajectories.

It has been shown that the trajectory generation for multirotor

MAVs can be formulated as a Quadratic Program (QP) (Mellinger &

Kumar, 2011). Since the quadrotor is a differentially flat system, the

trajectory can be optimized as an nth order polynomial parameter-

ized in time (Mellinger &Kumar, 2011). Generating a collision-free tra-

jectory is more complicated, in which additional constraints for col-

lision checking are required. Using mixed integer optimization meth-

ods to solve this problem has been discussed in Mellinger, Kushleyev,

andKumar (2012), and recently other approaches have been proposed

to remove the integer variables and solve the QP in a more efficient

way (Deits & Tedrake, 2015b; Richter, Bry, & Roy, 2016; Watterson &

Kumar, 2015). Our pipeline uses a linear piecewise path from a search-

based planning algorithm to guide the convex decomposition of the

map to find a safe corridor in free space as described in (Liu,Watterson,

Tang, and Kumar (2016). The safe corridor is formed as linear equality

constraints in the QP for collision checking. We also consider dynamic

constraints on velocity, acceleration, and jerk in the QP to ensure that

the generated trajectory does not violate the system's dynamics. To

increase the safety, we propose a modified cost functional in the tra-

jectory generation step such that the generated trajectorywill be close

to the center of the safe corridor.

We couple our trajectory generation method described above with

a receding horizon method (Bellingham, Richards, & How, 2002) for

replanning. As the robotmoves, we only keep a local robot-centricmap

and use a local planner to generate the trajectory. The main reasons

behind this approach are, first, updating and planning in global map is

expensive and, second, the map far away from the robot is less accu-

rate and less important. Since we are using a local planning algorithm,

deadends are awell-knownchallenge. To efficiently solve this,webuild

a hybrid map consisting of a 3D local map and a two-dimensional (2D)

global map and our planner searches in this hybrid map to provide a

globally consistent local action.

The purpose of a navigation system is to enable a robot to success-

fully traverse from a start pose to a goal pose in either a known or

an unknown environment. The problem of navigating in an unknown

environment is especially difficult, because in addition to having good

state estimation and control, the robot needs to build an accurate

map as it moves and also generate collision-free trajectories quickly

in the known map so that the replanning can be done at a high rate

as the robot gets new sensor data. The initial works on navigation in

unknown environments with quadrotors used offboard computation

to run the planning due to the limited computation capability avail-

able on the platforms. He, Prentice, and Roy (2008) presented a navi-

gation system that uses a knownmap and takes the localization sensor

model into account when planning so as to avoid regions that would

lead to bad localization quality. Grzonka et al. (2009) demonstrated

a quadrotor system that is able to localize and navigate in a known

map using laser range finders as the main source of localization and

mapping. Both of these transferred the sensor data to an offboard

computer for processing. With a more powerful computer onboard

the robot, Bachrach, Prentice, He, and Roy (2011) were able to run a

scan matching based localization system and the position and orien-

tation controllers on the robot while the planner and a simultaneous

localization and mapping (SLAM) system to produce a globally con-

sistent map ran on an offboard computer. Shen, Michael, and Kumar

(2011) were the first to demonstrate a full navigation system running

onboard the robot without a known map of the environment. Since

MOHTA ET AL. 103

TABLE 1 Specifications of different commercially available off the shelf platforms. We expect a sensing and computation payload of approxi-
mately 1 kg, which has been added in the All-upmass. Themass of the battery is based upon the recommended battery for each platform

Platform (kg) Frame (kg) Battery (kg) All-up (kg) Max thrust (kgf) Thrust/weight ratio

3DRX8+ 1.855 0.817 (4S) 3.672 10.560 2.876

DJI F550+ E310 1.278 0.600 (4S) 2.878 5.316 1.847

DJI F550+ E600 1.494 0.721 (6S) 3.215 9.600 2.986

DJI F450+ E310 0.826 0.400 (3S) 2.226 3.200 1.438

DJI F450+ E600 0.970 0.721 (6S) 2.691 6.400 2.378

then, multiple groups have demonstrated similar capabilities (Fang

et al., 2017; Nieuwenhuisen, Droeschel, Beul, & Behnke, 2016; Nuske

et al., 2015; Schmid, Lutz, Tomić, Mair, & Hirschmüller, 2014; Valenti,

Dryanovski, Jaramillo, Ström, & Xiao, 2014). While these systems are

capable of operating in unknown environments, the navigation speeds

are quite low (less than 3 m/s). Recently, high-speed multirotor flight

at speeds of around 15 m/s was demonstrated using a laser-visual-

inertial odometry (Zhang & Singh, 2017), but they used a map which

was created as a preprocessing step to plan the trajectory for the

robot.

In this paper, we describe our navigation system that allows fast

flight of a quadrotor from a starting position to a goal location in an

unknown environment while avoiding obstacles during the flight. The

main contributions of this work are as follows:

• We explain the design choices made for our platform and onboard

sensors to achieve a high thrust-to-weight ratio for fast acceleration

and deceleration while still carrying sufficient sensing and computa-

tion for autonomous flight.

• We describe the individual components of our navigation system,

which allows the robot to fly fast through unknown and cluttered

GPS-denied environments using only onboard sensing and compu-

tation.

• Weprovide experimental results demonstrating the performance of

our system in various environments and discuss the lessons learned

from these experiments.

We believe this is one of the first systems that is capable of fast

aerial navigation through unknown and cluttered GPS-denied envi-

ronments using only onboard sensing and computation. The naviga-

tion system has been tested thoroughly in the lab and in real-world

obstacle-rich environments that were set up as part of theDARPAFLA

program.

This paper is organizedas follows: In Section2,wedescribeourplat-

form and the design decisions made to choose the current configura-

tion. In Section 3, we describe our estimation and control algorithms.

In this section, we also elaborate upon our sensor fusion methodology

that is crucial to get good stateestimates to control the robot. Section4

describes our mapping, planning, and trajectory generation modules.

In Section 5, we show results from various experiments performed to

benchmark and test our full navigation system. Finally, we conclude in

Section 6 with some discussion about the results and give some direc-

tions of future work that would help improve our system.

2 SYSTEM DESIGN

In order for the platform to have sufficient thrust-to-weight ratio for

fast acceleration and deceleration, we wanted to keep the sensing and

computation payload to be as small as possible. One of the main chal-

lenges for this work was designing and constructing the system which

can run within these limited size, weight, and computation budgets. In

this section, we describe our overall systemdesign. Specifically, we dis-

cuss platform design considerations, describe our computation, sens-

ing and communication modules, and highlight critical software archi-

tecture components that enable the system to operate smoothly.

2.1 Platform design

The guiding principle in the design of the platform was fast and agile

flight. The desired capability from the base platform was to be able to

reach speeds of up to 20 m/s. This leads to a secondary and stronger

requirement that the platformhas to be able to stop from those speeds

within typical sensor detection distances, which are around 20–25 m.

This implies that the platform should be capable of accelerations of

up to 10 m/s2. Reaching such high accelerations while maintaining the

altitude requires a thrust-to-weight ratio of at around 1.5. To have

some margin for control during these high acceleration phases, we

searched for an off-the-shelf platform that had sufficient thrust to pro-

vide a thrust-to-weight ratio of more than 2.0 when fully loaded. This

included an expected sensing and computation payload of up to 1 kg

and a battery sufficient for desired flight time of around 5min. A list of

various commercially available options is shown in Table 1.

Based on the survey of the available platforms, we selected the

platform configuration consisting of the DJI Flamewheel 450 base

along with the DJI E600 motors, propellers, and speed controllers

since it closely matches our performance requirement. Each of the

E600motor and propeller combination has a rated maximum thrust of

approximately 1.6 kgf. This leads to total thrust of around 6.4 kgf for

our quadrotor configuration. For the low-level controller, we selected

the Pixhawk (Meier, Honegger, & Pollefeys, 2015), which is a popu-

lar open-source autopilot. The main reason behind choosing the Pix-

hawk is that the firmware is open-source and customizable, giving us

the capability of easily modifying or adding low-level capabilities as

desired. In comparison, most of the commercially available autopilot

boards areusually blackboxeswith an interface to send commands and

receive sensor data. The base platform consisting of the F450 frame,

E600 propulsion system, and the Pixhawk has amass of approximately

1.1 kg. Adding the sensing and computation payload leads to a platform

104 MOHTA ET AL.

F IGURE 1 Our robot configuration showing the platform with
stereo cameras and a nodding lidar

F IGURE 2 Histogram of specific energy values for a set of 36 6S-
rated hobby-grade lithium polymer batteries

weight of 2.1 kgwithout the battery. To achieve the flight time require-

ment,weneed to select the correct battery taking into account that the

maximum total mass of the platform should be below 3 kg.

The batteries used inMAVs are based on lithium polymer chemistry

due to their high energy and power densities. The DJI E600 propul-

sion system requires a 6S battery, i.e., a battery with a rated voltage

of approximately 22.2 V. Given that, the main design choice available

is the battery capacity. Typical hobby-grade lithium polymer batter-

ies have specific energy values that are around 130–140W h/kg (Fig-

ure 2). The power required to hover for quadrotors is approximately

200W/kg (Mulgaonkar et al., 2014), so for a platformwith a total mass

between 2.5 and 3 kg the power consumption would be 500–600 W.

Assuming an overall efficiency of around 60% (Theys, Dimitriadis, Hen-

drick, & Schutter, 2016) going from the supplied power from the bat-

tery to the mechanical power output at the propellers, the energy

capacity of the battery for a 5- min flight time needs to be approxi-

mately 69.4–83.3 W h. In practice, we never use the full capacity of

the battery to preserve the life of the battery and also to have some

reserve capacity for unforeseen circumstances. If we only use 80% of

the rated capacity of the battery, it leads to a required battery energy

capacity of 86.8–104.1 W h. Using the average specific energy value

of 135W h/kg, we expect the mass of the battery to be between 0.64

and 0.77 kg, which fits in well with our total mass budget. Based on the

available battery capacities, we selected batteries with capacities of

F IGURE 3 Power distribution board

88.8 and 99.9W h to provide some flexibility in terms of having higher

performance or higher endurance.

