
  

  

Abstract—A quantitative approach integrating AR modeling 

and wavelet transform is presented in this paper to analyze the 

digitized phonocardiogram. The recognition of the first and the 

second heart sounds (S1 and S2) were facilitated with wavelet 

transform without referring to the QRS waveform. We found 

that the Daubechies wavelet is most effective in identifying S1 

and S2. In addition, the boundaries of S1, S2, and the onset and 

duration of the systolic murmur thus identified within the 

systole could be marked using the wavelet-filtered signal’s 

strength. Furthermore, quantitative measures derived from a 

2nd order AR model were used to delineate the configuration 

and pitch of the systolic murmur found within through 

piecewise segmentation. The proposed approach was tested and 

proved effective in delineating a set of clinically diagnosed 

systolic murmurs. The suggested AR and wavelet transform 

combined approach can be generalized with minor adjustments 

to delineate diastolic murmurs as well.  

I. INTRODUCTION 

ODERN electronic technologies have emerged to assist 

the diagnosis of heart diseases, e.g., the  

electrocardiogram (ECG), magnetic resonance imaging 

(MRI), and the echocardiogram, to name a few. However, 

there is still important auditory information that physicians 

utilize to understand the cardiovascular system’s condition. 

Heart sounds, heart murmurs, and turbulence in the blood 

flow are detected in this way. In addition, the cost and scarce 

availability of expensive diagnostic tools render the 

traditional stethoscope-based cardiac auscultation a vital 

investigative process for physicians.   

To date, cardiac auscultation is still the most commonly 

utilized bedside investigative process by physicians to reveal 

crucial information regarding the well-being of the 

cardiovascular system and to detect signs of cardiovascular 

defects or alternations [1], [2]. However, auscultation based 

on human auditory sensitivity is heavily influenced by an 

individual’s subjective judgment, rather than objective 

assessment, because it is susceptible to each physician’s 

auditory sensitivity, clinical experience, and quality of 

equipment. Key features of heart sounds and murmurs, such 

as timing, duration, intensity, pitch, and configuration [1], [2] 

are to be determined by listening to cardiac cycles that each 
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last for less than a second. 

Possible improvements include the use of modern digital 

signal processing algorithms to extract quantitative measures 

that closely relate to the diagnostic features used in cardiac 

auscultation. For example, the use of wavelet transforms 

(WT) in the field of examining heart sounds has been done by 

many researchers [5], [6], [9], [12], [15].  

A heartbeat is the combination of the heart contracting 

(systole) and relaxing (diastole); these two periods are 

marked by the first and the second heart sounds, S1 and S2. 

Systole indicates the period that begins after S1 and ends 

before S2; diastole takes place after S2 and ends before S1. 

Systolic murmurs occur during systole and are the focus of 

this paper. To detect the onset and duration of a systolic 

murmur, one needs to determine where the systole interval is 

located in the cardiac cycle of a digitized phonocardiogram. 

Clinical observations show that S1 is louder than S2 at the 

apex of the heart whereas S2 is louder than S1 at the base [2], 

also the length of systole is usually shorter than the length of 

diastole; the pitch (frequency) of S1 and S2 is generally lower 

than the pitch of the murmur [2], [7], [8].   

Based on the aforementioned understanding, an effective 

way to facilitate the identification of heart sounds and systolic 

murmurs is applying the wavelet transforms [10]–[13] with 

an appropriate mother wavelet and the corresponding scaling 

depth [13]. In this paper, we used the Daubechies wavelet 

(db6) at the fourth level of decomposition. We also used 

autoregressive modeling to delineate the pitch profile of 

systolic murmurs by piecewise segmentation. The Burg 

method was implemented to estimate the 2
nd

 order AR model 

coefficient to derive the most dominant frequency of each 

short segment [3]. The effectiveness of the combined AR and 

WT signal processing approach was tested with different 

systolic murmurs. Demonstrated results on a ventricular 

septal defect (VSD) and an early systolic murmur are 

presented.  

II. METHODS 

A. Wavelet Transform 

Wavelet transform has gained much popularity in recent 

years in a wide spectrum of applications. Researchers from 

different disciplines such as mathematics and signal 

processing have contributed to the development of many 

useful wavelet methods for multi-scale signal analysis and 

joint time-frequency representation of signals [9]–[14]. 

Whereas Fourier transform treats each signal of interest as a 

linear combination of sinusoids having different frequencies 

weighted by different amplitudes, WT approximates the 
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signal of interest as a combination of scaled and delayed 

versions of a chosen mother wavelet. Per application, 

different types of mother wavelets can be adopted for that 

purpose. For a given signal x(t), the continuous-time wavelet 

transform (CWT) is described below 
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where h*((t-τ)/a) is the complex conjugate of the scaled and 

shifted version of a chosen mother wavelet appropriate for the 

signal x(t) [11], [13]. Wavelet analysis provides some 

additional signal analysis advantages not shared by Fourier 

analysis, e.g., it can localize the information of interest in the 

joint time-frequency domain; in particular, it can trade 

time-resolution for frequency-resolution when needed. Such 

flexibility makes it an excellent tool of choice to analyze 

non-stationary signals and to detect signal transition. Heart 

sound and murmur signals have frequency contents that 

change over time and therefore a joint time-frequency 

wavelet transform (WT) is a good match for heart sound 

analysis [14]–[17].  

