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Abstract— We propose a cooperative, decentralized inference
algorithm allowing sensor networks to learn a joint parameter
best explaining their combined observations. This joint param-
eter is represented via a probability density over a discrete set
of hypotheses. We aim to answer two questions: (i) an agent-
hypothesis assignment problem, balancing estimation quality,
storage and communication constraints in the networks, and
(ii) the design of a provably-correct distributed estimation
algorithm on limited hypothesis sets for agents. We make
the following contributions to the state of the art. First, our
proposed algorithm allows each agent to perform updates on
partial likelihoods and exchange local information on a limited
hypothesis set, as opposed to the entire hypothesis space. For
some of the agents, the limited hypothesis domains may even ex-
clude the true hypothesis. Second, the presented algorithm is the
first to not require step-wise renormalization at all hypotheses,
while still guaranteeing consensus and convergence of sensor
estimates. Third, we also address agent-hypothesis assignment
by formulating it as a mixed integer programming problem,
that matches agent sub-networks to hypotheses based on a
diversity criterion for estimation quality. We provide numerical
examples demonstrating the benefits of these algorithms.

I. INTRODUCTION

Sensor networks have been widely deployed for in situ
data gathering and environment monitoring, enabling the
estimation of relevant parametric models from data. In these
settings, a distributed estimation process overcomes physical
limitations in the communication between interconnected
systems [1], [2], any single-point failures, and privacy con-
cerns on data sharing [3]. A main tool to solve cooperative
estimation problems online is based on (consensus) non-
Bayesian learning algorithms, which are protocols governed
by the recursive interactions of single-hop neighbors. Typ-
ically, these algorithms require agents to exchange infor-
mation on large hypothesis sets, which vastly increases the
communication and storage cost for large sensor networks
and environments. Motivated by the cost issue, we look at
the design of more scalable algorithms that rely on partial
likelihood updates. We have assumed that sensors receive
source measurements infinitely often to infer source state on
a finite discrete space.

Literature review: Distributed consensus algorithms
have been designed continually since the early 70’s. The ini-
tial studies were aimed at developing a Bayesian framework
for agreement between two individual sets of information [4].
In the following decade, there were results published on the
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effect of network topology on averaging opinions among
multiple agents [5], [6]. Other aspects such as network error
and bit rate constraints have also been considered in the past
decade [7]. A major improvement appeared in the form of
non-Bayesian updates [8], performed by updating the hyper-
parameters of a probability density function (pdf) instead of
the updating the function itself. The stationary distribution
and convergence rates of this approach have recently been
studied in [9], [10]. Even though recent approaches can
deal with network-level updates, they require maintaining
and communicating each agent’s pdf over the entire set of
hypotheses. Drawing inspiration from the idea of distributed
computation, it is practically useful to consider a distributed
storage scheme, in which agents only maintain and exchange
a partial pdf over the parameter domain.

Partial likelihood updates are predicated on assigning sets
of hypotheses to individual agents. The agent-hypothesis
assignment problem has its roots in classical matching prob-
lems [11]. More recently it has been employed for sensor
network assignment [12]. The assignment problems have
usually been tackled via integer-programming or their convex
relaxations [13]. Since we deal with optimal sub-networks,
the relevant recent works include maximum-weight con-
nected subgraph problems [14], [15] for connected sensor
sub-network selection. While the methodology suffices for
learning a single subgraph, it is insufficient for finding
multiple subgraphs coupled with cardinality constraints on
selected agents as needed for the assignment problem pre-
sented here.

Statement of Contributions: In this manuscript we ad-
dress two complementary problems relevant to the distributed
inference of a joint parameter by a sensor network. First,
we formulate a novel hypothesis assignment problem and
propose mixed integer programming solution, for matching
subsets of connected agents to different hypothesis sets
with the goal of providing good complementary observations
while respecting storage and communication constraints of
agents. Second, we propose and analyze convergence of a co-
operative estimation algorithm which, not only is distributed
across one-hop neighborhoods, but also allows agents to
maintain likelihoods over a subset of the hypothesis space.
Thus, it significantly reduces storage and communication
costs in comparison to existing approaches. This algorithm
is free of any network-wide normalization updates present in
existing consensus algorithms based on geometric averaging.