To power all the sensors and the computer onboard the robot, we

required regulated power supplies for 12 and 5 V. We designed a cus-

tom power distribution board, shown in Figure 3, consisting of a power

conditioning circuit, DC–DC converters, power connectors, and a bat-

tery monitor. The board is capable of providing filtered 12 and 5 V

supply at amaximumof120Weach. In addition topowermanagement,

forweight-saving reasons, the board replaces the top plate of the stan-

dard commercially available configuration, forming an integral part of

the robot frame.

2.2 Sensing, computation, and communication

The robot needs to navigate through cluttered 3D environments with

purely onboard sensing and computation. This requires the correct

selection of sensors and the onboard computer to be able to perform

the desired task while keeping the mass low. The two tasks that the

robot has to perform that require proper sensor selection are state

estimation and mapping. The two solutions for state estimation for

MAVs are either vision based or lidar based. For unstructured 3D envi-

ronments, the vision-based systems have been more successful than

lidar-based ones, so we decided on using cameras as our primary state

estimation sensors. More details about why the stereo configuration

was selected are provided in Section 3. In addition to the cameras, we

added a downward pointing lidar (Garmin Lidar-Lite) and a VectorNav

VN-100 IMU for state estimation. The VN-100 inertial measurement

unit (IMU) is also used to trigger the capture from the cameras to have

time synchronization between the cameras and IMU.

The situation for mapping is a bit different. Current vision-based

dense mapping algorithms are either not accurate enough or too com-

putationally expensive to run in real time, so lidar-basedmapping is still

the preferred choice for MAVs. To keep our weight low, we decided

to use a Hokuyo 2D lidar (Hokuyo UST-20LX) instead of a heavy 3D

lidar. We still required a 3Dmap for planning, so we decided to mount

the 2D lidar on a one degree of freedom nodding gimbal as shown in

Figure 4. This allows us to tilt the 2D lidar up and down, which com-

binedwith the 270◦ field of viewof the lidar provides a good3Dmapof

MOHTA ET AL. 105

F IGURE 4 Ourmapping solution consisting of a 2D lidarmountedon
a nodding gimbal

the area around the robot. Ourmapping solution, including the gimbal,

has a total mass of around 250 g, which is much lower than the lightest

3D lidar available on themarket, theVelodynePuck LITE,whichweighs

around 600 g.

Tohandle all the computations for estimation, control,mapping, and

planning onboard the robot, we selected the Intel NUC i7 computer.

This single-board computer is based on the Intel i7-5557U processor

and supports up to 16 GB of RAM and an M.2 SSD for storage. This

provides sufficient computing power to run our full software stack on

the robotwithout overloading theCPUand also gives us ample amount

of storage for recording sensor data for long flights. While the robot is

flying, we need to have a communication link to monitor the status of

the various modules running on the robot. We wanted a link that has

good bandwidth, so that during development we can stream the sen-

sor data back to the base station, but also good range so that we do not

loose the link when running long range (up to 200 m) experiments. In

addition, since we use Robot Operating System (ROS) as our software

framework, having awireless link that behaves like awireless local area

network was preferred to be able to use the standard ROS message

transport mechanism. Based on these requirements, we selected the

UbiquityNetworks PicostationM2 for the robot side and theNanosta-

tionM2 for the base station. These are high powerwireless radios that

incorporate Ubiquity Networks' proprietary airMAX protocol, which

improves latency and reliability for long-rangewireless links compared

to the 802.11 protocol, which was designedmainly for indoor use. The

Picostation is the smaller and lighter of the two, weighing at around

50 g (after taking off the outer plastic case) compared to 400 g for the

Nanostation. This lower weight comes with the compromise of lower

transmit power and lower bandwidth, but the performance was suffi-

cient for our purpose, providing a bandwidth of more than 50Mbps up

to distances of 200m.

2.3 Software architecture

Any big system requires all of the individual components to work

together to allow the full system to function properly. Figure 5 shows

a highlevel block diagram of our system illustrating the different com-

F IGURE 5 A high-level block diagram of our system architecture

TABLE 2 Advantages and disadvantages of different visual odome-
try algorithms

Monocular Stereo Multicamera

Mechanical complexity Low Medium Low

Software complexity Medium Low-medium High

Robustness Low-medium Medium High

Feature distance High Medium-high High

ponents and how they are connected to each other. The software com-

ponents in our system can be grouped under four categories: estima-

tion, control, mapping, and planning. Each of these is in turn separated

into smaller parts, and we use ROS as the framework for all the high-

level software running on the robot. ROS is chosen because it provides

a natural way to separate each component into its own package, allow-

ing distributed development and ease of testing and debugging. Each

executable unit in a ROS system is called a node, and different nodes

communicatewith eachother usingmessagepassing. In thisway, aROS

systemcanbe thought of as a computational graph consistingof a peer-

to-peer network of nodes processing and passing data among them.

One convenient feature of this system is that the nodes can be run on

different computers, since the message passing uses the Transmission

Control Protocol (TCP) transport, which allows us to run a subset of

the nodes on the robot while the remaining can be run on a worksta-

tion computer making it easier to analyze and debug problems leading

to a faster development phase. We also benefit from the whole ROS

ecosystem of tools and utilities that have been developed to perform

routinebut useful taskswhendeveloping a systemsuchas tools for log-

ging and playing back the messages passed between nodes or tools to

visualize the data being sent between nodes.

3 ESTIMATION AND CONTROL

There has been a lot of research in recent times on visual and visual-

inertial odometry for MAVs with a variety of proposed algorithms

(Bloesch et al., 2015; Forster et al., 2014; Jones& Soatto, 2011; Klein&

Murray, 2007; Mourikis & Roumeliotis, 2007; Mur-Artal et al., 2015).

The algorithms can be classified based on the number and type of

cameras required into three groups: monocular, stereo, or multicam-

era. There are also algorithms using depth cameras, but these cameras

do not work well outdoors with sunlight so we do not consider them.

An overview of the advantages and disadvantages of the algorithms

is shown in Table 2. Looking at these, it is clear that the multicamera

setupwouldbe themost preferredbut the software complexity is still a

106 MOHTA ET AL.

hurdle in terms of real-world usage. Monocular algorithms have

received a lot of research attention in the last few years and have

improved to a level that they can be reliably used as the only source of

odometry for aMAVsystem.Oneproblemof themonocular algorithms

is that they require an initialization process duringwhich the estimates

are either not available or are not reliable. In comparison, the stereo

algorithms can be initialized using a single frame making them much

more robust in case the algorithm needs to be reinitialized while flying

if, for example, there is a sudden rotation.Onemore advantage of using

stereo cameras is that in the extreme case that stereo matching is not

possible due to features being too far away, we can use the input from

only oneof the cameras from the stereopair and treat it as amonocular

camera setup.

3.1 Visual odometry

3.1.1 Overview of SVO

To estimate the six degree-of-freedom motion of the platform, we use

the semidirect visual odometry (SVO) framework proposed in Forster

et al. (2017). SVOcombines the advantages of both feature-basedmeth-

ods, which minimize the reprojection error of a sparse set of features,

and directmethods, which minimize photometric error between image

pixels. This approach estimates frame-to-frame motion of the cam-

era by first aligning the images using a sparse set of salient features

(e.g., corners) and their neighborhoods in the images, estimating the

3D positions of the feature points with recursive Bayesian depth esti-

mation, and finally refining the structure and camera poses with opti-

mization (e.g., bundle adjustment). Our efficient implementation of this

approach is capable of estimating the pose of a camera frame in as little

as 2.5 ms, while achieving comparable accuracy to more computation-

ally intensivemethods.

The system is decomposed into two parallel threads: one for esti-

mating camera motion and one for mapping the environment (see

Figure 6). We briefly describe the algorithm here but we refer the

reader to the original paper (Forster et al., 2017) for further details.

In the following, the intensity image from camera C at timestep k is

denoted by 𝙸C
k
whereas 𝐮 = 𝜋(𝝆) denotes the camera projectionmodel

that maps a point in 3D space 𝝆 ∈ ℝ3 to image coordinates 𝐮 ∈ ℝ2.

Also, we use ‖ ⋅ ‖Σ to denote theMahalanobis norm, defined as ‖x‖Σ .
=√

x𝖳Σ−1x.

3.1.2 Motion estimation

The motion-estimation thread proceeds by first performing a sparse

image alignment between the two most recent frames, then obtain-

ing subpixel feature correspondence using direct methods on patches

around each sparse feature, and finally pose refinement on the induced

reprojection error.

