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Abstract— This work presents a distributed Bayesian
estimation algorithm for time-varying directed sensor net-
works. We consider a network of sensing agents aiming
to estimate continuous variables of interest using direct
observations as well as communication across the net-
work. We aim to obtain a probability density function for
the unknown variables that best explains the collectively
gathered data. To account for point-to-point and broadcast
communication, our formulation considers uniformly and
strongly connected digraphs. Each agent pools neighbor
densities via a weighted geometric average to achieve
consensus. We deal with continuous variables via a novel
application of large deviation analysis to the estimated
probability ratios. Our analysis captures a large class of
probability density functions, including Gaussian mixtures,
and guarantees that the mode of the estimated density con-
verges to the true parameter value at an exponential rate.
The consistency and convergence rate of our algorithm are
demonstrated in cooperative localization and distributed
target tracking simulations.

Index Terms— Sensor networks, Distributed control,
Agents-based systems

I. INTRODUCTION

INTERCONNECTED sensing devices are the bedrock of
the information infrastructure in the Internet of Things

and autonomous robots. In networked cyber-physical systems,
multi-agent interactions enable estimating any quantities of
interest. Scalability and robustness considerations motivate
distributed algorithms relying on inter-agent communication
to achieve similar accuracy and convergence speed as a
centralized estimator.

Consider a sensor network aiming to estimate a variable
of interest x?, which dictates the distribution of the sensing
agent’s observations. The agents face a local identifiability
problem in which any single agent’s observations may not be
sufficient to estimate a unique x?. To resolve this, the agents
thus need to exchange information. This setting has motivated
consensus [5], social learning [8], and distributed hypothesis
testing [9] techniques. Solutions vary as per the quantity of
interest and the communication network.

The simplest communication network is a connected static
graph typically represented by a doubly stochastic matrix [6].
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Less restrictive row and column stochastic representations
requiring the knowledge of in and out-degrees respectively are
practical for time-varying networks [12]. Uniformly strongly
connected (C-connected) graphs contain a path between any
two nodes in the union of network edges over a given time
period. A further relaxed connectivity constraint imposes the
same requirement on averaged graph adjacency matrices [16].

Distributed estimation can be posed as an optimization
problem over discrete, continuous, or probability spaces and its
variations depend on the underlying communication network.
The seminal non-Bayesian inference algorithm in [8] estimates
a probability mass function (pmf) by arithmetically averaging
one-hop neighbor pmfs in a connected network. The algorithm
assumptions related to belief transfer and independent observa-
tions are discussed in [11]. The distributed hypothesis testing
algorithm developed in [18] uses geometric averaging of one-
hop neighbor densities in static networks. The corresponding
maximum likelihood estimates are shown to converge to the
true parameter, if it is globally identifiable. Assuming that
log-likelihood functions are concave, [18] shows convergence
to the true parameter in probability, whereas [9] shows al-
most sure convergence. For linear observation models, these
distributed Bayesian estimation algorithms specialize to the
Kalman filter [15]. Relaxing the connectivity assumptions to
C-connected networks, [13] uses geometric averages to show
exponential probability decay at sub-optimal hypotheses.

We develop a distributed estimation algorithm for contin-
uous variables in uniformly connected digraphs. Our work
extends the results in Nedić et al. [13] on finite space esti-
mation by relaxing the bounds on the agents’ log-likelihood
ratios, thus enabling estimation for continuous probability
density functions (pdf), such as Gaussian mixtures and Gamma
distributions. This was recognized and relaxed by Lalitha et al.
[9] to achieve distributed hypothesis testing in static networks.

Statement of contributions: We develop a Bayesian dis-
tributed estimation algorithm and analyze convergence for
continuous variables with unbounded log-likelihood ratios in
C-connected networks. For continuous likelihoods, we prove
that any large deviation of the probability ratio at any arbitrary
to optimal hypothesis x? decays exponentially. The corre-
sponding rate of convergence depends on the sum of the KL-
divergence between the agent observation models evaluated
at the hypothesis and x?. Using the Borel-Cantelli lemma,
we show that a mode of the estimated pdf observationally
equivalent to x? exists almost surely. In discrete space, our
result implies that the estimated probability mass vanishes

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 17,2022 at 20:56:01 UTC from IEEE Xplore.  Restrictions apply. 