II. PROBLEM FORMULATION

We consider a set of sensors N = {1, . . . , n} whose
communications are modeled via an undirected graph G =



(N , E), with edges E representing the communicating pairs.
Each agent i ∈ N has a corresponding state variable xi ∈
Rdx and receives data zi,t ∈ Rdz at time t. Based on
sensor i’s characteristics and the state variables xi, its
observation model is specified by a pdf pzi(z|θ) defined on
discrete domain Θi with cardinality mi. The network aims
to find the true value of a joint parameter θ ∈ Rdθ in the
finite discrete set Θ ≡ ∪i∈NΘi, which may represent the
possible locations of a data-generating source. This set Θ
is discrete and finite with cardinality |Θ| = m. The true
set of parameter values generating the agent observations
is Θ∗ ⊂ Θ. The set of neighbors for each agent i in the
communication graph G is defined as Ni. Each agent i
maintains the probability pi,t(θ),θ ∈ Θi, denoting agent’s
confidence on the correctness of hypothesis θ at time step t.
The agents use their observations zi,t and neighbor estimates
pj,t(θ), (i, j) ∈ E at hypothesis θ to update their own
probability density pi,t+1(θ) over the values of θ ∈ Θi.

Since agent i tracks and shares inference only over the
subset Θi, the agent’s computational and communications
load is diminished. The coverage of entire hypothesis space is
ensured with the condition ∪i∈NΘi = Θ, in effect assigning
at least one agent for tracking every hypothesis. We denote
the set of agents observing a specific hypothesis v, θv ∈ Θ,
as V(θv) ⊆ N . If the agents in V(θv) form a connected
subgraph Gθv ≡ Gv of G, we assign a corresponding
doubly stochastic communication matrix A(θv) ≡ Av to
the hypothesis θv . The matrix Av is induced from G, fol-
lowing the same sign pattern as the adjacency matrix of the
original graph. The doubly stochastic matrix is selected for
its averaging properties [16] that we use to prove asymptotic
convergence in Section VI. We aim to address the following
questions dealing with the computation and communication
complexity for distributed estimation.

Hypothesis assignment. How should the parameter hy-
potheses be distributed among the agents to balance storage
and communication requirements with estimation quality?
We provide details on the following four modeling criteria
to achieve these requirements,

a) Agent diversity: The diversity requirement assigns
a set of agents V(θ) with diverse observation models at
each hypothesis θ with the goal of augmenting quality
of inferences from observations. This can be realized by
ensuring that the assigned set of agents V(θ) maximize the
symmetric KL divergence metric DKL measuring distance
between among pairs of hypothesis pdf pzi(·|θ), i ∈ V(θ).
F (Gθ) =

∑
i,j∈V(θ)
(i,j)∈E

DKL(pzi(·|θ),pzj(·|θ)) +
∑
i∈V(θ)

H(pzi(·|θ)).

(1)
We induce the diversity criterion with the KL divergence

metric DKL while the entropy H term favors agents with
flatter observation densities pzi. It is worth noting that the
divergence factor depends on the edges (i, j) ∈ E capturing
the synergies of one-hop neighbors.

b) Connectivity: This requires that the subset of agents
V(θ) ∈ N assigned to each hypothesis θ is connected. The
connected sets of agents learn from their neighbors, thus

leading to consistent estimates.
c) Computational load: This is implemented by limit-

ing the cardinality on the hypotheses observed by individual
agents, 0 < |Θi| ≤ mi. This constraint caps the number of
hypotheses tracked by agents at every time step, making the
algorithm scalable in storage and communication.

d) Coverage: This translates into the require-
ment ∪iΘi = Θ, ensuring that every hypothesis is being
tracked by at least one agent.

Thus, our first research question is addressed by means of
an optimization problem over sets of subgraphs Gθ,∀θ ∈ Θ,

max
{Gθ}θ∈Θ

∑
θ∈Θ

F (Gθ), (2)

Gθ is a connected induced subgraph ofN , ∀θ ∈ Θ, (3)
0 <|Θi| ≤ mi ∀i ∈ N , (4)
∪iΘi = Θ. (5)

In Section III, we develop an approach to solve this
problem of optimal hypothesis assignment offline.

Distributed inference on limited hypothesis sets. How
can communicating agents merge their observations on a
limited set of hypotheses to achieve a consistent inference
on the probability density of true source parameter? To
answer this question, we aim to develop a distributed learning
algorithm by which agents merge their partial likelihoods
with neighboring agents’ beliefs to find the true hypothesis.
That is, through such algorithm agents will merge their
estimates only on their assigned subset Θi ⊂ Θ, and not
over the complete Θ. To arrive at a network-wide consensus
on true hypothesis at time T , each agent i will make use of
data zi,1:T relative to Θi. Thus, each agent is tasked with
arriving at the values of a probability mass function pi,T (θ)
over only the hypotheses θ ∈ Θi at time T using neighbor
estimates and data zi,1:T (for the values θ ∈ Θ \Θi at time
T the agent will collectively assign a complementary mass
value,

∑
θ∈Θ\Θi pi,T (θ) = 1−

∑
θ∈Θi

pi,T (θ)). As T →∞,
the algorithm should converge to a common distribution
p∞(θ) that assigns mass to only the true hypothesis set
Θ∗ = arg maxθ p(θ|z1:n,1:T ) and which best explains the
observations of all agents. To achieve consistent estimates,
the probabilities estimated by agents at any shared hypothesis
should converge to the same value i.e. limt→∞ pi,t(θ) =
p∞(θ), ∀i ∈ {1, . . . , n}. Further, p∞(θ) = 0, ∀θ /∈ Θ∗.