Consider a body frameB that is rigidly attached to the camera frame

C with known extrinsic calibration 𝚃CB ∈ SE(3) (see Figure 7). Our

goal is to estimate the incremental motion of the body frame 𝚃kk−1
.
=

𝚃BkBk−1 such that the photometric error is minimized:

𝚃⋆kk−1 = arg min
𝚃kk−1

∑
𝐮∈C

k−1

1
2
‖𝐫𝙸C𝐮 (𝚃kk−1)‖2Σ𝙸 , (1)

F IGURE 6 A high-level diagram of the SVO software architecture

F IGURE 7 Changing the relative pose 𝖳k,k−1 between the current
and the previous frame implicitly moves the position of the repro-
jected points in the new image 𝐮′

i
. Sparse image alignment seeks to

find 𝖳k,k−1 that minimizes the photometric difference between image
patches corresponding to the same 3D point (blue squares)

where C
k
represents the set of pixels with known depth in camera C

at time k and the photometric residual 𝐫𝙸C𝐮 is defined by the intensity

difference of pixels in subsequent images 𝙸C
k
and 𝙸C

k−1 that observe the

same 3D point 𝝆𝐮:

𝐫𝙸C𝐮 (𝚃kk−1)
.
= 𝙸Ck

(
𝜋(𝚃CB𝚃kk−1 𝝆𝐮)

)
− 𝙸Ck−1

(
𝜋(𝚃CB 𝝆𝐮)

)
(2)

The corresponding3Dpoint𝝆𝐮 for a pixelwith knowndepth, expressed

in the reference Bk−1 frame, is computed by means of back projection:

𝝆𝐮 = 𝚃BC 𝜋−1
𝜌

(𝐮) ∀ 𝐮 ∈ C
k−1 (3)

MOHTA ET AL. 107

Sparse image alignment solves the nonlinear least-squares problem

in (1) using standard iterative nonlinear least-squares algorithms. To

make the sparse approachmore robust, we aggregate the photometric

cost in a small patch centered at the feature pixel. Since the depth for

neighboring pixels is unknown, we approximate it with the same depth

that was estimated for the feature.

In the next step, we relax the geometric constraints given by the

reprojection of 3D points and perform an individual 2D alignment of

corresponding feature patches. Tominimize feature drift over the cam-

era trajectory, the alignment of each patch in the new frame is per-

formed with respect to a reference patch from the frame where the

feature was first extracted. This step establishes feature correspon-

dencewith subpixel accuracy, but the computed feature alignment vio-

lates theepipolar constraints and introduces a small reprojectionerror,

which is typically below 0.5 pixels.

In the last step of motion estimation, we refine the camera poses

and landmark positions byminimizing the squared sum of reprojection

errors of all thepoint andedge features over the set of keyframes in the

map.While optimization over the whole trajectory with bundle adjust-

ment results in higher accuracy, for MAVmotion estimation, it is suffi-

cient to only optimize the latest camera pose and the 3D points sepa-

rately, which permits more efficient computation.

3.1.3 Featuremapping

In the derivation of motion estimation, we assumed that the depth at

sparse feature locations in the image was known. Here, we describe

how the mapping thread estimates this depth for newly detected fea-

tures, assuming that the camera poses are known from themotion esti-

mation thread.

The depth at a single pixel is estimated from multiple observa-

tions by means of a recursive Bayesian depth filter. When the num-

ber of tracked features falls below some threshold, a new keyframe is

selected and new depth filters are initialized at corner and edge fea-

tures in that frame. Every depth filter is associated with this reference

keyframe r, and the initial depth uncertainty is initialized with a large

value. For a set of previous keyframes as well as every subsequent

frame with known relative pose {𝙸k,𝖳kr}, we search for a patch along

the epipolar line that has the highest correlation via zero mean sum of

squared differences (see Figure 8). From the pixel with maximum cor-

relation, we triangulate the depth measurement �̃�k
i
, which is used to

update the depth filter. If enough measurements have been obtained

such that uncertainty in the depth is below a certain threshold, we ini-

tialize a new 3D point at the estimated depth in our map, which sub-

sequently can be used for motion estimation (see system overview in

Figure 6).

3.1.4 Implementation details

Our system utilizes multiple cameras, so consider a camera rig withM

cameras (see Figure 9). We assume that the relative pose of the indi-

vidual cameras c ∈ Cwith respect to the body frame 𝚃CB is known from
extrinsic calibration. To generalize sparse image alignment to multiple

cameras, we simply need to add an extra summation in the cost func-

tion of (1):

F IGURE 8 Probabilistic depth estimate �̂�i for feature i in the ref-
erence frame r. The point at the true depth projects to similar image
regions in both images (blue squares). Thus, the depth estimate is
updated with the triangulated depth �̃�k

i
computed from the point 𝐮′

i
of

highest correlation with the reference patch. The point of highest cor-
relation lies always on the epipolar line in the new image

F IGURE 9 Visual odometry with multiple rigidly attached and syn-
chronized cameras. The relative pose of each camera to the body frame
𝖳BCj is known from extrinsic calibration, and the goal is to estimate the
relativemotion of the body frame 𝖳kk−1

𝚃⋆kk−1 = arg min
𝚃kk−1

∑
C∈C

∑
𝐮∈C

k−1

1
2
‖𝐫𝙸C𝐮 (𝚃kk−1)‖2Σ𝙸 . (4)

The same summation is necessary in the last step of themotion estima-

tion part to sum the reprojection errors from all cameras. The remain-

ing steps of feature alignment and mapping are independent of how

many cameras are used, except that more images are available to

update the depth filters. An initial map is computed during initializa-

tion using stereomatching.

We additionally apply motion priors within the SVO framework by

assuming a constant velocity relative translation prior �̃�kk−1 and a rela-
tive rotation prior �̃�kk−1 froma gyroscope.We employ themotion prior

by adding additional terms to the cost of the sparse image alignment

step (4):

𝚃⋆kk−1 = arg min
𝖳kk−1

∑
C∈C

∑
𝐮∈C

k−1

1
2
‖𝐫𝙸C𝐮 (𝚃kk−1)‖2Σ𝙸 (5)

+ 1
2
‖𝐩kk−1 − �̃�kk−1‖2Σ𝐩

+ 1
2
‖ log(�̃�𝖳kk−1𝚁kk−1)∨‖2Σ𝚁 ,

where the covariances Σ𝐩,Σ𝚁 are set according to the uncertainty of

the motion prior, the variables (𝐩kk−1, 𝚁kk−1)
.
= 𝖳kk−1 are the current

108 MOHTA ET AL.

F IGURE 10 Data flow diagram of the UKF used on the robot

estimate of the relative position and orientation (expressed in body

coordinates B), and the logarithm map, log(⋅)∨, maps a rotation matrix

to its rotation vector.

We refer the reader to the original paper (Forster et al., 2017) for

further details about the approach, implementation, and its perfor-

mance.

3.2 Sensor fusion

Wehavemultiple sensors on the platform, each providing partial infor-

mation about the state of the robot. Moreover, the sensors provide

output at different rates, for example, we run the stereo cameras at

40 Hz while the downward pointing distance sensor runs at 20 Hz.We

need to merge these pieces of partial information into a single consis-

tent estimate of the full state of the robot. The typical method used

for such sensor fusion tasks is some variant of the Kalman filter. The

quadrotor is a nonlinear system due to its rotational degrees of free-

dom. This requires the use of either an extended Kalman filter or an

unscented Kalman filter (UKF). The UKF has the advantage of better

handling the systemnonlinearitieswith only a small increase in compu-

tation, sowe chose theUKF for our system. Figure 10 shows the inputs

and outputs of the UKFmodule running on the robot. The state vector

used in the UKF is

x =
[
p𝖳 ṗ𝖳 𝜙 𝜃 𝜓 b𝖳a b𝖳

𝜔

]𝖳
where p is the world-frame position of the robot, ṗ is the world-frame

velocity, 𝜙, 𝜃, and 𝜓 are the roll, pitch, and yaw, respectively, ba is the

accelerometer bias, whereas b𝜔 is the gyroscope bias.We use the ZYX

convention for representing the rotations in terms of the Euler angles

𝜙, 𝜃, and 𝜓 . The Euler angle representation was chosen for represent-

ing the orientation primarily because of its simplicity. The well-known

problem of gimbal lock when using Euler angles is not an issue in this

case since the desired and expected roll and pitch of the robot is always

less than 90◦.

The UKF consists of a prediction step, which uses the IMU data as

the input and multiple update steps, one for each of the other sen-

sors. The update step is performed whenever the corresponding sen-

sor measurement arrives. The prediction step is nonlinear since the

accelerometer and gyroscope measurements are in the body frame

while the position and velocity in the state are in the world frame,

which requires the transformation of the measured quantities from

body to world frame using the estimated orientation.

Given that the state at iteration k, xk (dimension n), hasmean x̄k and

covariance Pk , we augment it with the process noise (dimension p) hav-

ing mean v̄k and covariance Qk , creating the augmented state xa
k
and

covariancematrix Pa
k
,

x̄ak =

[
x̄k
v̄k

]
, Pak =

[
Pk 0

0 Qk

]

Then, we generate a set of sigma points by applying the unscented

transform (Julier,Uhlmann,&Durrant-Whyte, 1995) to the augmented

state,

a
0
(k) = x̄ak

a
i (k) = x̄ak +

√
(L + 𝜆)Pa

k
i = 1,… , L (6)

a
i (k) = x̄ak −

√
(L + 𝜆)Pa

k
i = L + 1,… ,2L

where L = n + p is the dimension of the augmented state and 𝜆 is a scal-

ing parameter (Wan &Merwe, 2000).

These sigma points are then propagated through the processmodel

with the accelerometer and gyroscopemeasurements as input.

 x
i (k + 1 | k) = f

(
x

i (k), u(k),
v
i (k)

)
where x

i
is the state part of the augmented state whereas v

i
is the

process noise part. The process model, f(xk, uk, vk), for our system is

given by

uk =
[
a𝖳meas 𝝎

𝖳
meas

]𝖳 vk =
[
v𝖳a v𝖳

𝜔
v𝖳
ba

v𝖳
b𝜔

]𝖳
a = ameas − ba + va
𝝎 = 𝝎meas − b𝜔 + v𝜔
pk+1 = pk + ṗkdt

ṗk+1 = ṗk +
(
Rka − g

)
dt

Rk+1 = Rk
(
I3 + [𝝎]× dt

)
bak+1 = bak + vbadt

b𝜔k+1
= b𝜔k

+ vb𝜔dt

whereRk = R(𝜙k, 𝜃k,𝜓k) is the rotationmatrix formed by using the ZYX

convention for theEuler angleswhereasva,v𝜔,vba , andvb𝜔 are the indi-

vidual process noise terms.