2475-1456 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2022.3167654, IEEE Control
Systems Letters

exponentially almost surely over the non-optimal domain.

II. PROBLEM FORMULATION

Consider a time-varying directed graph Gt = (V, Et, At)
with node set V = {1, . . . , n}, edge set Et ⊆ V × V ,
and adjacency matrix At ∈ Rn×n≥0 . An element At,ij of the
adjacency matrix is positive only if i = j or when there is a
directed edge from node i to node j, indicating that node i can
message node j. A row stochastic adjacency matrix At can be
used to model any communication graph [6], including fully
distributed one-hop broadcast networks [7]. The graph Gt is
strongly connected at time t if there exists a path connecting
any two nodes. In practice, the communication network may
not be strongly connected at each time t. Instead, we consider
a C-connected network [13] such that the C-step union of
graphs is strongly connected.

Assumption 1. At any time t, the graph Gt satisfies:
1.1 (Row stochastic weights) The adjacency matrix At is

row-stochastic, i.e., At,ii > 0 for all i ∈ V and At1 =
1, where 1 is a vector of ones.

1.2 (C-connectivity) The C-step union (V,∪C−1
k=0 Et+k) of the

graphs Gt, . . . ,Gt+C−1 is strongly connected.

The graph Gt is used to model the communication among
n agents, each associated with a node in Gt. The agents aim
to cooperatively estimate a parameter of interest, x? ∈ X ⊆
Rm. Each agent i is equipped with a sensor that provides
observations zi,t ∈ R` at each t sampled from an observation
model specified by pdf qi(zi,t|x = x?) ∈ F` conditioned on
the true parameter value x?. The space F` of pdfs is given as:

F` =

{
g ∈ L1(R`)

∣∣∣ ∫ g(y)dy = 1, g(y) ≥ 0, ∀y ∈ R`
}
.

For any agent i, the known conditional density qi(zi,t|x)
serves as the likelihood model. The parameter values in
Agent i’s optimal set X ?i minimize the divergence between the
true qi(·|x?) ∈ F` and the evaluated qi(·|x) ∈ F` observation
models. The optimal parameters common across all agents
form the set X? given as:

X? ≡ ∩ni=1X ?i , X ?i = arg min
x∈X

Hi(x,x?). (1)

Here, the KL-divergence term for agent i is Hi(x,x?) =

KL(qi(·|x?)‖ qi(·|x)) =

∫
qi(z|x?) log

qi(z|x?)
qi(z|x)

dz, which

quantifies the difference between conditional densities induced
by true and arbitrary values of x.

Assuming conditional independence of observations, the
joint likelihood model of the sensor network is q(zt|x) ,∏
i∈V qi(zi,t|x) ∈ Fn`. Here, the variable zt represents the

collection of observations zi,t over all n agents at time t.

Assumption 2. (Independent observations) The measurements
zi,t ∼ qi(·|x?) collected by agent i at time t are independent
across time and agents.

If agent i’s likelihood model assigns equal probabilities at
distinct values x1,x2 ∈ X for any observation, then the values
are observationally equivalent, i.e. qi(·|x1) = qi(·|x2). In

the case of data generated from densities parametrized by a
common x? at each agent, we formulate the problem of finding
a value observationally equivalent to x?.

Problem 1. How can each agent i in a C-connected network
estimate a common parameter x? using local observations
from qi(·|x?) and estimates communicated by its neighbors?

III. DISTRIBUTED ESTIMATION FOR CONTINUOUS
VARIABLES

In this section, we find the parameters in the set X ? ⊂
Rm by estimating a pdf p? ∈ Fm over the parameter space
X . The product of the known likelihood model with this pdf
p∗ best approximates the joint observation model q(·|x?) =∏
i∈V qi(·|x?) in the following sense,

p? ∈ arg min
p∈Fm

∫
KL(q(·|x?)‖ q(·|x))p(x)dx. (2)