The wavelet transform uses short data windows for high 

frequency signals and long data windows for low frequency 

components. This unique performance is useful in heart 

sound analysis to facilitate the separation of a typical cardiac 

cycle into heart sounds S1 and S2 and murmurs, which have 

higher pitch frequencies than S1 and S2. WT based heart 

sound and murmur analysis methods have been emerging 

recently in analyzing cardiovascular signals having 

physiological alternations such as turbulent sounds caused by 

femoral artery stenoses [6], WT-based spectrogram to 

examine heart signals having wavelet scale variation in time 

(i.e., scaleograms) [14], decomposition and segmentation of 

heart murmurs [15], and boundary identification of S1 and S2 

[16]. 

The wavelet transform was used here to preprocess the 

digitized phonocardiogram. Following the multi-resolution 

signal decomposition idea proposed by Mallat [13], which 

uses dyadic (based on powers of two) scales and positions to 

make the analysis efficient without loss of accuracy, we 

tested different mother wavelets and found that the 

Daubechies wavelet is most effective in identifying S1 and S2. 

It works based on the fact that typical heart sounds S1 and S2 

usually reside in the frequency range below 60-80 Hertz, 

whereas heart murmurs are mostly higher than 125 Hertz. For 

a signal waveform that encompasses the whole cardiac cycle, 

a lower resolution signal can be derived by low-pass filtering 

with a half-band low-pass filter, where two outputs (details 

and approximations) are separated into higher and lower 

frequency components, respectively. 

One can accurately locate the boundaries of heart sounds S1 

and S2 by checking the filtered signal’s strength. For each 

short data segment, an energy index to characterize the 

amplitude variation is given in (2): 

 

 
,))((

1

1

2∑
=

−
N

k

xx kx
N

=E µ  (2) 

 

where µx is the mean value of the data segment. The energy 

index coincides with the statistical definition of variance. 

Even with proven evidence, the effectiveness of WT 

filtering, however, hinges upon two key parameters: the 

choice of the mother wavelet and the scale depth applied. 

Each mother wavelet has its own center frequency. As the 

scale increases, the band of the retained signal decreases; a 

pseudo-frequency corresponds to each particular scale a.  

We found through our experience that the Daubechies 

(db6) wavelet with the fourth level of decomposition is most 

effective for isolating S1 and S2 from heart murmurs. At the 

fourth level of decomposition, the corresponding 

pseudo-frequency is lower than the murmurs but higher than 

S1 and S2 heart sounds [16]. Murmurs with high-frequency 

contents are greatly attenuated from the WT-filtered 

approximations, while S1 and S2 are not.  

To characterize the systolic murmur by its intensity, we 

used the energy index in (2). The energy index is the 

mean-squared value of a signal and can be effectively utilized 

to determine the onset and duration of systole interval and to 

provide a configuration profile for the systolic murmur found 

within. 

B. Autoregressive Modeling 

Autoregressive (AR) models are widely used in many 

applications, such as speech analysis, linear predictive coding, 

power spectral analysis, etc. AR modeling is often the choice 

of application because of the ease of implementation and the 

efficiency of computing AR coefficients [3]–[4]. The Burg AR 

modeling algorithm [3] was implemented in this paper to 

compute the AR coefficients of the digitized phonocardiogram 

data, {x(n)}. Burg’s method estimates the optimal AR 

coefficients by way of minimizing the combined forward and 

backward prediction errors, which are, for the p
th
 order AR 

model, respectively 
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The AR model coefficients {ai
p
} are computed by minimizing 

the performance index shown in (4) with respect to reflection 

coefficients {ai
i
}, and the resultant optimal AR coefficients are 

updated by the Levinson-Durbin recursive formula [3].  
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As mentioned earlier, AR model coefficients can be used for 

many purposes. The poles of AR models were used to quantify 

the hippocampal EEG frequency during REM sleep [4] and to 

detect the sounds associated with turbulent blood flow [5]. 