MOHTA ET AL. 109

From the transformed set of sigma points, x
i
(k + 1 | k), we can cal-

culate the predictedmean and covariance,

x̄k+1 | k =
2L∑
i=0

wm
i

x
i (k + 1 | k)

Pk+1 | k =
2L∑
i=0

wc
i

[
 x

i (k + 1 | k) − x̄k+1 | k] [x
i (k + 1 | k) − x̄k+1 | k]𝖳

wherewm
i
andwc

i
are scalar weights (Wan &Merwe, 2000).

Whenever a new sensor measurement, yk+1, arrives, we run the

update step of the filter. First we generate a new set of sigma points

in the same way as done during the prediction step (3.2), with the aug-

mented state and covariance given by

x̄ak+1|k =
[
x̄k+1 | k
n̄k

]
, Pak+1|k =

[
Pk+1|k 0

0 Rk

]

where n̄k is the mean of the measurement noise and Rk is the covari-

ance. The generated sigma points are then used to generate the pre-

dictedmeasurement using themeasurement function h(x, n),

 i(k + 1 | k) = h
(
 x

i (k + 1 | k),n
i (k + 1 | k))

ȳk+1|k =
2L∑
i=0

wm
i i(k + 1 | k)

Pyy =
2L∑
i=0

wc
i

[
 i(k + 1 | k) − ȳk+1|k] [i(k + 1 | k) − ȳk+1|k]𝖳

And finally the state is updated as follows:

Pxy =
2L∑
i=0

wc
i

[
x

i (k + 1 | k) − x̄k+1 | k] [i(k + 1 | k) − ȳk+1|k]𝖳
K = PxyP

−1
yy

x̄k+1 = x̄k + K
(
yk+1 − ȳk+1|k)

Pk+1 = Pk+1 | k − KPyyK
𝖳

Note that for each sensor input to the UKF except the IMU, which

is used for the prediction step, there is a separate measurement func-

tion, h(x, n), and the full update step is performed,with the correspond-

ingmeasurement function, when an input is received from any of those

sensors.

To take care of jumps in theheight sensorwhengoing over obstacles

such as boxes, the UKFmaintains an internal floor height parameter. If

there is a jump in the height sensor output compared to the expected

value, the UKF assumes that the floor level has changed and uses the

new floor level as the reference level for the height sensor. In this way,

jumps in the height sensor output are properly taken care of. The limi-

tation of this approach is that when the floor-level changes slowly, the

robot would only maintain the desired height relative to the floor level

andwouldmove up and down as the floor-level rises and falls.

The attitude filter running on the Pixhawk is a simple complemen-

tary filter, which can take an external reference orientation as an input.

This allows us to provide the estimate from the UKF to the Pixhawk to

improve the orientation estimate on the Pixhawk. This is important for

good control performance since the orientation controller running on

the Pixhawk uses the Pixhawk's estimate of the orientation whereas

our control commands are calculated using the UKF estimates. With-

out an external reference being sent to the Pixhawk, the orientation

estimates on the Pixhawk can be different from the UKF which would

lead to an incorrect interpretation of the control commands.

3.3 Control

The controller used for the robot has the cascade structure, as shown

in Figure 5, which is has become standard for MAVs. In this structure,

we have an inner loop controlling the orientation and angular veloci-

ties of the robot while an outer loop controls the position and linear

velocities. In our case, the inner loop runs at a high rate (400Hz) on the

Pixhawk autopilot while the outer loop runs at a slightly slower rate

(200Hz) on the Intel NUC computer.

At every time instance, the outer loop position controller receives

a desired state, which consists of a desired position, velocity, acceler-

ation, and jerk, from the planner and using the estimated state from

the UKF, computes a desired force, orientation, and angular velocities

which are sent to the orientation controller. The inner loop orienta-

tion controller receives these and computes the thrust and moments

required to achieve the desired force and orientation. These are then

converted into individual motor speeds that are sent to the respective

motor controllers.

The controller formulation we use is based on the controller devel-

oped in Lee et al. (2010) with some simplifications. The thrust com-

mand of the position controller is calculated as

epos = p̂ − pdes , evel = ̂̇p − ṗdes

f = m
(
−kposepos − kvelevel + ge3 + p̈des

)
Thrust = f ⋅ R̂e3 (7)

where p̂ is the estimated position of the robot in the world frame, ̂̇p
is the estimated velocity of the robot in the world frame, terms with

the des subscript are the desired quantities,m is the mass of the robot,

kpos and kvel are controller gains, e3 = [0 0 1]𝖳, and R̂ is the rotation

matrix, which converts vectors from body frame to world frame calcu-

lated using the estimated roll, pitch, and yaw.

The desired attitude is calculated as

b2,des =
[
− sin𝜓des, cos𝜓des, 0

]𝖳
b3 = f‖f‖ , b1 =

b2,des × b3‖b2,des × b3‖ , b2 = b3 × b1

Rdes =
[
b1, b2, b3

]
(8)

ḃ2,des =
[
− cos𝜓des�̇�des, − sin𝜓des�̇�des, 0

]𝖳
ḃ3 = b3 ×

ḟ‖f‖ × b3, ḃ1 = b1 ×
ḃ2,des × b3 + b2,des × ḃ3‖b2,des × b3‖ × b1,

ḃ2 = ḃ3 × b1 + b3 × ḃ1[
𝛀des

]
× = R𝖳desṘdes (9)

110 MOHTA ET AL.

F IGURE 11 Our navigation framework. A desired goal g is sent to
the planner at the beginning of the task. The planner generates a path,
P𝜏 , using themap,M𝜏 , and sends it to the trajectory generator. The tra-
jectory generator converts thepath into a trajectory,Φ𝜏 , and sends it to
the recedinghorizon controller. The controller thenderives thedesired
state xdes at 200Hz from this trajectory which is sent to the robot con-
troller. The inputm to the mapping block denotes the sensor measure-
ments

where 𝜓des and �̇�des are the desired yaw angle and yaw rate, respec-
tively.

Note that here we have to define b2,des based on the yaw instead of

defining b1,des as done inMellinger andKumar (2011) due to the differ-

ent Euler angle convention,weuse theZYXconventionwhile theyused

ZXY.

The thrust and attitude commands, from (7) to (9), are then sent to

the Pixhawk autopilot through mavros.† The attitude controller run-

ning on the Pixhawk takes these commands and converts them to com-

manded motor speeds. First, using the Rdes and the estimate of the

current orientation, R̂, we calculate the desiredmoments as follows:

[
eR
]
× = 1

2

(
R𝖳des R̂ − R̂

𝖳
Rdes

)
, eΩ = 𝛀 − R̂

𝖳
Rdes𝛀des

M = −kReR − kΩeΩ

whereΩ is the current angular velocity of the robot in the body frame,

and kR and kΩ are controller gains.

Then, from the desired thrust and moments, we can calculate the

thrust required from each propeller, which allows us to compute the

desired motor speed as shown in Michael, Mellinger, Lindsey, and

Kumar (2010).

4 MAPPING AND PLANNING

Our navigation system consists of five parts as shown in Figure 11. In

this section, we discuss the mapping, planner, and trajectory genera-

tion threads.

4.1 Mapping

We have mounted a LIDAR on a servo such that we can generate a

3D voxel map by rotating the laser. Updating the map and planning

using the 3D global map are both computationally expensive and in

† https://github.com/mavlink/mavros.

addition, with noise and estimation drift, the global map can be erro-

neous. Hence we utilize a local mapping technique that generates a

point cloud around current robot location (Figure 12). This local point

cloud, Mc, has fixed size and fine resolution and is used to build a 3D

occupancy voxel map,Ml, centered at current robot location. Since the

local map only records the recent sensor measurements with respect

to current robot location, the accumulated error in mapping is small.

We also generate a coarser resolution 2D map,Mw , in global frame to

solve the dead-end problem caused by local planning.We call this map

the “global information map” since it contains two pieces of informa-

tion: One is the known and unknown spaces so that we know which

part has been explored; the other is the location of walls detected

from Mc that the robot cannot fly over. The global information map

is constructed by taking a slice of the 3D local map while taking care

of removing obstacles that the robot can go over or under and per-

forming a ray trace of all the occupied voxels in this slice. There is

no loop closure or global scan matching involved in constructing this

map.

4.2 Path planning

We use A⋆ to plan a path in a hybrid graph that links the voxels in both

local 3D map Ml and global information map Mw (result is shown in

Figure 12c). By using the hybrid graph, we can efficiently derive the

pathP in localmap that is globally consistent. Figure13 showsanexam-

ple of using this method to solve the dead-end corridor problem.

4.3 Trajectory generation

In this subsection, we are going to introduce the trajectory generation

method given the mapM and a prior path P. The trajectory generation

process is shown in Figure 14. Through regional inflation, a safe corri-

dor is found inM that excludes all the obstacle points. As the intermedi-

atewaypoints in P can be close to the obstacles, we shift the intermedi-

ate waypoints toward the center of safe corridor. The new path P⋆ and

the safe corridor are used to generate the trajectory.

4.3.1 Regional inflation by line segments

Inspired by the IRIS algorithm in Deits and Tedrake (2015a), we devel-

oped an algorithm to dilate a path in free space using ellipsoids. We

briefly describe the process here but more details can be found in Liu

et al. (2017).