The objective is a linear, convex function in the minimiz-
ing argument p. To understand the objective, we note that,
q(z|x?) 6= q(z|x) a.e. in z for all x /∈ X ?, implies that
KL(q(·|x?)‖ q(·|x)) > 0 for all x /∈ X ?. Since the KL-
divergence is a continuous functional, the objective is positive
for any function p(x) whose support contains a positive
measure subset of X \ X ?. In other words, only those pdfs
p(x) that place their mass entirely over X ? will result into
zero expected divergence. Thus, we can reduce the problem of
finding the values X ? to finding an optimal pdf p. The entropy
term q(·|x?) log(q(·|x?)) is constant w.r.t. the minimizing
argument p ∈ Fm and

∫
p = 1, implying that we can drop

this term from the objective:

p? ∈ arg min
p∈Fm

−
∫ [∫

q(z|x?) log (q(z|x)) dz

]
p(x)dx.

We can switch the order of integration in the objective using
Fubini’s theorem on the finite cross entropy integral. Denoting
F (p, z) = E

x∼p
[− log (q(z|x))], the objective becomes:

p? ∈ arg min
p∈Fm

{∫
F (p, z) q(z|x?)dz

}
. (3)

Since we learn about the data generating density q(·|x?) by
sequentially sampling data {zt}Tt=1 from it, we can approxi-
mate the objective function by its sample average:

min
p∈Fm

{
1

T

T∑
t=1

F (p, zt)

}
.

To accommodate sequential observations and achieve online
inference, we consider the Stochastic Mirror Descent (SMD)
algorithm. The SMD algorithm is a generalization of stochastic
gradient descent, using noisy gradient estimates and a decaying
weight sequence {αt} to solve stochastic optimization prob-
lems, such as (3); see [14] for details:

pt+1 ∈ arg min
p∈Fm

{αt 〈p,− log q(zt|x)〉+ KL(p‖pt)} . (4)

As shown in [17], (4) has a closed-form solution which
resembles a Bayesian update:

pt+1(x) ∝ q(zt|x)αtpt(x), (5)
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where ∝ indicates proportionality and the weight αt balances
the contributions of the likelihood and the prior terms.

Now, we consider a distributed-problem counterpart, where
each agent minimizes a portion of the centralized objective.
The independence of observation models in Assumption 2
with q(zt|x) =

∏
i∈V qi(zi,t|x) decomposes the centralized

objective into a separable problem based on agents’ models,

F (p, zt) =
∑
i∈V

Fi(p, zi,t), (6)

where, Fi(p, zi,t) ≡ E
x∼p

[− log (qi(zi,t|x))]. Similarly to

the centralized objective, the gradient of agent i’s local
linear objective δFi

δp (p, zi,t) is the log likelihood sample
− log qi(zi,t|x). Apart from minimizing their objective, the
agents need to maintain consensus across the network by
achieving equality among their estimates, i.e., pi = pj , for
i, j ∈ V . To enable consensus, we introduce KL-divergence
terms in the SMD algorithm in (4), regularizing the deviation
of agent i’s pdf p from the neighbors’ prior densities:

pi,t+1 ∈ arg min
p∈Fm

{α〈p,− log qi(zi,t|x)〉 +
∑
j∈V

At,ij KL(p‖pj,t)},

where At,ij are the network-dependent coefficients from As-
sumption 1 and the step size αt = α > 0 is constant.
Our analysis in Sec. IV guarantees the convergence of this
formulation despite the constant step size and, hence, has
faster convergence rate than updates with decaying weights. A
minimizer follows from equating the gradient of the right-hand
side to zero, which leads to 1+log pi,t+1 = α log qi(zi,t|x)+∑
j∈V At,ij log(pj,t). Thus, the update rule for agent i is,

pi,t+1(x) ∝ qi(zi,t|x)α
n∏
j=1

p
At,ij

j,t (x), (7)

where α captures the relative importance between the agent’s
private observation and a geometric average of the neighbors’
priors. For pdfs, geometric averaging is advantageous to al-
gebraic averaging (e.g., in [16]) because the average is less
dispersed and captures the component pdf modes [1]. A similar
algorithm in [13] uses geometric averaging for distributed
estimation over a finite discrete space. The following section
analyzes the proposed algorithm in a continuous domain.