In Section IV, we present a distributed consensus algo-
rithm for agents to merge inferences using partial space
likelihood models.

III. DEFINING THE AGENT NETWORK

This section addresses the Hypothesis Assignment ques-
tion of Section II. We start by analyzing the properties of the
objective function encoding diversity as defined in Eqn. (2).
We have mentioned existing solutions to relaxed versions of
the assignment problem, followed with a novel mixed integer
programming formulation to assign agent subgraphs to each
hypothesis and simulations illustrating its performance on
small and large scale networks.



A. Properties of the optimization problem

We first show that the diversity function satisfies the
property of increasing marginal returns, or supermodularity.
Supermodularity on discrete spaces is analogous to concavity
in continuous spaces.

Definition 1 (Set function characteristics). Consider a non-
negative function F : 2X → R≥0 defined over a discrete
set X . Let X1, X2 ⊆ X . The function F is supermodular if
F (X1 ∩X2) + F (X1 ∪X2) ≥ F (X1) + F (X2).

Proposition 1. The diversity function F in Eqn. (1) is
supermodular over the input subgraph set.

Proof. With node sets X1 ⊆ X2 ⊆ N with element j ∈ N \
X2, we can state an equivalent definition of supermodularity,

F (X2 ∪ {j})− F (X2) ≥ F (X1 ∪ {j})− F (X1). (6)
The supermodularity of objective function defined in Eqn. (1)
follows trivially from this definition.

We provide examples of the connectivity and cardinality
requirements on assignments for hypotheses and agents,
respectively. Consider a set of agents {a, b, c, d} and hy-
potheses {1, . . . , 9}, illustrated in Fig. (1). An example of
the cardinality constraint in Eqn. (4) is that agent a does not
track more than 4 hypotheses, e.g. {1, 3, 5, 9}. An example
of the connectivity requirement is hypothesis 2 being tracked
by a connected subgraph consisting of {b, c, d}.

1 2 3
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Fig. 1. Group of agents (left) performing inference over a set of hypotheses
(right). Cardinality constraint on a as |Θa| ≤ 4. Connectivity constraints
on hypothesis 2 requires corresponding observing agents to be connected
{b, c, d} in communication graph.

Subgraph selection for hypotheses: Next, we study how
to select connected subgraphs from the original network for
maximizing diversity function under cardinality constraints
imposed on hypothesis sets at each node. First, it is clear that
a feasible solution exists if

∑
i∈N mi ≥ |Θ|. Even though

the optimization problem in Eqn. (2-5) has a supermodular
objective function, the agent subset connectivity constraints
in Eqn. (3) render the optimization NP-hard.

There are existing solutions in the literature for two
relaxed versions of the optimization problem in Eqn. (2).
Relaxing the connectivity constraints, the problem simplifies
to the maximization of a supermodular objective under cardi-
nality constraints. It can be solved either as an integer linear
program or via Lovász’s extension [17] of supermodular
objective function in continuous space via polynomial time
algorithms [18]. Whereas if we relax the cardinality and
coverage constraints while keeping the connected subgraph
constraints, the network level optimization problem becomes
a hypothesis separable problem. It is same as the generalized

maximum-weight connected subgraph problem [15]. A sim-
pler version of this problem was first mentioned in the list
of NP-complete problems [19].

B. Proposed optimization strategy

To solve the original problem in Eqn. (2-5), we first formu-
late the problem by relaxing the connectivity constraint via
binary variables representing inclusion of nodes and edges
in the optimal subgraph. The mixed integer programming
approach presented here is a novel formulation for finding
optimal connected subgraphs with cardinality constraints
limiting the count on selection of nodes across optimal
subgraphs. Consider yv = [y1v, . . . , ynv]

> ≡ [yiv]
n
i=1 ∈

{0, 1}m, where yiv = 1 implies that agent i tracks prob-
abilities for hypothesis v. Consider another variable bv =
[bij1,v, . . . bij`,v] ∈ {0, 1}`, where with a slight abuse of
notation we denote one of the ` = |E| edges in the agent
network as ijl ≡ (i, j)l ∈ E , l ∈ {1, . . . , `}, and we use
the shorthand bij,v to refer to a generic entry of bv . Now,
exploiting the separability of the problem, we focus on the
reformulation of the assignment of agents to each single
hypothesis θv , as explained next.