For each line segment in the path P, we generate a convex polyhe-

dron that includes the whole segment but excludes any occupied voxel

inM through two steps:

1. Grow ellipsoid for each line segment (Figure 15)

2. Inflate the ellipsoid to generate the polyhedron (Figure 16)

The ellipsoid is described as 𝜉r(E, d) = {Ex̃ + d | ‖x̃‖ ≤ r}, which is the
projection of a unit sphere with radius r into ℝ3. Here, the matrix E

denotes theprojectionmatrix andvectord represents the center of the

ellipsoid. As the ellipsoid is inflated in step 2, it touches the obstacles

and we construct tangent planes to the ellipsoid at these points. The

https://github.com/mavlink/mavros

MOHTA ET AL. 111

F IGURE 12 We keep the range of the local point cloud equal to the sensor range (e.g., 30 m for a laser range finder). The size of local mapMl is
smaller than the point cloudMc because of the computational limitation. For planning, we dilate the occupied voxel inMl by the robot radius. The
global informationmap is much larger but withmuch coarser resolution (1m). For eachmap, we draw a bounding box to visualize the size

F IGURE 13 At planning epoch 𝜏1, the end of the corridor cannot be viewed by the sensor with limited range and the path leads the quadrotor to
go forward (a)–(b). At planning epoch 𝜏2, with a similar local mapMl

𝜏2
but different global mapMw

𝜏2
which contains the dead-end geometry, planning

to the same goal results in a path which avoids going into the dead end

F IGURE 14 Trajectory generation process, which can be treated as
a black box (dashed rectangle) as in Figure 11. The inputs are a path P
and a discretemapM, output is the dynamically feasible trajectoryΦ

tangent plane at a point xr is computed as shown in equation (10).Once

we have completed the process (see Figure 16), we have a set of half-

planes and a polyhedron C is constructed as the intersection of these

half-planes: C = {x | AT
j
x ≤ bj, j = 1,… , m}.

Aj = 2E−TE−1(xr − d), bj = ATj xr (10)

Figure17 showsa typical example of a pathP and the corresponding

safe flight corridor generated using our algorithm.

4.3.2 Pathmodification

The original path from the planner can be close to the obstacles.

Although the trajectory generation does not require the final trajec-

tory to go through the intermediate points, the path implicitly affects

the route of the trajectory. The path modification step aims to modify

the original path away from the obstacle by keeping the intermediate

waypoints in themiddle of a safe corridor.We use a bisector plane that

passes through the intermediatewaypoint p; this plane intersects both

the polyhedra that are connected at p. As a result, the point p is moved

to the centroid of the polygon formed by the intersection of the bisec-

tor plane with the polyhedron (Figure 18c).

4.3.3 Trajectory optimization

We formulate the trajectory generation as a quadratic optimization

problem as shown in (11). The trajectory is parameterized in time t

as Φ(t). Compared to the standard formulation of this problem for

quadrotors (Mellinger & Kumar, 2011), we add a second term in cost

function which is the summation of square of the distance between

the trajectory Φ and the given path P. This distance cost is weighted

by a factor 𝜖. Figure 19 shows the affect on trajectory by changing this

weighting factor. Thus, we can control the shape of a trajectory to keep

it close to the desired path P and away from obstacles to improve the

safety.

112 MOHTA ET AL.

F IGURE 15 Construction of ellipsoid for each line segment. Gray regions indicate obstacles, whereas thewhite region is free space. Left: starting
with a sphere with the line segment as the diameter, we find the closest point 𝐩⋆ to the center of the line segment and adjust the length of short
axes such that the dashed ellipsoid touches this 𝐩⋆. Middle: repeat the same procedure, find a new closest point 𝐩⋆ and the new ellipsoid. Right: no
obstacle is inside the ellipsoid, current ellipsoid is the largest one in the free space with the line segment as the major axis. Several iterations are
required to ensure the final ellipsoid excludes all the obstacles

F IGURE 16 Inflationof ellipsoid to generate polyhedron. Left: Find the first intersectionpoint𝐩c
0
for the ellipsoidwith theobstacles and compute

the tangent plane at 𝐩c
0
(red line). The obstacle points outside the corresponding half-space are removed (shadowed). Middle: Expand the ellipsoid

and find the next intersection point 𝐩c
1
(original ellipsoid shown with the dashed line whereas the new expanded ellipsoid is shown with the solid

line), keep removing obstacle points from the map that are outside the new half-space. Right: Keep inflating the ellipsoid until no obstacle remains
in the current map; the polyhedron C (blue region) is defined by the intersection of the half-planes

F IGURE 17 Generate a safe flight corridor (blue region) from a given path P = ⟨𝐩0 → ⋯ → 𝐩4⟩. Left: find the collision-free ellipsoid for each line
segment. Right: dilate each individual ellipsoid to find a convex polyhedron

argmin
Φ

J = ∫
T

0

[‖‖‖‖‖d
4Φ(t)
dt4

‖‖‖‖‖
2

+ 𝜖 dist(P,Φ(t))2
]
dt

s.t. Φ(0) = p0, Φ(T) = pf , Φ(t) ∈ Free space (11)

Φ̇(t) ≤ vmax, Φ̈(t) ≤ amax, Φ⃛(t) ≤ jmax

4.3.4 Continuous optimization

To solve (11), we have chosen to represent the trajectory Φ(t) as m
piecewise nth-order polynomial splines. From our experiments, we

have found that n = 7 provides good performance for trajectory opti-

mization and that increasing n produces similar trajectories, but with

longer computational time. Also we define the indices: i ∈ {0,… , n},
j ∈ {1,… , m}.

Each spline segment Φj takes time Δj such that the time for the

whole trajectory T is calculated by T =
∑

j Δj. We can write Φj with

respect to coefficients 𝛼ij and basis functions pi as

Φj(t) =
∑
i

𝛼ijpi(t) (12)

We reparametrize time such that we have unit time scaling for each

segment,

s(t) =
t −

q−1∑
j=1

Δj

Δq
(13)

MOHTA ET AL. 113

F IGURE 18 We generate the safe corridor by inflating the free region around the path. The ellipsoids are shown in (a), the transparent orange
region in (b) shows the polyhedra of safe corridor. The cyan path P⋆ is modified from the original path P by shifting the intermediate waypoints to
the centroid of bisector planes (blue polygon in (c))

F IGURE 19 The generated trajectories (purple) for different values of the weight 𝜖. As we increase the weight, the trajectory gets closer to the
given path (cyan)

where q ∈ {1,… , m} is chosen according to the segment such that s ∈
[0,1].

We select the basis functions pi such that,

d4

ds4
pi(s) = P̃i−4(s) for i ∈ {4,… , n} (14)

where P̃i(s) is the ith-shifted Legendre polynomial. This leaves the first

four basis functions undefined, for which we just use

pi(s) = si for i ∈ {0,… ,3} (15)

Note that the evaluation of any derivative of Φj is linear with respect

to 𝛼

d r

dtr
Φj(t) =

∑
i

𝛼ij ⋅
d r

dtr
pi(t) = (Δj)−r

∑
i

𝛼ij ⋅
d r

dsr
pi(s) (16)

This results in the first part of the cost function in (11) to be quadratic

in 𝛼

J1 = ∫
T

0

‖‖‖‖‖ d
4

dt4
Φ(t)

‖‖‖‖‖
2

dt =
∑
ij

𝛼2ij

(Δj)−8

2i + 1
(17)

To ensure continuity of our spline up to the first three derivatives,

we need to add the following constraints for j ∈ {1,… , m − 1} and

r ∈ {0,… ,3}:

(Δj)−r
∑
i

𝛼ij ⋅
d r

dsr
pi(s)

||||s=1 = (Δj+1)−r
∑
i

𝛼i(j+1) ⋅
d r

dsr
pi(s)

||||s=0 (18)

The start and end constraints are represented as

(Δ1)−r
∑
i

𝛼i1 ⋅
d r

dsr
pi(s)

||||s=0 = d r

dtr
p0 (19)

(Δm)−r
∑
i

𝛼im ⋅
d r

dsr
pi(s)

||||s=1 = d r

dtr
pf

For the inequality constraints and the centering part of the cost func-

tional, we use the subsampling method proposed by Mellinger and

Kumar (2011). ‘Along each segment, we can select g points at which

to sample the trajectory. In practice, we found that uniformly sampling

g = 10 points within interval [0,1]worked well. We denote sg as these

sampled points in the following discussion.

The inequality constraints are of the form

d r

dtr
Φj(sg) ⋅ Aj ≤ bj ∀ g, ∀ j ∈ {1,… , m} (20)

where Aj and bj come from the polyhedra found in Section 4.3.1 for

r = 0 and L1 bounds on the dynamics for r > 0 (Boyd & Vandenberghe,

2004).

To compute the second part of the cost in (11), we found that rect-

angular integration (Press, 1992) workedwell

J2 = 𝜖
∑
jg

(lj ⋅Φj(sg)‖lj‖
)2

(21)

where lj = {ajx + bjy + cjz + dj = 0} is the corresponding line segment.

114 MOHTA ET AL.

Combining the above equations, we can see that (11) is equivalent

to the followingQP in 𝛼

min
𝛼

𝛼TQ𝛼 Eqn. 17 + Eqn. 21

s.t A𝛼 = b Eqn. 18 and Eqn. 19

C𝛼 ≤ d Eqn. 20

(22)

Note that choosing Δj is critical to the feasibility of Equation (22)

and the quality of the resultant trajectory. To choose theΔj we use the

times we get by fitting a trapezoidal velocity profile through the seg-

ments, so the time per segment is based on the length of each line seg-

ment lj in the path through the environment.

5 EXPERIMENTAL RESULTS

5.1 Estimation benchmarking

The main task for the robot is to fly long distances to a goal point, so

the estimation accuracy is very important. The drift in the estimator

should be low so that the robot reaches the desired goal. To test the

accuracy anddrift in theestimator,we flew the robot in themotion cap-

ture space in the lab. The robotwas flownmanually along an aggressive

trajectory reaching speeds of up to 4 m/s and accelerations of 4 m/s2.