IV. LARGE DEVIATION ANALYSIS

This section analyzes the pointwise convergence and the
mode of the estimated pdf. We extend the large deviation
analysis in [9] to time-varying networks for estimating contin-
uous space pdfs with possibly infinite support. Typical proof
techniques compare the estimated probability at an arbitrary
value to the optimal x?, leading to log-probability and log-
likelihood ratios,

ri,t(x) = log

[
pi,t(x)

pi,t(x?)

]
, gi,t(x) = log

[
qi(zi,t|x)

qi(zi,t|x?)

]
.

This characterization has two benefits: first, the normalization
factor of (7) is simplified. Second, the update rule (7) becomes

linear in terms of the log likelihoods gi,t,

rt+1(x) = At:0r0(x) + α
t∑

k=1

At:kgk(x). (8)

Here, we use the shorthand matrix-product notation At:k =
At . . . Ak, the stacked vector of log probability ratios
rt = [. . . ri,t(x) . . . ]>, and the log likelihood ratios gt =
[. . . gi,t(x) . . . ]>. Since each communication matrix At is row
stochastic, there exists a vector sequence as follows:

Definition 1 (Absolute probability sequence, [19, Def. 1]).
For any sequence of row-stochastic matrices {At}, an absolute
probability sequence is a sequence of stochastic vectors {φ(t)}
satisfying φ(t)> = φ(t+ 1)>At, for all t.

The vector φ(k) is related to the point of convergence for
the matrix product At:k with known rate of convergence as:

Lemma 1 (C-step contraction, [12, Lemmas 2, 4]). Assume
that Gt is C-connected. Then for each time t̄ ≥ 0, there exists
a stochastic vector φ(t̄) such that for all i, j ∈ V and t ≥ t̄,

1) |[At . . . At̄]ij − φj(t̄)| ≤ 2λt−t̄, and,
2) φj(t̄) ≥ δ > 0,

with λ =
(
1− 1

nnC

)1/C ∈ (0, 1) and δ = 1/nnC+1.

The initial log-probability ratio exists only if the agents’
prior pdf is positive on the optimal parameter space X ?.

Assumption 3 (Positive priors). The agents’ prior pdf is
positive pi,0(x?) > 0 at the optimal values x? ∈ X?.

We now show that the prevalent assumption ‖gi,t‖ < L <
∞,∀i ∈ V does not hold for continuous space densities.
To this end, let us assume that agent-observation models are
given as πi(z|µi, 1), modeling the sampled observation z from
a Gaussian with mean µi and unit variance. As the log-
likelihood ratio is linearly dependent on z, it is unbounded,

log (π1(z)/π2(z)) = 2z(µ1 − µ2) + (µ2
2 − µ2

1).

We instead rely on moment generating functions (mgf) to
bypass the boundedness assumption. The mgf for a ran-
dom variable X w.r.t. its pdf pX , is the function ψ(b) =
E[exp(bX)], for b ∈ R. If the observations are sampled from
π?(z|µ?, 1), the mgf of the random variable defined by the
log-ratio g12(z) = log(π1(z)

π2(z) ) w.r.t. pdf π?(z) is bounded,

E [exp (bg12(z))] =

∫
z

e−(z−µ?)2

√
2π

e2bz(µ1−µ2)+b(µ2
2−µ

2
1)dz,

= c

∫
exp(−z2 + 2z(µ? + b(µ1 − µ2)))dz <∞.

Assumption 4 (Finite mgf). The mgf of the log-likelihood
ratio gi,t(x) is finite for any x ∈ X and agents i ∈ V .

Large-deviation analysis has been used in conjunction with
mgfs to characterize exponentially decreasing bounds on rare
events. A general application of mgfs is the following Cramer’s
theorem [4]. This result upper bounds the deviation of the sum
of i.i.d. variables St = X1 + · · ·+Xt from their mean with a
probability converging to 1 at an exponential rate.
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Lemma 2 (Cramer’s theorem [4]). Assume that the mgf ψ(b)
of a random variable Xt is finite for some b > 0 and let
µ = E[Xt]. Then, for any a > µ, P(St > at) ≤ exp(−tI(a)),
where I(a) = supb>0{ab− log(ψ(b))} > 0.

