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Abstract— The cooperative localization problem consists of a
group of networked agents aiming to find the true probability
density function(pdf) of their states. Unlike existing algorithms
such as Distributed Kalman filters or non-Bayesian social
learning, our algorithm restricts each agent’s estimates to a local
pdf on its own and its neighbors’ state variables. The agents
update these pdfs via local observations of their neighbors and
their shared messages. This partial state estimation problem
is formulated as a distributed constrained optimization in the
space of probability density functions. Consistent estimates
across the agents are enforced with a constraint requiring equal
estimated densities over common states in every communicating
agent pair. Stochastic mirror descent steps are then computed
to develop a novel cooperative estimation algorithm with
geometric averaging over the common marginals to enforce
the constraint. We specialize this algorithm to update rules
with Gaussian observation models and density estimates. The
Gaussian relative position observations are simulated and accu-
racy is compared to Belief propagation and full state consensus
algorithms in varying graph topology.

I. INTRODUCTION

Advances in sensor technology, data processing and com-
munication systems have enabled the deployment of mul-
tiple sensors onboard autonomous robots, connected in a
communication network [12], [26]. Distributed localization
of the sensors in a common reference frame based on
relative measurements is a critical capability needed in such
networks. Fast and accurate localization forms the basis
of services such as target tracking [1], [24], distributed
mapping [14], and task assignment [34]. Localization of
the robot team by a central entity is prohibitive in large
networks due to communication and processing costs, and
is fault-susceptible even in small ones. This motivates the
design of distributed localization algorithms that rely on
local measurements, storage, computation, communication to
estimate the sensor states in a global frame.

Related work: Distributed network estimation algorithms
include diffusion-based approaches [6], where agents share
both observations and estimates, and distributed Bayesian
approaches [15], where agents only share densities over
the state estimates. Bayesian techniques such as the sum-
product algorithm (belief propagation) [33], [31] and con-
sensus pooling [17], [16] can be decomposed into consensus
and likelihood update steps. Consensus algorithm estimates
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converge to true pdf when each agent’s prior is (geomet-
rically) averaged [17], [13] with one-hop neighbors before
applying the usual Bayesian measurement update. Gaussian
distributions versions of the consensus [7], [1] and belief
propagation [9], [4] algorithms have been designed and also
shown to converge. Distributed Bayesian and consensus pool-
ing algorithms require maintaining and exchanging estimates
over entire network’s state, which is not feasible in large
networks. On the other hand, the belief propagation updates
agents’ own state estimates based on their edge likelihoods
and neighbor marginals. When a factor graph contains cycles,
usually present in localization problems, belief propagation
does not guarantee convergence. For reducing the stored
and communicated data across the network, our previous
work [19] details likelihood averaging algorithm for source
localization in sensor-specific subsets in discrete setting.

Network localization may be performed with sensors such
as radar, infrared, acoustic and cameras [2], [11], [20],
modeled via range and bearing models. Several parametric
and non-parametric algorithms have been applied to location
tracking in range [28], [21] and bearing models [32]. The
cooperative approaches require agents to share all estimated
sensor positions in the network. In localization problems
using relative measurements, the notion of network identi-
fiability determines the existence of a unique solution given
the choice of agent observation models. With relative po-
sition measurements, the estimated positions are translation
invariant, which necessitates at least one anchor node with
known position to remove the translation ambiguity [1].
Localization with range-only measurements can be solved
up to an isometry [8], [29], while bearing-only localization
requires a rigid graph for a unique solution [30]. In this work,
we assume that network identifiability holds for the available
observation models.

Contributions: This work proposes novel likelihood av-
eraging rules for distributed estimation that enable learning
agent densities defined over local neighbor states, exploiting
the structure in localization problems with relative (edge)
measurements. We derive the proposed algorithm using dis-
tributed stochastic mirror descent over the space of pdfs
subject to a constraint that the agent pdfs agree over the
intersections of their local neighborhoods. The proposed
algorithm significantly reduces the storage and communi-
cation costs compared to consensus-pooling and distributed
Bayesian algorithms. We specialize the general formulation
to Gaussian estimates and observation models and show
that the algorithm converges in sparse graphs with relative
position measurements where Belief propagation fails.