The plots of the estimated and ground-truth position and velocity as

shown in Figure 20. As can be seen from the figure, the final drift after

more than 60 m of flight is less than 0.6 m, giving us a drift of around

1%. Note that there is almost no drift in the Z-axis due to the use of the

downward pointing distance sensor, which gives us an accurate height

estimate.

The SVO framework was deployed on our MAV system for visual

odometry using a forward-facing stereo camera configuration and

onboard computation. As a demonstration of the accuracy of the

motion estimation, some high-speed maneuvers were flown manually

in a warehouse environment. TheMAV accelerated aggressively along

a 50-m straight aisle in the warehouse, braked aggressively to a stop,

and then returned to the starting location at a moderate speed. Fig-

ure 21 shows several onboard camera images marked up with the fea-

tures that SVO is tracking, as well as the sparsemap of 3D points in the

environment thatweremapped during this trajectory. During this trial,

theMAV reached amaximum speed of over 15m/s, as shown in Figure

22 even with such an aggressive flight, SVO only incurs around 2m of

position drift over themore than 100m trajectory.

5.2 Real-world tests

The quadrotor navigation system described in this paper has been

tested extensively in the lab environment as well as in multiple real-

world environments. The system has been used on our entry for the

first test of theDARPA Fast Lightweight Autonomy (FLA) program and

was able to successfully navigate multiple obstacle courses that were

set up. The rules of the FLA program do not allow any human interac-

tion after the robot is airborne, so all the runs described in this section

were fully autonomous.

TABLE 3 Approximate CPU usage of the individual components of
the system

Component CPU usage

Visual odometry 35%

Planner 10%

Mapping 10%

Sensor drivers 8%

UKF 7%

Control 5%

Statemachine 5%

Total 80%

TABLE 4 Summary of our runs during the first test of the DARPA
FLA program

Task description Successful runs Failed runs

Empty corridor 5 0

Corridor with boxes 3 2

Corridor with overhead obstacles 4 1

Sparse slalom 3 0

Tight slalom 3 1

Aisle changewith 45◦ transition 3 0

Aisle changewith 90◦ transition 1 2

Total 22 6

The test environment was constructed so as to simulate the inside

of a warehouse. There were two aisles separated by scaffolding of

around 5 m height with tarps on the back of the scaffolding and boxes

placed on the shelves. The total length of the test course was around

65 m, whereas the width of each of the aisles, in between the scaf-

foldings, was 3 m. Different types of obstacles such as a scaffolding

tower or scissor lifts were placed along the aisles to test the obstacle

avoidance performance of the robot. Theminimum clearance between

the obstacle in the aisle and the scaffolding on the side was set to be

2.1 m. As a reference, the rotor tip-to-tip diameter of the platform

is 0.76 m. An example of the obstacles along the aisle is shown in

Figure 23.

Different types of obstacle courses were set up using the aisles and

the obstacles to challenge the robot. The simplest task was to just

go straight down an empty aisle, whereas the most complicated ones

involved changing aisles due to the first aisle being blocked in the mid-

dle. The only prior information available for each task was the type of

obstacles to expect along the course, but the actual layout of the test

course was unknown. The goal position was specified as a bearing and

a range from the starting position at the start of each run. A particular

task was deemed complete only when wewere able to complete three

successful runs of the task with different obstacle course layouts, thus

ensuring that our system can work robustly. A full summary of all our

runs during this test is shown in Table 4. In the following, we describe

some of the specific tasks and also show results of our runs through

them.

MOHTA ET AL. 115

F IGURE 20 Plots of position and velocity from our estimation system compared to ground truth frommotion capture

F IGURE 21 Camera images fromonboard theMAV show good feature tracking performance from SVO, even at high speed. The resulting sparse
map of 3D points that have been triangulated is consistent andmetrically accurate with the actual structure of the environment

F IGURE 22 Motion estimation of theMAV during a high-speed, straight line trajectory. SVO provides a smooth pose estimate of this aggressive
flight, which reached a speed of over 15m/s over 50m

5.2.1 Slalom

In the slalom task, the obstacles in an aisle were arranged in a manner

such that robot is forced to move in a zigzag manner along the aisle,

going to the right of the first obstacle, then left of the second, one and

so on. Figure 24 shows the result of one of our runs. Since therewas no

ground truth position data available, the only way to judge the perfor-

mance of the system is to compare the map created by the robot with

a map of the real obstacle course. From the figure, we can see that the

projected map (in gray) matches the actual obstacle course layout (in

black) showing the accuracy of our estimation and control algorithms.

116 MOHTA ET AL.

F IGURE 23 An example obstacle course that the robot had to get through and a snapshot of the local 3D map constructed using the nodding
laser as the robot was traversing the course. The robot was right next to the tower obstacle when the snapshot of the local map was taken. The
tower obstacle (on the left) and the scissor lift (further away on the right) can be clearly seen in the 3Dmap

F IGURE 24 One of our runs for the slalom task. In black, we show
the actual obstacle course layout. The hollow obstacles in the aisle are
similar to the tower shown in Figure 23, whereas the filled black ones
are scissor lifts. The gray regions are the projection of map created by
the robot onto the 2D plane. The robot starts near the opening on the
left and has to reach the target represented by the black rectangle on
the right. The path of the robot shows it moving in a zigzag fashion to
avoid the obstacles. Each grid cell is 5m×, 5 m

F IGURE 25 One of our runs for the aisle change with 45◦ transition
task. In black, we show the actual obstacle course layout. The small
filled black objects along the aisles are short obstacles that the robot
could fly over. The gray regions are the projection of map created by
the robot onto the 2D plane. The robot starts near the opening on the
left and has to reach the target represented by the black rectangle on
the right. Each grid cell is 5m×, 5 m

5.2.2 Aisle changewith 45◦ transition

In this task, the robot was required to change from the first aisle to the

second one since the first aisle was blocked in the middle. The open-

ing between the first and second aisles was constructed such that the

robot couldmovediagonally along a45◦ line from the first aisle into the

second aisle. Figure 25 shows one of our runs for this task. The robot

F IGURE 26 One of our runs for the aisle change with 90◦ transition
task. In black, we show the actual obstacle course layout. The small
filled black objects along the aisles are short obstacles that the robot
could fly over. The gray regions are the projection of map created by
the robot onto the 2D plane. The robot starts near the opening on the
left and has to reach the target represented by the black rectangle on
the right. Each grid cell is 5m×, 5 m

successfully completes the transition and starts moving along the sec-

ond aisle. Note that the goal was still in line with the first aisle, so the

robot is always looking tomove toward the left to get closer to the goal.

This causes it to remain in the left part of the secondaisle as is observed

in the figure. After crossing the second aisle, the robot moves back to

the left to reach the goal. Again we can see that the projected map (in

gray) matches the actual course layout (in black).

5.2.3 Aisle changewith 90◦ transition

This task was just a more challenging variation of the previous one.

Here the aisle change required the robot to move sideways (see

Figure 26).Wewere able to reach the goal, but our system did not per-

form very well for this task. As can be seen from the figure, the state

estimate had small jumps anddrifted during the transition between the

aisles. There is someposition drift, but themain issue is the drift in yaw.

Since the distance to the goal is large, even small drifts in yaw corre-

spond to large position errors when the robot reaches the goal. The

main reason for this drift was that when moving sideways in front of

the obstacle during the transition, the vision system lost all the tracked

MOHTA ET AL. 117

F IGURE 27 Plots showing the control performancewhen running the full navigation system inanemptyaisle.During the flight, the robot reaches
speeds of up to 7m/s

features in the image and as it entered the second aisle, got new fea-

tures which were far from the camera since it was looking along the

aisle. Since the new features were far from the camera, they could not

be triangulated accurately and hence caused bad estimates from the

vision system. During this phase, there were a number of jumps in the

output of vision system and hence led to drifts in the state estimate.

As the robot started moving forward after the transition, the vision

system was able to triangulate more features along the corridor and

get good estimates again. This issue does not occur for the 45◦ tran-

sition case since the robot is able to see some part of the second aisle

when moving diagonally and hence already has well-triangulated fea-

tureswhen it is completes the transition into the second aisle. Oneway

tohelpwith this issuewouldbe tomake the robot orient itself such that

it is always facing the direction along which it is moving.

5.3 High-speed flight

To test the high-speed capability of the system, we performed a test

run in an aisle with no obstacles. The goal provided to the robot was

to go straight for a distance of 65 m. We were able to fly at speeds of

up to 7 m/s and reach the desired goal position. A plot of the desired

and estimated position and velocity is shown in Figure 27,which shows

that the performance of our controller is good enough to track such

aggressive trajectories. The initial section of the plots, from 0 to 4 s, is

the autonomous takeoff and the forward trajectory begins at t = 4 s.

There was no source of ground truth during the test, but based on the

expected location of the goal the net drift in the position estimateswas

less than 2m.

6 DISCUSSION AND CONCLUSION

In thiswork,wedevelopeda systemthat allowsaquadrotor tonavigate

autonomously in GPS-denied and cluttered environments. Our naviga-

tion systemconsists of a set ofmodules thatwork together to allow the

robot to go from a starting position to a specified goal location while

avoiding obstacles on the way. After developing our system, we found

the following points especially important to successfully build such a

system:

• Modular architecture: During our development process, each of

the modules were separately developed. This was made possible by

defining proper interfaces between the modules and using message

passing to communicate among them. We used ROS as the frame-

work for all the software running on the robot since it was designed

to solve this exact problem. This separation of the modules allowed

most of the planner development to happen in a simulator while the

estimation and control modules were being developed. This accel-

erated the development since different modules could be imple-

mented and tested in parallel.