The objective function can be written in terms of the KL-
divergence between communicating agents. This function is
linear in terms of the new node and edge binary variables.
The cardinality constraint for agent i is expressed in terms of
the nodal variables yiv . The coverage constraint is satisfied
if each hypothesis θv is observed by at least one agent. This
results into the following linear program,

m∑
v=1

[
max
yv,bv

∑
(i,j)∈E

bij,v DKL(pzi(z|θv),pzj(z|θv))

+

n∑
i=1

yiv H(pzi(z|θv))
] (7)

m∑
v=1

yiv ≤ mi, ∀i ∈ {1, . . . , n}, (Cardinality)

n∑
i=1

yiv ≥ 1, ∀v ∈ {1, . . . ,m}. (Coverage)

Now, we can enforce graph connectivity on trees by adding
a set of constraints on the edges as in Eqn. (8-9). From
Eqn. (9), we can note that nodes i, j defining a selected
edge (i, j) with bij,v = 1 are automatically selected, i.e.
yiv, yjv = 1. If

∑n
i=1 yiv = 2, then

∑
ij∈E bij,v = 1 imply-

ing selection of exactly one edge and the two nodes defining

it.

∑
ij∈E

bij,v =
n∑
i=1

yiv − 1, ∀v ∈ {1, . . . ,m}, (8)

bij,v ≤ yiv, yjv, ∀(i, j) ∈ E , ∀v ∈ {1, . . . ,m}. (9)

Proposition 2. In an acyclic connected graph, the con-
straints connecting node and edge variables in Eqn. (8)
and (9) lead to the selection of a connected subgraph.

Proof. The difference between number of selected nodes and
edges can not be larger than one due to Eqn. (8). And since
the constraints will yield some collection of connected trees
of G each with difference between edges and nodes being
one, it leads to selection of one connected acyclic graph at
each hypothesis.



Based on Proposition (2), a possible algorithm to assign
agents to hypotheses consists of first obtaining a span-
ning tree out of the connected graph and then solving the
assignment linear programming problem with constraints
given in Eqn. (7-9). Other than this, for graphs containing
cycles, there are two alternative ways to enforce connectivity,
namely average node degree and a,b-separation [20].

Average node degree: The average node degree of a
network is defined as the average over all node degrees
in the network. If each edge assigns a value of 1 to its
corresponding nodes, then as per [21], the maximum average
degree of a tree of k vertices is 2 − 2/k. If there is a
cycle in the graph, the maximum average degree is ≥ 2.
Therefore, we can introduce flow variables f iij , f

j
ij ∈ R≥0

on each edge (i, j) ∈ E with f iij + f jij = 2, and add a
constraint on the average degree of the optimal subgraph to
guarantee connectivity. However, the average node degree
method introduces quadratic constraints. The flow variables
are expressed for each hypothesis θv in a similar fashion
to bv as fv = [f iij1,v, f

j
ij1,v

, . . . f iij`,v, f
j
ij`,v

] ∈ R2`
≥0 with

` = |E|. Therefore, these constraints are expressed as
f iij,v + f jij,v = 2,∀(i, j) ∈ E ,θv ∈ Θ (10)∑

j∈Ni

f jij,v ≤ 2− 2∑n
i=1 yiv

∀i ∈ N ,θv ∈ Θ

The constraints in Eqn. (10) can be expressed as a linear
and quadratic constraint. In our solution, these are used
in conjunction with Eqn. (7- 9) to find the optimal graph
structures. One can employ a,b-separation presented in [20]
for finding optimal connected graphs instead of trees. This
formulation introduces n2ml variables in comparison to 2ml
variables in the formulation based on average node degree
in the network.

C. Defining hypothesis-specific communication matrices
The hypothesis assignment optimization matches each

hypothesis θv to a set of connected agents V(θv). A doubly
stochastic communication matrix A(θv) ≡ Av is assigned to
the induced subgraph Gθv . One popular method to generate
doubly stochastic matrices is via iterative normalization
along rows and columns of a matrix respecting the under-
lying connectivity [22]. Let the number of agents tracking
probability at hypothesis θv be nv = |V(θv)|. Also, define a
vector of ones as 1nv ∈ Rnv . As per [16], the ergodicity of
the assigned doubly stochastic matrix A(θv) with positive di-
agonal elements ensures that limt→∞A(θv)

t = 1
nv

1nv1
>
nv .

This introduces the averaging properties needed for designing
the likelihood averaging algorithm in the next section.