II. PROBLEM FORMULATION

We consider a cooperative localization problem over a
sensor network with unknown states, where each agent/n-
ode receives relative observations from its neighbors and
estimates its state in a global reference frame [3]. Denote
the state vectors of the n agents as xi ∈ X ⊆ Rd, i ∈
{1, . . . , n}, where X is bounded. The agents communicate
via an undirected and connected graph G with node set V
and edge set E . The neighbors of agent i, including itself,
are denoted Vi. The common neighbors of agents i and j
are Vij , Vi ∩ Vj . We represent the communication graph
via an adjacency matrix A with entries Aij = 0, if agents i
and j are not connected, and Aij > 0 for existing edges and
self-loops. Every such matrix A representing a connected
network can be made doubly stochastic [27].

Each agent’s relative measurements with respect
to its neighbors at each time t are represented
as zij,t ∈ R` and assumed to be a sample of the
observation model qi(zij,t|x∗i ,x∗j ) ∈ F`. The pdf
space F` over a variable of `-dimensions is described as,

F` =

{
g ∈ L2(R`) s.t.

∫
X
g(x)dx = 1, g(x) ≥ 0,∀x ∈ R`

}
(1)

.
The vector of all such observations zij,t at agent i is
given as variable zi,t, and variable z1:n,t represents
the collection of zi,t over all n agents. Similarly, the
vector x1:n ∈ Rnd concatenates (x1, . . . ,xn). Combining
pairwise observations at an agent, the observation model
for agent i is qi(zi,t|yi) =

∏
j∈Vi qi(zij,t|xi,xj). For

agent i, the vector yi ∈ Rnid includes neighbor node
states {xi, {xj}j∈Vi}. The observation model for all
agents is q(z1:n,t|x1:n) ∈ Fn` is written as a product
in observation space

∏
i∈V qi(zi,t|yi). These observation

models may represent range, bearing, position and any other
combinations. The true data generating model are defined
with true locations y∗i ,x

∗
1:n.

We make the following assumptions to further define
our problem: (a) The communication network is connected
and the graph adjacency matrix A satisfies A1 = 1, A =
A>, and diagonal entries Aii > 0 ,∀i ∈ {1, . . . , n},
where 1 is a vector of ones. (b) Each agent i estimates a
pdf pi(yi) over the self and neighbor state variables. (c)
Relative measurements are conditionally independent and
conditioned on the neighbor nodes following the observation
model qi(zi,t|{xj}j∈Vi). (d) Relative measurements {zi,t}
at agent i are independent across time.

Problem 1: The network of agents aims at collectively
learning the pdf p̄(x1:n) ∈ Fnd over the unknown agent
positions x1:n using edge measurements z1:n,t collected at
each time t.

min
p̄

{
E

(x1:n)∼p̄
[f(x1:n)]

}
, (2)

where f(x1:n) := DΨ(q(·|x∗1:n)|| q(·|x1:n)). For den-
sity functions q(·|x∗1:n), q(·|x1:n) ∈ Fn`, the KL-
divergence is defined as DΨ(q(·|x∗1:n)|| q(·|x1:n)) =∫
Rn` q(·|x∗1:n) log(q(·|x∗1:n)/ q(·|x1:n)).