• Sensor selection: The choice of sensors used for estimation and

mapping plays an important role in determining the robustness

of the system. As shown in Table 2, there are various advantages

and disadvantages of different camera configurations for visual

odometry. We selected a stereo configuration for our system since

it provides increased robustness over a monocular camera setup,

which is gaining popularity among the research community due to

its minimalistic nature and also allows us to have simpler algorithms

compared to multicamera systems. The use of a dedicated height

sensormakes it possible tomaintain altitude evenwhen there is drift

in our visual odometry, allowing the robot to safely fly without hit-

ting the ground or going too high. However, the downward pointing

height sensor has jumps in the measurement when the robot goes

over obstacles and this has to be properly taken care of in the sen-

sor fusion module. For mapping, instead of using a fixed lidar, we

mounted it on a servo to sweep it up and down allowing us to create

3Dmaps and navigate in 3D environments with obstacles above and

below the robot. With a fixed lidar, we would not have been able to

safely avoid all the obstacles that we encountered during the tests.

• Local map for planning: Using a local map for planning instead of

a global map was a crucial decision in the design of our planner.

The problem with creating a global map is that we need to explicitly

118 MOHTA ET AL.

maintain global consistency by making use of loop closures to elim-

inate drifts. By comparison, the local map approach helps the plan-

ner tolerate drifts in the state estimation since the drift is small in

the short period of time that the local map is constructed in. This

can be seen clearly in Figure 26 where there is large drift in the yaw

but the robot is still able to reach the goal. This also helps in reduc-

ing the computational complexity and allows us to run the planner

at a higher rate. Faster replanning reduces the latency between an

obstacle being seen by the mapping system and the robot reacting

to it, thus improving the robustness of the system.

In addition to these positive points, we learned some lessons during

the tests in the warehouse environment.

• Drift in the visual odometry: The tests in the warehouse environ-

ment involved flying long trajectories while constantly moving for-

ward. Since the floor of the building was smooth and did not have

texture, very few image features could be detected on it. This led to

most of our image features coming from theobstacles to the side and

front of the robot. We even picked up edgelet features from struc-

tures on the ceiling of the building. Thus a large part of the image fea-

tureswere at a large distance from the robot. To get good depth esti-

mates of these far-away features, either the stereo baseline needs

to be large or there needs to be sufficient parallax between the fea-

ture observations due to the motion between frames. We were lim-

ited to a 0.2-m stereo baseline due to the size of the robot. When

moving along the long aisles, the image featuresweremainly in front

of the robot, which sometimes led to insufficient parallax to get

good depth estimates for the features. Owing to the poor depth esti-

mates for some of the features, the visual odometry was not able to

detect the correct scale of the motion between frames, which led

to drift in the estimates. This caused a failure to reach the goal in

some cases. One solution to this is to have a more tightly coupled

visual odometry system where the accelerometer measurement is

also used to provide another source of scale for the visual odometry

system.

• Local map size: One factor that prevents us from reaching high

speeds is the size of themapused for planning. Sincewewant to gen-

erate dynamically feasible trajectories for the robot, we have to take

into account the maximum acceleration that the robot can achieve.

Moreover, to guarantee safety,wehave toplan trajectories such that

the robot comes toahalt at theendof theknownmapsince there can

be undiscovered obstacles just outside the map. Thus, the combina-

tion of map size and maximum acceleration puts a limit on the max-

imum speed that the robot can reach. The main factor limiting our

local map size is the time required to plan in that map. The majority

of the time in each planning step is taken by the A∗ algorithm, which

is used to find a path through the hybrid graph (as described in Sec-

tion 4). To reduce this time, we are looking into using better heuris-

tics for A∗ and other techniques such as Jump Point Search (Hara-

bor & Grastien, 2011), which can significantly speed up the graph

search.

• Map sparsity:Weuse a nodding 2D lidar to create the local 3Dmap,

which is used for planning. The primary reason for this is to keep

the weight of the platform low. One problem with this setup is that

only a slice of the map is updated at a time, with the full map update

rate depending on the nodding frequency. The maximum nodding

frequency that we are able to reliably run is around 1.5 Hz which

means that even if the robot is moving at a speed of only 3 m/s the

full map is updated only after the robot has moved 2m. In fact, most

of the failures shown in Table 4 were caused by failure to update the

map fast enoughwhich led to the robot hitting an obstacle. Themost

common example of this was when an obstacle obstructed the view

of another behind it and the robot planned a trajectory to go around

the first object. If the map update is fast enough, the robot can react

to theseoccludedobstacles that suddenly come into the field of view

but in our case it sometimes led to a collision.Weare looking at using

other approaches for mapping, for example, stereo matching, which

provide a denser representation of the environment to avoid such

issues.

In conclusion, we have presented a solution that consists of all

the modules that are required for fast autonomous navigation of an

aerial robot through an unknown environment. The system has been

designed such that all the sensing and computation occur onboard the

robot. Once the robot has been launched, there is no human interac-

tion necessary for the robot to navigate to the goal.

The system has been thoroughly tested in the lab as well as in

the warehouse environment that was set up as part of the DARPA

FLA program. Our robot was able to successfully navigate the vari-

ous obstacle courses that were specifically designed to challenge the

navigation system. The only input from the operator for each run

was the goal position relative to the starting position. In fact, during

some of the runs, we even lost the communication link between the

base station (which was only used for monitoring purposes) and the

robot, due to the long distance and the large scaffolding structures in

between, but the robot kept on going and successfully completed the

task.

The final goal is to be able to fly at speeds of more than 10 m/s

through cluttered environments, and we believe that it would require

more work in all the individual modules that make up the system. In

estimation, we need to reduce the drift that the visual odometry sys-

tem experiences when flying fast while following long trajectories. In

control, we need to incorporate aerodynamic effects such as drag,

which become increasingly important when flying fast. In the mapping

part, the nodding lidar solution needs to be replaced by one which

provides a denser representation of the environment to detect small

obstacles reliably. And finally, the planning subsystemneeds to be sped

up to allow us to use a larger map for planning and also to allow faster

replanning to make the system more robust. As these developments

aremade,wewould be able to incorporate them into our systemdue to

themodular architecture, thusproviding a strong foundation for future

research.

ACKNOWLEDGMENTS

We gratefully acknowledge support from DARPA grants

HR001151626/HR0011516850.

MOHTA ET AL. 119

ORCID

Kartik Mohta http://orcid.org/0000-0002-0932-6475

REFERENCES

Achtelik,M., Bachrach, A., He, R., Prentice, S., &Roy,N. (2009). Stereo vision

and laser odometry for autonomous helicopters in GPS-denied indoor

environments. Proceedings of SPIE, 7332, 733219.

Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W.,

… D'Andrea, R. (2014). The flight assembled architecture installation:

Cooperative construction with flying machines. IEEE Control Systems
Magazine, 34(4), 46–64.

Bachrach, A., He, R., &Roy,N. (2009). Autonomous flight in unknown indoor

environments. International Journal of Micro Air Vehicles, 1(4), 217–228.

Bachrach, A., Prentice, S., He, R., & Roy, N. (2011). RANGE – Robust

autonomous navigation in GPS-denied environments. Journal of Field
Robotics, 28(5), 644–666.

Bellingham, J., Richards, A., & How, J. P. (2002). Receding horizon control of

autonomous aerial vehicles. In Proceedings of the 2002 American Control
Conference (IEEE Cat. No.CH37301) (Vol. 5, pp. 3741–3746). Piscataway,
NJ: IEEE.

Bloesch, M., Omari, S., Hutter, M., & Siegwart, R. (2015). Robust visual iner-

tial odometry using a direct EKF-based approach. In 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (pp. 298–
304). Piscataway, NJ: IEEE.

Blösch, M., Weiss, S., Scaramuzza, D., & Siegwart, R. (2010). Vision based

MAV navigation in unknown and unstructured environments. In 2010
IEEE International Conference on Robotics and Automation (pp. 21–28).

Piscataway, NJ: IEEE.

Bouabdallah, S., Murrieri, P., & Siegwart, R. (2004). Design and control of

an indoor micro quadrotor. In 2004 IEEE International Conference on
Robotics and Automation (ICRA '04) (Vol. 5, pp. 4393–4398). Piscataway,
NJ: IEEE.

Bouabdallah, S., & Siegwart, R. (2005). Backstepping and sliding-mode tech-

niques applied to an indoor micro quadrotor. In Proceedings of the 2005
IEEE International Conference on Robotics and Automation (pp. 2247–

2252). Piscataway, NJ: IEEE.

Bouabdallah, S., & Siegwart, R. (2007). Full control of a quadrotor. In 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems (pp.
153–158). Piscataway, NJ: IEEE.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York, NY:

Cambridge University Press.

Deits, R., & Tedrake, R. (2015a). Computing large convex regions of

obstacle-free space through semidefinite programming. In H. L. Akin, N.

M. Amato, V. Isler, & A. F. van der Stappen (Eds.), Algorithmic foundations
of robotics XI (pp. 109–124). Berlin, Germany: Springer.

Deits, R., & Tedrake, R. (2015b). Efficient mixed-integer planning for

UAVs in cluttered environments. In 2015 IEEE International Confer-
ence on Robotics and Automation (ICRA) (pp. 42–49). Piscataway, NJ:
IEEE.

Escareno, J., Salazar-Cruz, S., & Lozano, R. (2006). Embedded control of a

four-rotor UAV. In 2006 American Control Conference (p. 6). Piscataway,
NJ: IEEE.

Fang, Z., Yang, S., Jain, S., Dubey, G., Roth, S., Maeta, S., … Scherer,

S. (2017). Robust autonomous flight in constrained and visually

degraded shipboard environments. Journal of Field Robotics, 34(1),
25–52.

Forster, C., Pizzoli, M., & Scaramuzza, D. (2014). SVO: Fast semi-direct

monocular visual odometry. In IEEE International Conference on Robotics
and Automation (ICRA) (pp. 15–22). Piscataway, NJ: IEEE.

Forster, C., Zhang, Z., Gassner,M.,Werlberger,M., & Scaramuzza, D. (2017).