IV. DISTRIBUTED CONSENSUS ON PARTIAL HYPOTHESES

In this section, we propose and analyze a network-wide
inference algorithm that can be performed with partial ob-
servation likelihoods for each agent. The main property
of this algorithm is that it does not require group-wide
renormalization, yet it has performance guarantees. This lack
of renormalization allows for a distributed and more efficient
implementation of the algorithm.

For this section, we assume that sets of hypotheses Θi

tracked by agent i are computed offline. The sets can be

computed with the approach presented in Section III. Each
agent i thus knows the weights {A(θv)ij |∀j ∈ V(θv)∪{i}}
placed on beliefs at each θv ∈ Θi. As stated in Section II,
each agent aims to reach a consensus on the probability dis-
tribution on every hypothesis limt→∞ pi,t(θ) = p∞(θ),θ ∈
Θi, ∀i ∈ {1, . . . , n}.

In the state of the art, distributed estimation algorithms are
an analogue to Bayesian updates. This type of learning rule
can be seen in [10]. The rule can be decomposed in three
steps. At each hypothesis, the agent first performs opinion
pooling via geometric averaging of its neighbor probabilities
as a prior followed by a product with the agent’s observation
likelihood. The third step is normalization w.r.t. the sum of
estimate across all hypotheses Θ as observed by the network.
Selecting the weights at the opinion pooling step to form a
row or doubly stochastic matrix A ensures convergence to
the expectation of network wide weighted average and exact
average, respectively [16]. That is in [10],

pi,t+1(θ) =
1

Zi,t+1
pi(zi,t+1|θ)

n∏
j=1

pj,t(θ)[A]ij , ∀θ ∈ Θ,

Zi,t+1 =
∑
θ∈Θ

pi(zi,t+1|θ)
n∏
j=1

pj,t(θ)[A]ij

 . (11)

We note that, in this algorithm, the updates are defined on
the entire hypotheses space Θ and that each agent computes
its normalization factor at every time step. Directly using
the algorithm in [10] over partial space Θi would require
extensive bookkeeping, making the step extremely costly to
perform. Therefore, we develop a methodology to perform
this computation without computing the normalization factor.

A. Partial likelihood estimation algorithm

We propose Algorithm 1 for probability updates with
partial likelihoods. The updates for an agent i require the data
received at each time, neighbor estimates on assigned hy-
potheses and stochastic weights specifying their interaction
with neighbors at each hypothesis. The algorithm performs
the first two steps of opinion pooling and likelihood product,
but delays normalization until the very final time step T . In
this sense, we can characterize the proposed algorithm as
‘Update then Normalize’ type in contrast to existing ‘Update
and Normalize’ updates. The lack of normalization step in
intermediate time steps has enabled the agents to perform
distributed updates without relying on information from
agents on unobserved hypotheses in Θ\Θi. Our contribution
lies in proving that the normalization free updates lead to
almost sure asymptotic convergence as shown in Section VI.

As it can be observed, agent i depends on neighbor esti-
mates µj,t(θ),∀j ∈ V(θ),∀θ ∈ Θi. The scalar term A(θ)ij
describes the weight assigned by agent i to the belief received
from agent j at hypothesis θ. Each agent only computes
pi,T (θ) over the set Θi and depends on other agents for
providing pi,T (θ) for θ ∈ Θ\Θi. At the final time step T ,
other agent estimates are used to obtain the probability values
at hypothesis θ ∈ Θ\Θi for computing normalization factor
Zi,T . The update rules can also be expressed as a logarithm
of the agent estimates at each discrete hypothesis θv , given
as qi,t(θv) = log(µi,t(θv)); qzi,t(θv) = log(pzi(zi,t|θv)).



Algorithm 1: Partial likelihood estimation algorithm

Input: observations {zi,t}Tt=1, hypothesis set Θi,
prior hypothesis likelihoods pi,0(θ) and
communication matrices A(θ) for all θ ∈ Θi

Output: posterior probability pi,T for all θ ∈ Θi

1 µi,0(θ) ← pi,0(θ), ∀(θ) ∈ Θi

2 for t ∈ {1, . . . , T − 1} do
3 for θ ∈ Θi do
4 µi,t+1(θ) =

∏
j∈Ni µj,t(θ)A(θ)ij pzi(zi,t|θ)

5 end
6 end
7 Zi,T+1 =

∑
θ∈Θi

µi,T+1(θ) +
∑
θ∈Θ\Θi µj,T+1(θ)

8 pi,T (θ) = µi,T (θ)/Zi,t+1 ∀θ ∈ Θi

Fig. 2. True observation models pzi(zi,t|θ) = N(xi − θ, ||xi − θ||I2).
for 4 agents (left) and diversity function values F (G) with varying number
of set elements (right).