The optimization presented here follows stochastic pro-
gramming [25] with the caveat that the pdf q(z1:n,t) ,
q(z1:n,t|x∗1:n) is unknown, but sampled at each time
step. We can express the minimization problem defined
for finding p̄(x1:n) ∈ Fnd in terms of sampling av-
erages. We introduce inner product notation 〈p1, p2〉 =∫

Ω
p1p2dω, for p1, p2 ∈ Fnd.

min
p̄∈Fnd

{
E

x1:n∼p̄
[DΨ(q(z1:n,t)|| q(z1:n,t|x1:n))]

}
= min
p̄∈Fnd

{
E

x1:n∼p̄
[−〈q(z1:n,t), log(q(z1:n,t|x1:n))〉]

}
(3)

= min
p̄∈Fnd

{
E

z1:n,t∼q(z1:n,t)
E

x1:n∼p̄
[− log(q(z1:n,t|x1:n))]

}
(Fubini-Tonelli theorem)

= min
p̄

{
E

z1:n,t∼q(z1:n,t)
F [p̄, z1:n,t]

}
,

F [p̄; z1:n,t] = E
x1:n∼p̄

[− log(q(z1:n,t|x1:n))]. (4)

where the first equality after (3), the entropy term
∫

q log(q)
is independent of x1:n. The expectation function in (4)
can be approximated in terms of sampled data z1:n,t in
objective F [p̄; z1:n,t] at different time steps as,

min
p̄∈F

{
1

T

T∑
t=1

F [p̄; z1:n,t]

}
. (5)

III. CONVEX FUNCTIONALS AND DERIVATIVES

This section introduces the stochastic mirror descent
(SMD) algorithm and its application in function spaces.

A. A primer on the Stochastic Mirror Descent algorithm

The SMD algorithm [5], [18] generalizes stochastic gra-
dient descent (SGD) for convex optimization problems via a
divergence operator. Let g(w;v), with w ∈ Rn, v ∈ Rm, be
a real-valued function which is convex in its first argument.
Consider the stochastic optimization problem:

min
w

E[g(w;v)] ≈ 1

T

T∑
t=1

g(w;vt), (6)

where {vt} is a random sequence available online. As T →
∞, computating the gradient of the objective function may be
infeasible. Instead, the SMD algorithm employs the gradient
∇g(w;vt) at time t to perform iterative optimization:

wt+1 = arg min
w

{
〈∇g(wt,vt),w〉+

1

αt
Dφ(w,wt)

}
, (7)

where 〈·, ·〉 is the inner product on Rn and Dφ(w,wt) is a
Bregman divergence between w and wt.

Definition 1: Consider a continuously differentiable and
strictly convex function φ : X → R defined on a convex
set X . The Bregman divergence associated with φ for points
w, w̄ ∈ X is Dφ(w, w̄) := φ(w)−φ(w̄)−〈∇φ(w̄),w−w̄〉.

Choosing φ(w) = ‖w‖22, makes Dφ the squared Eu-
clidean distance and (7) becomes the standard SGD algo-
rithm. The sequence {αt}t≥1 should be non-summable but



square-summable to ensure convergence. The convergence
rate for minimizing convex functions is O( 1√

T
), indepen-

dently of the problem dimension [18].

B. Derivatives and Bregman divergence in functional space

The problem considered in this paper (5) is defined over
the function space Fnd of probability density functions p̄.
Applying SMD to (5) requires generalizing the terms in (7).

Consider functions g1, g2 ∈ L2(Xn). The standard inner
product on L2(Xn) is 〈g1, g2〉 :=

∫
g1g2dµ, where µ is the

Lebesgue measure on Xn. A subset A of L2(Xn) is convex
if and only if αg1 + (1 − α)g2 ∈ A for any g1, g2 ∈ A
and α ∈ [0, 1]. The set of pdfs Fnd in (1) is a closed convex
subset of L2(Xn). To define a divergence operator over Fnd,
we consider the entropy functional Ψ[g] =

∫
g log(g) for

g ∈ Fnd. Entropy is continuously differentiable and strictly
convex as (i) Fnd is convex and (ii) x log(x) in x is strictly
convex over the positive real numbers, and the integration
operator is linear, so it holds that Ψ[αg1 + (1 − α)g2] <
αΨ[g1] + (1 − α)Ψ[g2] for all g1, g2 ∈ Fnd, g1 6= g2 a.e.
The Bregman divergence associated with Ψ is the Kullback-
Leibler divergence DΨ(g1, g2) :=

∫
g1 log(g1/g2) [10].