SVO: Semi-direct visual odometry for monocular andmulti-camera sys-

tems. IEEE Transactions on Robotics, 33(2), 249–265.

Grzonka, S., Grisetti, G., & Burgard,W. (2009). Towards a navigation system

for autonomous indoor flying. In 2009 IEEE International Conference on
Robotics and Automation (pp. 2878–2883). Piscataway, NJ: IEEE.

Guenard, N., Hamel, T., & Moreau, V. (2005). Dynamic modeling and intu-

itive control strategy for an “X4-flyer”. In 2005 International Conference
on Control and Automation (Vol. 1, pp. 141–146). Piscataway, NJ: IEEE.

Harabor, D., & Grastien, A. (2011). Online graph pruning for pathfinding on

grid maps. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence (AAAI'11) (pp. 1114–1119). Palo Alto, CA: AAAI Press.

He, R., Prentice, S., & Roy, N. (2008). Planning in information space for a

quadrotor helicopter in a GPS-denied environment. In 2008 IEEE Inter-
national Conference on Robotics and Automation (pp. 1814–1820). Piscat-
away, NJ: IEEE.

Hoffmann, G., Huang, H.,Waslander, S., & Tomlin, C. (2007). Quadrotor heli-

copter flight dynamics and control: Theory and experiment. In AIAA
Guidance, Navigation and Control Conference and Exhibit (p. 6461). Palo
Alto, CA: AAAI Press.

Jones, E. S., & Soatto, S. (2011). Visual-inertial navigation, mapping and

localization: A scalable real-time causal approach. The International Jour-
nal of Robotics Research, 30(4), 407–430.

Julier, S. J., Uhlmann, J. K., & Durrant-Whyte, H. F. (1995). A new approach

for filtering nonlinear systems. In Proceedings of the 1995 American Con-
trol Conference (vol. 3, pp. 1628–1632). Piscataway, NJ: IEEE.

Karydis, K., & Kumar, V. (2016). Energetics in robotic flight at small scales.

Interface Focus, 7(1), 20160088.

Klein, G., & Murray, D. (2007). Parallel tracking and mapping for small AR

workspaces. InProceedings of the Sixth IEEEandACM International Sympo-
sium on Mixed and Augmented Reality (ISMAR'07), Nara, Japan (pp. 225–
234). Piscataway, NJ: IEEE.

Lee, T., Leok,M., &McClamroch, N. H. (2010). Geometric tracking control of

a quadrotor UAV on SE(3). In 2010 49th IEEE Conference on Decision and
Control (CDC) (pp. 5420–5425). Piscataway, NJ: IEEE.

Liu, S., Watterson, M., Mohta, K., Sun, K., Bhattacharya, S., Taylor, C. J., &

Kumar, V. (2017). Planning dynamically feasible trajectories for quadro-

tors using safe flight corridors in 3-D complex environments. IEEE
Robotics and Automation Letters, 2(3), 1688–1695.

Liu, S., Watterson, M., Tang, S., & Kumar, V. (2016). High speed navigation

for quadrotors with limited onboard sensing. In 2016 IEEE International
Conference on Robotics and Automation (ICRA) (pp. 1484–1491). Piscat-
away, NJ: IEEE.

Meier, L., Honegger, D., & Pollefeys, M. (2015). PX4: A node-based multi-

threaded open source robotics framework for deeply embedded plat-

forms. In 2015 IEEE International Conference on Robotics and Automation
(ICRA) (pp. 6235–6240). Piscataway, NJ: IEEE.

Mellinger, D., & Kumar, V. (2011). Minimum snap trajectory generation and

control for quadrotors. In 2011 IEEE International Conference on Robotics
and Automation (pp. 2520–2525). Piscataway, NJ: IEEE.

Mellinger, D., Kushleyev, A., & Kumar, V. (2012). Mixed-integer quadratic

program trajectory generation for heterogeneous quadrotor teams. In

2012 IEEE International Conference on Robotics and Automation (pp. 477–
483). Piscataway, NJ: IEEE.

Michael, N.,Mellinger, D., Lindsey,Q., &Kumar, V. (2010). TheGRASPmulti-

plemicro-UAV testbed. IEEE Robotics & AutomationMagazine, 17(3), 56–
65.

Mohta, K., Turpin, M., Kushleyev, A., Mellinger, D., Michael, N., & Kumar, V.

(2016).QuadCloud: A rapid response force with quadrotor teams (pp. 577–
590). Cham, Switzerland: Springer International Publishing.

http://orcid.org/0000-0002-0932-6475
http://orcid.org/0000-0002-0932-6475

120 MOHTA ET AL.

Mourikis, A. I., & Roumeliotis, S. I. (2007). A multi-state constraint Kalman

filter for vision-aided inertial navigation. In Proceedings 2007 IEEE Inter-
national Conference on Robotics and Automation (pp. 3565–3572). Piscat-
away, NJ: IEEE.

Mulgaonkar, Y., Whitzer, M., Morgan, B., Kroninger, C. M., Harrington, A.

M., & Kumar, V. (2014). Power and weight considerations in small, agile

quadrotors. Proceedings of SPIE, 9083, 90831Q.

Mur-Artal, R., Montiel, J. M. M., & Tardós, J. D. (2015). ORB-SLAM: A versa-

tile and accuratemonocular SLAMsystem. IEEE Transactions on Robotics,
31(5), 1147–1163.

Nieuwenhuisen, M., Droeschel, D., Beul, M., & Behnke, S. (2016).

Autonomous navigation for micro aerial vehicles in complex GNSS-

denied environments. Journal of Intelligent & Robotic Systems, 84(1),
199–216.

Nuske, S., Choudhury, S., Jain, S., Chambers, A., Yoder, L., Scherer, S., …
Singh, S. (2015). Autonomous exploration and motion planning for an

unmanned aerial vehicle navigating rivers. Journal of Field Robotics,
32(8), 1141–1162.

Özaslan, T., Mohta, K., Keller, J., Mulgaonkar, Y., Taylor, C. J., Kumar, V., …
Hood, T. (2016). Towards fully autonomous visual inspectionof dark fea-

tureless dam penstocks usingMAVs. In 2016 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS) (pp. 4998–5005). Piscat-
away, NJ: IEEE.

Press,W. H. (Ed.) (1992).Numerical recipes in C: The art of scientific computing
(2nd ed.). Cambridge, England: Cambridge University Press.

Richter, C., Bry, A., & Roy, N. (2016). Polynomial trajectory planning for

aggressive quadrotor flight in dense indoor environments. In M. Inaba,

& P. Corke (Eds), Springer Tracts in Advanced Robotics: Vol 114. Robotics
Research (pp. 649–666). Berlin, Germany: Springer.

Schmid, K., Lutz, P., Tomić, T., Mair, E., & Hirschmüller, H. (2014).

Autonomous vision-basedmicro air vehicle for indoor and outdoor nav-

igation. Journal of Field Robotics, 31(4), 537–570.

Shen, S., Michael, N., & Kumar, V. (2011). Autonomous multi-floor indoor

navigationwith a computationally constrainedMAV. In 2011 IEEE Inter-
national Conference on Robotics and Automation (pp. 20–25). Piscataway,
NJ: IEEE.

Shen, S., Mulgaonkar, Y., Michael, N., & Kumar, V. (2013). Vision-based

state estimation and trajectory control towards high-speed flight with

a quadrotor. In Proceedings of Robotics: Science and Systems Berlin,

Germany. http://www.roboticsproceedings.org/rss09/p32.html

Theys, B., Dimitriadis, G., Hendrick, P., & Schutter, J. D. (2016). Influence of

propeller configuration on propulsion system efficiency of multi-rotor

unmanned aerial vehicles. In2016 International Conference onUnmanned
Aircraft Systems (ICUAS) (pp. 195–201). Piscataway, NJ: IEEE.

Thomas, J., Loianno, G., Polin, J., Sreenath, K., & Kumar, V. (2014). Toward

autonomous avian-inspired grasping for micro aerial vehicles. Bioinspi-
ration & Biomimetics, 9(2), 025010.

Valenti, R. G., Dryanovski, I., Jaramillo, C., Ström, D. P., & Xiao, J. (2014).

Autonomous quadrotor flight using onboard rgb-d visual odometry. In

2014 IEEE International Conference onRobotics andAutomation (ICRA) (pp.
5233–5238). Piscataway, NJ: IEEE.

Wan, E. A., &Merwe, R. V. D. (2000). The unscentedKalman filter for nonlin-

ear estimation. InProceedings of the IEEE2000Adaptive Systems for Signal
Processing, Communications, and Control Symposium (Cat. No. 00EX373)
(pp. 153–158). Piscataway, NJ: IEEE.

Watterson, M., & Kumar, V. (2015). Safe receding horizon control for

aggressiveMAV flightwith limited range sensing. In2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS) (pp. 3235–
3240). Piscataway, NJ: IEEE.

Wolff, E. M., Topcu, U., & Murray, R. M. (2014). Optimization-based trajec-

tory generation with linear temporal logic specifications. In 2014 IEEE
International Conference on Robotics and Automation (ICRA) (pp. 5319–
5325). Piscataway, NJ: IEEE.

Zhang, J., & Singh, S. (2017). Enabling aggressive motion estimation at low-

drift and accurate mapping in real-time. In 2017 IEEE International Con-
ference on Robotics and Automation (ICRA) (pp. 5051–5058). Piscataway,
NJ: IEEE.

How to cite this article: Mohta K, Watterson M, Mul-

gaonkar Y et al. Fast, autonomous flight in GPS-denied and

cluttered environments. J Field Robotics. 2018;35:101–120.

https://doi.org/10.1002/rob.21774

http://www.roboticsproceedings.org/rss09/p32.html
https://doi.org/10.1002/rob.21774