Since it is of clinical interest to physicians during cardiac 
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auscultation to describe the pitches and configurations of 

murmurs, we used in this paper a 2
nd

 order AR model. The 

digitized phonocardiogram was first divided into 

evenly-sized short segments, and the AR model coefficients 

were estimated for each short segment using the Burg 

method. The two AR model coefficients {a2,a1} were used to 

determine a pair of complex conjugate poles and to calculate 

their corresponding frequencies. The pitch frequency (Hz) 

was adjusted by the sampling frequency (fsamp) as follows [4], 
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In addition to the estimated frequency derived from the 

angle of the poles, the magnitude of pole (varying between 0 

and 1) also serves as a good indicator in regard to the 

frequency bandwidth. For example, poles having magnitudes 

near 1 reflect narrow-band energy concentration such as a 

pure sine wave, whereas smaller pole magnitudes indicate 

otherwise. The resultant linear prediction error (LPE) 

described in (4) can be used as a quantitative measure for the 

output of a 2
nd

 order AR whitening filter.   

In summary, the steps in our approach are: 

• Performing WT-filtering using the db6 wavelet 

described above. 

• Using the energy index in (2) to isolate S1 and S2 and 

determine the onset and duration of the systole.  

• Setting S1 and S2 boundaries at about 5% to 7.5% of the 

peak energy and within 55 milliseconds from the heart 

sound peak. 

• Dividing the complete cardiac cycle into smaller data 

segments of equal length and performing AR modeling 

analysis to derive quantitative measures as described in 

(4) and (5).  

III. RESULTS AND DISCUSSION 

We have used the combined WT and AR modeling 

methods to analyze several systolic murmurs: atrial septal 

defect, ventricular septal defect, innocent murmur, early 

systolic murmur, mid-systolic murmur, and Still’s murmur. 

Analysis results of ventricular septal defect (VSD) and early 

systolic murmur are shown in Figures 1-5. The heart sounds 

and murmur signals analyzed in this paper were selected from 

[2] with a sampling frequency of 4.41 kHz and a 16-bit 

quantization. 

Two cardiac cycles displaying the ventricular septal defect 

murmur are shown in Fig. 1a. The result of using the db6 

wavelet at the fourth level of decomposition to process the 

original data is shown in Fig. 1b, which effectively isolates S1 

and S2. The energy index in Fig. 1c was used to clearly 

identify S1 and S2 and the onset and duration of the systole. 

The systolic murmur extracted from Fig. 1a is shown in Fig. 

2a, and the energy indices by segments were calculated and 

are shown in Fig. 2b. Each short segment contains 50 data 

samples and adjacent segments were not overlapped.  

Results obtained from AR modeling are summarized in 

Fig. 3. The frequency of the murmur is found mostly around 

370 Hz (Fig. 3b) with pole magnitudes are between 0.97 and 1 

throughout the murmur (Fig. 3a). The high pole magnitudes 

Fig. 1.  Ventricular septal defect: (a) heart sounds and murmurs, (b) 

filtered signal with db6 wavelet, and (c) energy index. 

 

Fig. 3.  Quantitative measures generated by 2nd order AR models for 

VSD by segments: (a) magnitude of poles, (b) pitch frequency, and (c) 

linear prediction errors. 

 

 
Fig. 2.  (a) Systolic murmur of ventricular septal defect, and (b) 

energy profile by segments. 
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(> 0.95) suggest that the VSD murmur consists of 

narrow-band frequency components around 370 Hz. The LPE 

measures in Fig. 3c show the murmur's intensity being 

relatively constant with a slight peak in the center, i.e., a 

crescendo-decrescendo configuration between the tenth and 

fifteenth segments.  

 
The same signal processing steps were applied to an early 

systolic murmur (Fig. 4a) which begins immediately after S1 

and ends prior to S2. Its loudness is maximal at the beginning 

and progressively decreases. After WT-filtering, S1 and S2 are 

better revealed in Fig. 4b. The energy index of the filtered 

signal clearly marks the occurrence of S1 and S2 in Fig. 4c, 

and the systole and the diastole as well. Quantitative 

measures derived from 2
nd

 order AR models are summarized 

in Fig. 5. The systolic murmur pitch (Fig. 5a) is above 400 Hz 

during systole (Fig. 5c). The pole magnitudes are also near 

one. It is interesting to note that both the energy index and the 

LPE in Fig. 5b and Fig. 5d accurately delineate the murmur 

configuration as decrescendo.  

IV. CONCLUSION 

AR modeling and WT were used in this paper to 

demonstrate the effectiveness of extracting useful diagnostic 

features of systolic murmurs. With the choice of the 

Daubechies wavelet, WT is very effective in facilitating the 

identification of heart sounds, systole, and diastole. AR 

modeling is computationally efficient to generate useful 

features for systolic murmurs. Although only systolic 

murmurs were examined in this paper, the suggested 

approach can be generalized with a little modification to 

delineate both systolic and diastolic murmurs.  
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Fig. 4.  Early systolic murmur: (a) heart sounds and murmurs, (b) WT 

filtered signal with db6 wavelet, and (c) energy index. 

 

Fig. 5.  Quantitative measures by segments generated using 2nd order 

AR models for an early systolic murmur: (a) murmur, (b) energy 

index, (c) pitch frequency and (d)  linear prediction errors. (LPE). 
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