Cramer’s theorem was employed in [9] to prove conver-
gence of distributed estimation in static networks to account
for observation models with unbounded support. The theorem
cannot be directly applied to time-varying networks as the
weighted sum of observations are not i.i.d. Therefore, we
develop a theorem with similar guarantees on a sequence of
independent random variables. Fix any agent i ∈ V , then from
the log-linear ratio update in (8), we define,

e0 = [At:0r0]i, ek = α[At:kgk]i, ψk(b) = E[exp(bek)]. (9)

The terms ek are independent but not i.i.d. Thus, we define a
function similar to I(a) in Lemma 2 as follows,

Jt(a) = sup
b>0

(
Dt(a, b) ≡ ab−

1

t

t∑
k=0

log(ψk(b))

)
(10)

In the following theorem, large deviations are used to show
that the ratio of estimated probability at x /∈ X ? and x?
converges to zero at an exponential rate with probability 1.

Theorem 1. Let Assumptions 1-4 hold. For each x /∈ X?,
x? ∈ X?, there is a t0 ∈ N s.t. ∀ t ≥ t0, pi,t in (7) satisfies,

P
(
pi,t(x)

pi,t(x?)
> exp(ā(x,x?)t)

)
≤ exp(−tJt0(ā(x,x?))).

The exponential rate of convergence ā(x,x?) =
−cδ‖H(x,x?)‖1 < 0 is defined via the bound
δ ∈ (0, 1) from Lemma 1 and sum of KL-divergence
terms ‖H(x,x?)‖1 =

∑
j∈V KL(qi(·|x?)‖ qi(·|x)). Any

choice of c ∈ (0, 1) ensures Jt0(ā(x,x?)) is positive.

Proof. Fix x /∈ X?, and use shorthand notation r ≡ r(x),
g ≡ g(x). Since the terms ek defined for an arbitrary agent i
in (9) are not identically distributed, we work with the running
sum St = e0 +

∑t
k=1 ek. For any a ∈ R and b > 0,

P(St > at) = P(exp(bSt − bat) > 1),

≤ E[exp(bSt − bat)], (Markov’s inequality)

= exp(−bat)E[
t∏

k=0

exp(bek)],

= exp(−bat)
t∏

k=0

E[exp(bek)]. (Independence)

From Assumptions 1 and 4, we know that the mgf ψk(b)
exists and satisfies ψk(0) = 1. Using Dt(a, b) from (10),
the preceding inequality is equivalent to P(St > at) ≤
exp(−tDt(a, b)). Since this holds for any a, b, we have,

P(St > at) ≤ exp (−tJt(a)) . (11)

Now, we prove the existence of Jt(a) > 0 for some choice
of a ≡ ā(x,x?) < 0 and all t ≥ t0 ≡ t0(x,x?) > 0. If
Dt(a, 0) = 0 and the term dDt

db (a, b)
∣∣
b=0

is positive, then
there exists b > 0 for which Dt(a, b) > 0 for all a and t > t0.

We notice that Dt(a, 0) = 0 and Dt(a, b) is finite for any
b > 0, its derivative at b = 0 is,

dDt

db

∣∣∣∣
b=0

= a− 1

t

t∑
k=0

ψ′k(b)

ψk(b)

∣∣∣∣
b=0

= a− 1

t

t∑
k=0

E[ek].

We will show the existence of a time t0 such that the running
average 1

t

∑t
k=0 E[ek] is bounded above by some a < 0 for all

times t > t0. Adding and subtracting the expected weighted
likelihoods with weights φ(k) from Lemma 1,

ek = α[
(
At:k − 1φ(k)>

)
gk]i + αφ(k)>gk. (12)

The expected value of the stochastic average of the log
likelihood samples φ(k)>gk is evaluated by computing the
expectation w.r.t. the true observation model q(zt|x?),

E[φ(k)>gk] =

∫
q(zt|x?)

∑
i∈V

φi(k) log

[
qi(zi,t|x)

qi(zi,t|x?)

]
dzt,

= −
∑
i∈V

φi(k) KL[qi(·|x?))‖ qi(·|x))] = −φ(k)>H(x,x?).