This allows for a more efficient numerical implementation.
Define qi,t+1(θv) =

∑n
j=1[A(θv)]ijqj,t(θv) + qzi,t(θv).

This logarithm representation will be used extensively in the
analysis section.

V. ASSIGNMENT AND ESTIMATION SIMULATIONS

For illustrative purposes, an assignment simulation is
carried out for a group of four agents communicating over
a connected graph as shown in Fig. 3. The agent posi-
tions are (−0.375,−1.125), (1.125,−0.375), (0.375, 1.125)
and (−1.125, 0.375). The circles represent nine hypotheses
in a grid of [−2, 2]2. The observation models are dependent
on the agent positions, xi ∈ R2, and hypothesis locations,
θv ∈ R2, and given as zi,t ∼ N(xi−θv, ||xi−θv||I2). The
source representing the true value of joint parameter is placed
at θ∗ = (2, 2). We plot the true observation models fi(z) of
the form of 2D Gaussian distributions based on source θ∗

as f∗i (z) ∼ N(xi − θ∗, ||xi − θ∗||I2) in Fig. (2).
The cardinality constraint limits hypotheses tracked by

each agent to 6 and the coverage constraint enforces that each
hypothesis is observed by at least one agent. Considering the
cycle formed by nodes {0, 1, 2}, we need to solve the com-
plete integer optimization in Eqn. (7-9). Based on the number
of nodes (n = 4), edges (l = 4) and hypotheses (m = 9), we
optimize over nm+ lm+2lm = 144 scalar variables for this
example. There are n+ 2m+ 3ml = 130 linear constraints
and ml = 36 quadratic constraints. We optimized via Gurobi
solver [23] using the barrier method and simplex method in
conjunction with linear approximations.

The optimization yields the y∗, b∗,f∗; out of which
optimal agent assignment y∗ is plotted via agent markers in

Fig. 3. Hypothesis assignment for 4 agents using distance-based observa-
tion models.

Fig. (3) at each hypothesis. The assignment provides cover-
age as each hypothesis is tracked by at least one agent. Since
the objective functions are defined in terms of the observation
models pzi(·|θ) depending on the distance between agents
and hypotheses, the effect of diversity maximization leads
to more agents observing farther hypotheses. For instance,
the sensing agents {0, 2} track hypotheses set {0, 1, 2} and
{6, 7, 8} which are distant from the agents. The connectivity
requirement is satisfied as every hypothesis is assigned an
induced subgraph of agents. For instance, hypothesis 7 is
observed by agents {0, 2} connected by an edge. Since
the diversity criterion is being maximized, the cardinality
constraint is tight for each agent enabling tracking of exactly
six hypotheses.

For the distributed estimation simulations, we pool agent-
neighbor opinions via an assigned doubly stochastic ma-
trix A(θ) with positive diagonal elements at each of the
hypothesis θ ∈ Θ. In the simulation, we can observe the
consensus among probability estimates of all agents at every
hypothesis. The common probability values are maximized
at the true hypothesis at θ = (2, 2) ∈ Θ∗. Whereas at other
hypotheses, the probabilities converge to zero. This illustrates
our claim that even though agents observe a subset of up to
6 hypotheses as shown in Fig. 3, all the agent probability
estimates pi,t(θ) still converge to the correct value p∞(θ) at
all hypotheses θ. The estimates reached the true consensus
value without any intermediate normalization steps.

Fig. 4. Agent probability estimates pi,t(θ) at all hypotheses upon running
the algorithm for 100 time steps at true hypothesis θ = [2, 2] (left) and at
false hypothesis θ = [0, 2] (right).

We present an application of this network wide estimation
on a 20-node network looking for true hypothesis in a set of
900 hypotheses as shown in Fig. 5. We observe in the Fig. 6
(b) and (c) that the number of observed hypotheses by an
agent can be diminished without any perceived difference in
rate of convergence. In other simulations, it was observed



Fig. 5. Contour color showing number of agents observing each hypothesis
location and the superimposed robot network.

Fig. 6. Likelihood convergence at the true hypothesis when each agent
observes all hypotheses (left) and only up to 300/900 hypotheses (right).

that the rate of convergence is not significantly affected
on lowering the limit mi on sets Θi as long as coverage
criterion is satisfied. This validates our approach towards
lowering the hypotheses tracked by each agent. For the 20-
node network, the partial likelihood update with 300/900
tracked hypotheses results in same estimates with 1/3rd
storage at each node and fewer than 1/3rd communication
events in the network. We were able to deal with up to 3e5
variables on a machine with 16 GB RAM before running into
memory overflow. These large scale simulations completed
with both simplex and cutting plane methods in under 2
minutes.