Since a product of stochastic matrices remains stochastic, we
can upper bound E[At:0r0]i ≤ |r0(x)|1. The matrix product is
also independent of the observations, so we can use Lemma 1
to bound the first term of ek in (12),

E[(At:k − 1φ(k)>)gk]i = [
(
At:k − 1φ(k)>

)
H(x,x?)]i

∈ (−λt−k‖H(x,x?)‖1, λt−k‖H(x,x?)‖1). (13)

From Lemma 1, the stochastic vector terms satisfy φi(k) >
δ > 0 for all agents i ∈ V and time k ≥ 1, implying,

1

t

t∑
k=0

E[ek] ≤
1

t
|r0(x)|1 +

α

t
‖H(x,x?)‖1

t∑
k=1

(λt−k − δ).

The upper bound is strictly negative for all t > t0 = λ
δ(1−λ) +

|r0(x)|1
αδ‖H(x,x?)‖1 . The initial time t0 is same for all agents in V ,
and depends on the network characteristics (δ, λ), the initial
probability ratio |r0(x)|1 and the divergence sum at (x,x?).
We can choose ā(x,x?) using any c ∈ (0, 1) as,

ā(x,x?) = −cδ‖H(x,x?)‖1 < 0. (14)

Given the decreasing upper bound on the term 1
t

∑t
k=1 E[et],

this choice for a = ā(x,x?) implies that dJt
db

∣∣
b=0

> 0 for
all t > t0. Upon choosing ā(x,x?) and Jt0 in (11), we show
that the probability of log probability ratio exceeding a linearly
decreasing value diminishes exponentially at x,

P(ri,t+1(x) > ā(x,x?)t) ≤ exp(−tJt0(ā(x,x?))). �

Remark 1. If the algorithm weighs the likelihood terms
by square-summable αk in (7), then our analysis does not
guarantee convergence of the probability ratio in (8) to zero.

Remark 2. As per our analysis, higher sum of divergence
‖H(x,x?)‖1 implies higher rate of convergence ā(x,x?)
and lower starting time t0, meaning that the estimate starts
converging sooner and at a faster rate.

This probabilistic result on convergence of log-ratio prob-
ability in Theorem 1 holds over several distinct sequences of
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estimates pi,t. Therefore, we use Borel-Cantelli Lemma to gain
insight into the convergence of an individual sequence.

Definition 2. For a sequence of events {Et}, we define the
events (a) Et occurs infinitely often, (i.o.) ≡ lim sup

t→∞
Et ≡

∞
∩
t=0

∞
∪
k=t

Ek, and (b) Et occurs eventually, (e.v.) ≡ lim inf
t→∞

Et ≡
∞
∪
t=0

∞
∩
k=t

Ek. Also, we have Et i.o. = (Ect e.v.)c.

Lemma 3 (Borel-Cantelli Lemma [3]). For any event se-
quence {Et}∞t=1,

1) if
∑∞
t=1 P(Et) <∞, then P(Et i.o.) = 0, and

2) if
∑∞
t=1 P(Et) = ∞ and the event sequence {Et} is

independent, then P(Et e.v.) = 1.

Proposition 1. As t→∞, a mode of the pdf pi,t(x) estimated
by agent i almost surely lies in the set of optimal parameters
X? as defined in (1).

Proof. We proceed by contradiction. For an arbitrary agent
i, suppose that all modes of limt→∞ pi,t(x) almost surely
lie outside of X?. Hence, for any δ0 > 0, there exists t1
such that any mode x1 almost surely satisfies pi,t(x1) >
pi,t(x?) + δ0 for all x? ∈ X? and all t ≥ t1. We show that
this assumption is contradicted by the fact that |pi,t(x1) −
pi,t(x?) exp(ā(x1,x?)t)|

a.s.→ 0 as established in Theorem 2.
Two random sequences Yt and Zt satisfy |Yt − Zt|

a.s.→ 0 if
and only if ∀ε ≥ 0, P[|Yt − Zt| ≤ ε e.v.] = 1, which holds if
and only if ∀ε ≥ 0, P[|Yt − Zt| > ε i.o.] = 0.