VI. PROOF OF ASYMPTOTIC CONVERGENCE

We provide a proof of the almost-sure asymptotic conver-
gence of the proposed partial likelihood estimation algorithm
(Alg. 1) under the assumptions mentioned here:

Assumption 1 (Static graph). The undirected graph G de-
scribing the agent communication is static and time-invariant.

Assumption 2 (Coverage). Each hypothesis θ ∈ Θ is
observed by at least one agent, i.e., |V(θ)| ≥ 1.

Assumption 3 (Non-zero initial probabilities). Every agent i
has an initial likelihood pi,0(θ) > 0, ∀θ ∈ Θi.

Assumption 4 (Sensor data reception). Assume that if the
true data generating pdf for agent i, f∗i (z) > 0 for some

z ∈ Rdz , then 1 ≥ ᾱ ≥ pzi(z|θ) ≥ α
¯
> 0, for all θ ∈ Θi

and some constants ᾱ, α
¯
. Note that ᾱ exists for any pdf.

As shown in Section III-C, we can assign a doubly-
stochastic matrix A(θv) to any hypothesis θv ∈ Θ. Since
every agent receives data from some θ ∈ Θ∗, the identity
of the agent tracking the likelihood of a true hypothesis is
irrelevant. Let the number of agents observing hypothesis θv
be nv = |V(θv)|. Define also the vector of log-likelihoods
of all observations received by the agents at time t given θv:

qzt(θv) :=

 log pz1(z1,t|θv)
...

log pznv (znv,t|θv)

 .
Similarly, define q0(θv) := log(p0(θv)) as the vector of

initial likelihood across all agents assigned to hypothesis θv ,
which is well defined due to Assumption 3.

Lemma 1. Under Assumptions 1 and 4, the asymptotic
likelihood estimates of all agents in set V(θv) observ-
ing hypothesis θv are equal, i.e., for some c ∈ R>0:

lim
T→∞

1

T

T∑
t=1

A(θv)
T−t qzt(θv) = c1nv (12)

Proof. Using the ergodicity property of doubly-stochastic
matrices, limT→∞A(θv)

T = 1
nv

1nv1
>
nv , and Assumption 4

that log(ᾱ)1nv ≥ qzt(θv) ≥ log(α
¯
)1nv , ∀ t ≥ 0, we have:

lim
T→∞

1

T

T∑
t=1

(
A(θv)

t − 1

nv
1nv1

>
nv

)
qzT−t(θv) = 0. (13)

Upon reversing the time index in the summation in (12),
1

T

T−1∑
t=0

A(θv)
T−t qzt(θv) =

1

T

T∑
t=1

A(θv)
t qzT−t(θv)

Now, let us take the limit T →∞ and use the ergodicity
property of matrix A on the term in Eqn. (12) to obtain

1

nv
1nv

 lim
T→∞

1

T

T−1∑
t=0

 ∑
j∈V(θv)

log(pzj(zj,t|θv))

 .

If the limit of the sum of observation log likelihoods
above exists, then the asymptotic estimates of every agent
i ∈ V(θv) would converge to the same value. We will
use Kolmogorov’s strong law of large numbers to show
the existence of this limit. The strong law states that
1
T

∑T
t=1Xt → 1

T

∑T
t=1 E[Xt] almost surely for a sequence

of independent random variables {Xt} with expectations
E[Xt] < ∞ and variances

∑∞
t=1 V ar(Xt)/t

2 < ∞.
Letting Xt :=

∑
j∈V(θv) log(pzj(zj,t|θv)), we can ver-

ify that both conditions required by the strong law are
satisfied due to Assumption 4. Considering the definition
of expectation as sum over temporal observations, we get,

1

nv
1nv

 ∑
j∈V(θv)

E[log(pzj(z|θv))]

 (14).

This shows that all agents arrive at the same asymptotic
estimate of the unnormalized likelihood of hypothesis θv . As
a result, the normalization factors Zi,t in (11) also asymp-
totically converge to the same value across all agents.

To proceed, we analyze the constant c in (12) further. The
expectations in (14) can be expressed in terms of the entropy
and the KL-divergence with respect to the true observation



model fi(·) of the agent observation models pzi(·|θv):

E [log(pzi(z|θv))] =

∫
fi(z) log

(
pzi(z|θv)

fi(z)

fi(z)

)
dz

= −DKL(fi(·)|| pzi(·|θv))−H(fi(·)). (15)
We use the notation [ ]i to denote the entry in a vector

corresponding to agent i. Based on Lemma 1, eq. (15),
and limt→∞A(θv)

T = 1
nv

1nv1
>
nv , thus averaging the prior

likelihood as T →∞, we have:

lim
T→∞

1

T

[
A(θv)

T log(p0(θv)) +

T∑
t=1

A(θv)
T−t qzt(θv)

]
i

= lim
T→∞

1

T

[
T∑
t=1

A(θv)
T−t qzt(θv)

]
i

, (16)

=
1

nv

 ∑
j∈V(θv)

−DKL(fj(·)|| pzj(·|θv))−H(fj(·))

 .