Let Et(ε) denote the event that |pi,t(x1) −
pi,t(x?) exp(ā(x1,x?)t)| > ε. From Theorem 1, for
t > t0, P[Et(ε)] ≤ P[Et(0)] ≤ exp(−tJt(a)) with
Jt(a) > 0. Since

∑∞
t=1 exp(−tJt(a)) < ∞, we have that∑∞

t=1 P[Et(ε)] < ∞. By the Borel-Cantelli Lemma, this
implies that P[Et(ε) i.o.] = 0 for all ε ≥ 0, and, hence,
|Yt − Zt| → 0 a.s. In other words,

P[ lim
t→∞

|pi,t(x1)− pi,t(x?) exp(ā(x1,x?)t)| = 0] = 1. (15)

The above result implies that there exists t2 such that almost
surely |pi,t(x1)−pi,t(x?) exp(ā(x1,x?)t)| ≤ δ0 for all t ≥ t2.
Since ā(x1,x?) < 0, exp(ā(x1,x?)t) ≤ 1 and we have:

pi,t(x1)−pi,t(x?) ≤ pi,t(x1)−pi,t(x?) exp(ā(x1,x?)t) ≤ δ0.

However, for any t ≥ max{t1, t2} the above result contradicts
with the assumption that pi,t(x1) > pi,t(x?) + δ0. �

Corollary 1 (Uniqueness). If the optimal hypothesis set X? is
globally identifiable i.e. X? = {x?}, then the unique mode of
the estimated pdf almost surely lies at x?.

Proof. The claim follows from eventually almost sure exis-
tence of mode in pdf estimates in Proposition 1. �

Corollary 2 (Discrete probabilities). If the estimated prob-
ability density pi,t is bounded above by some γ > 0 as is
the case for probability mass functions, then the probability
estimated at any x1 ∈ X\X? satisfy, pi,t(x1)→ 0 a.s.

Proof. From Theorem 2, we know that |pi,t(x1) −
pi,t(x?) exp(ā(x1,x?)t)|

a.s.→ 0. With the property pi,t(x) < γ
for all x ∈ X and our choice ā(x1,x?) < 0, there exists some

t2 > 0 such that we have for any arbitrary δ0 > 0 and t > t2,
pi,t(x1) ≤ γ exp(ā(x1,x?)t)+δ0 almost surely. With t→∞
and arbitrary δ0 > 0, pi,t(x1)→ 0 a.s. �

V. EVALUATION

This section demonstrates the proposed algorithm in two
examples: cooperative localization and target tracking. In the
first example, the sensing agents measure relative position
to their one-hop neighbors to infer sensor locations. For a
linear observation model w.r.t. the agent positions, a Gaussian
algorithm is derived. In the second example, a sensors in a
C-connected network apply particle version of our algorithm
on non-linear range measurements to track a moving target.

Cooperative localization: Consider n = 10 sensors posi-
tioned at {xi ∈ R2, i ∈ V}. Sensor 1 is an anchor with known
position x1 = [0, 0]>, while the positions xi of the remaining
sensors are unknown and need to be estimated. Each sensor
i measures the relative position of its neighbors in a static
conntected measurement graph (V, Em). The relative position
measurement zi,j,t made by sensor i of sensor j at time t
follows a Gaussian distribution:

zi,j,t ∼ N (xj − xi, I2), ∀(i, j) ∈ Em. (16)

All measurements received by sensor i at time t are:

zi,t ∼ N (Hix, (Ω
z
i )
−1), (17)

where Hi and (Ωzi )
−1 are obtained by stacking the ex-

pressions in (16). While the sensor receive relative-position
measurements zi,t at every time t, the communication among
them is unreliable. The communication network is described
by a randomly-generated uniformly-connected graph Gt =
(V, Et, At). The updates to the information matrix Ωi,t and
the mean µi,t at agent i, derived from (7) are:

Ωi,t+1 =
∑
j∈V

At,ijΩj,t + αH>i ΩziHi,

µi,t+1 = Ω−1
i,t+1(

∑
j∈V

At,ijΩj,tµj,t + αH>i Ωzi zi,t).
(18)

The update equations appear similar to those of a distributed
Gaussian filter [15] but differ due to the term α, weighting
the effect of the measurement, and due to the time-varying
communication weights At,ij . Fig. 1 presents the neighbors
observing relative positions, a communication network sample,
and the estimated mean of agent 2’s position by other agents
for increasing values of the likelihood weight α.