Finally, we prove convergence of the estimates maintained
by agent i at hypotheses in Θi to a density function with
non-zero mass only over Θ∗. We rely on the difference in
the convergence rates of the likelihood pi,t(·) evaluated at a
true hypothesis θw ∈ Θ∗ versus a false hypothesis θv /∈
Θ∗. Showing that the probability ratio, pi,t(θv)/pi,t(θw),
converges to zero is enough to guarantee that the probability
mass at an incorrect hypothesis, θv , is asymptotically zero.
Let the log probability ratio of θv and θw for agent i be:

φi,T+1(θv,θw) = log
µi,T+1(θv)/Zi,T+1

µi,T+1(θw)/Zi,T+1
,

= log

∏
j∈V(θv) pj,T (θv)

A(θv)ij pzi(zi,T+1|θv)∏
j∈V(θw) pj,T (θw)A(θw)ij pzi(zi,T+1|θw)

,

=

[
T∑
t=1

A(θv)
T−t qzt(θv) +A(θv)

tq0(θv)

]
i

−

[
T∑
t=1

A(θw)T−t qzt(θw) +A(θw)tq0(θw)

]
i

.

(17)

Distributed inference algorithms based on Bayesian up-
dates with normalization [24] optimize an objective function:
C(θv) =

1

nv

∑
j∈V(θv)

(
DKL(fj(·)||pzj(·|θv)) + H(fj(·))

)
Following Eqn. (16), the individual terms exist in the

time-averaged asymptotic value, limT→∞
1
T φi,T+1(θv,θw),

lim
T→∞

1

T
φi,T+1(θv,θw) = C(θw)− C(θv) (18)

This is related to (16) since for θv /∈ Θ∗ and θw ∈ Θ∗,
lim
T→∞

1

T
φi,T+1(θv,θw) = C∗ − C(θv) < 0. (19)

Therefore, the value of φi,t(θv,θw)→ −∞ almost surely.
Also since pi,t(θv) ≤ exp(φi,t(θv,θw)), ∀i ∈ V(θv) ∩
V(θw), we have pi,t(θv) → 0. Therefore, the likelihood of
an incorrect hypothesis is asymptotically almost surely zero.

VII. CONCLUSION

In this paper, we have proposed a distributed inference al-
gorithm to allow sensor networks to learn source distribution
while maintaining partial observation likelihoods. This leads
to significant savings in the number of message exchanged
across neighbors. The devised algorithms has proven conver-
gence guarantees in the absence of normalization factors at
each update step, thus allowing a significant speed up of the
algorithm. As the distributed estimation algorithm depends

on hypothesis agent matching, we have also devised a novel
mixed integer programming formulation for assigning con-
nected subgraphs of agents to each hypothesis. The results
of asymptotic convergence of the algorithm for fixed graphs
can also be extended to the cases of asynchronous infinite-
often communications and time-varying graphs with global
connectivity over certain fixed time steps.
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[14] E. Álvarez-Miranda, I. Ljubić, and P. Mutzel. The maximum weight
connected subgraph problem. In Facets of Combinatorial Optimiza-
tion, pages 245–270. Springer, 2013.

[15] A.A. Loboda, M.N. Artyomov, and A.A. Sergushichev. Solving gen-
eralized maximum-weight connected subgraph problem for network
enrichment analysis. In International Workshop on Algorithms in
Bioinformatics, pages 210–221. Springer, 2016.

[16] B. Touri. Product of random stochastic matrices and distributed
averaging. Springer Science & Business Media, 2012.

[17] L. Lovász. Submodular functions and convexity, pages 235–257.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[18] S.T. McCormick. Submodular function minimization. Handbooks in
Operations Research and Management Science, 12:321–391, 2005.

[19] D.S. Johnson. The np-completeness column: an ongoing guide.
Journal of Algorithms, 6(3):434 – 451, 1985.

[20] Y. Wang, A. Buchanan, and S. Butenko. On imposing connectivity
constraints in integer programs. Mathematical Programming, 166(1-
2):241–271, 2017.

[21] N. Cohen. Several graph problems and their linear program formula-
tions. Working paper or preprint, January 2019.

[22] R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and dou-
bly stochastic matrices. Pacific Journal of Mathematics, 21(2):343–
348, 1967.

[23] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.
[24] S.G. Walker. Bayesian inference via a minimization rule. Sankhyā:
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