Target tracking: Consider the problem of estimating the
center x? ∈ R2 of a circular maneuver of a target. Other
fixed parameters defining the target motion are the initial angle
θ0 = 0, radius r = 1 and angular velocity ω = 0.2. The target
position ydt at time t is,

θk = θk−1 + ω∆t, ydt = x? + r[cos(θt), sin(θt)]
> (19)

We aim to distribute estimation of variable x over a network
of n range sensors using Time-of-Arrival measurements. The
noisy measurements for sensor i located at ysi is,

zi,t(y
s
i ,y

d
t ) = |ysi − ydt |2 + η, η ∼ N (0, 1). (20)
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Fig. 1: Cooperative localization in a ten-agent time-varying network. Left to right: observation network, communication network at t = 2,
estimates of agent 2’s position for α ∈ {0.5, 1, 1.5} over 1250 iterations. The horizontal red lines indicate the true position of agent 2.

Fig. 2: Estimating the center of a circular trajectory (orange triangle
at [1, 4]) using a time-varying uniformly connected network of four
sensors (red squares at [1, 1], [1, 2], [2, 4], [2, 3]). The subfigures show
the cooperatively estimated particle-filter distribution of the circle
center after 1 (left) and 200 (right) iterations.

Since the observation model is non-linear w.r.t. positions x?,
we recall particle filter method to represent the estimated
pdf as a particle distribution, transforming the intractable
integration into a summation. Each sensor i employs M
particles xmi,0,m ∈ {1, · · · ,M} initially sampled using Latin
hypercube sampling [10]. The particles are assigned equal
weights ρmi,0 = 1/M initially, resulting in a prior pdf
pi,0(x?) =

∑M
m=1 ρ

m
i,0δ(x?−xmi,0) on the circle’s center. Here,

δ is a Dirac-delta function. The likelihood update for each
particle based on the observation zi,t with α = 1 is,

pi,t+1|t(x?) ∝ qi(zi,t|x?)
∑M
m=1 ρ

m
i,tδ(x? − xmi,t),

ρmi,t+1 =
(

qi(zi,t|xmi,t)ρmi,t
/∑M

m=1 qi(zi,t|xmi,t)ρmi,t
)
.

In a standard particle filter, methods like stratified resam-
pling [2] sample particles with a frequency corresponding to
their weights. To keep the number of particles fixed in our
distributed formulation, we modify the resampling method to
sample M particles at agent i from the M |Vi|-particle density∑
j∈Vi Aij

∑M
m=1 ρ

m
j,tδ(x? − xmj,t). The target trajectory is a

circle centered at x0 = [1, 4]. Fig. 2 presents four sensors
sampling distance to the target every half second starting
t = 0. The circular particle distribution at t = 1 is caused
by the uni-dimensional range observations. By t = 200 steps,
the particles coalesce to the actual center x?. Fig. 3 shows the
particle mean and the log maximum covariance eigenvalue.

VI. CONCLUSION

This paper addresses a distributed estimation problem in
which agents need to cooperate over a time-varying network to
consistently estimate a quantity of interest. A novel application
of large deviation analysis allows estimating parameters in
continuous space with an exponential rate of convergence for
probability ratios. In case of a globally identifiable problem,
we prove that a mode of the estimated density function at each
agent coincides with the true value.

Fig. 3: Evolution of the mean and log-maximum eigenvalue of the
covariance of the particle-filter estimates from Fig. 2.

REFERENCES

[1] S. Bandyopadhyay and S.-J. Chung. Distributed estimation using
bayesian consensus filtering. In Proc. Am. Control Conf., pages 634–
641, 2014.

[2] J. Carpenter, P. Clifford, and P. Fearnhead. Improved particle filter for
nonlinear problems. IEE Proc.-Radar, Sonar and Navigation, 146(1):2–
7, 1999.

[3] K. L. Chung and P. Erdos. On the application of the Borel-Cantelli
lemma. Trans. Am. Math. Soc., 72(1):179–186, 1952.
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