To finish the extension of SMD to Fnd, we need a defini-
tion of functional derivative. To evaluate how a functional
F changes in the vicinity of g ∈ L2(Xn), we consider
variations of g defined as g + εη, where η ∈ L2(Xn) and
ε ≥ 0 is a small scalar. For fixed g, η, F [g+εη] is a function
of ε and limits can be evaluated in the usual sense.

Definition 2: A functional F : L2(Xn) → R is Gateaux
differentiable at g ∈ L2(Xn), if

F ′[g; η] := lim
ε→0+

F [g + εη]− F [g]

ε
. (8)

exists for any η ∈ L2(Xn) and there is an element δF
δg ∈

L2(Xn) such that
∫
δF
δg η = F ′[g; η].

Proposition 1: For p, g ∈ Fnd, the Gateaux derivative of:
1) L[p] = 〈p, g〉 is δL

δp = g,
2) Ψ[p] = 〈p, log(p)〉 is δΨ

δp = 1 + log p.
3) DΨ(p||g) = 〈p, log(p/g)〉 is δDΨ

δp = 1 + log(p/g).
Proof: The derivative of L[p] follows by the definition.

The directional derivative of Ψ[p] along η ∈ F is,

Ψ′[g; η] = lim
ε→0+

1

ε

(∫
(g + εη) log(g + εη)−

∫
g log g

)
=

∫
lim
ε→0+

1

ε
((g + εη) log(g + εη)− g log g) =

∫
η log(g) + η,

where we use the dominated convergence theorem [23] to ex-
change the limit with the integral (as ε can be taken to be 0 ≤
ε ≤ 1, we have that (f+εη) log(f+εη) ≤ (f+η) log(f+η),
which is an integrable function). The derivations for linear
and entropy functionals may be summed to obtain the KL-
divergence derivative.

IV. STOCHASTIC MIRROR DESCENT OVER THE
PROBABILITY SIMPLEX

This section derives the existing distributed algorithms for
extensions to marginal space updates. We apply the SMD

algorithm to an optimization problem over the probability
simplex F in the form specified in (3). We start with deriving
the additive structure of F [p; z1:n,t] =

∑n
i=1 Fi[p; zi,t],

where Fi[p; z] := −〈log qi(z|·), p(·)〉 and exploit this to
obtain a distributed SMD formulation.

A. Centralized SMD

With {pt}t≥0 as iterates of SMD algorithm and DΨ(p||pt)
as the Bregman divergence between p, pt ∈ Fnd
(c.f. Sec. III), the SMD algorithm applied to Eqn. (5) is:

pt+1 = arg min
p∈F

{〈
δF

δp
[pt, z1:n,t], p

〉
+

1

αt
DΨ(p||pt)

}
. (9)

Proposition 2: The optimization problem in (9) has a
closed-form solution:

pt+1(·) ∝ exp

(
−αt

δF

δp
[pt(·); z1:n,t]

)
pt(·). (10)

Proof: Problem (9) is an equality-constrained opti-
mization over the pdf space Fnd. To take the constraint∫
p = 〈1, p〉 = 1 into account, we consider the Lagrangian:

L(p, λ) =

〈
δF

δp
[pt, z1:n,t], p

〉
+

1

αt
DΨ(p||pt) + λ (〈1, p〉 − 1),

where λ is a multiplier. The variation of L w.r.t. p is:

δL
δp

=
δF

δp
[pt, z1:n,t] +

1

αt
(1 + log p− log pt) + λ.

Setting the variation to zero and solving for p leads to:

p(·) = e−1−αtλ−αt δFδp [pt(·),z1:n,t]pt(·).

The value of λ can be obtained from the constraint:

1 =

∫
p(·) = e−1−αtλ

∫
e−αt

δF
δp (pt(·),z1:n,t)pt(·)︸ ︷︷ ︸

Z

,

showing that p(·) = 1
Z exp

(
−αt δFδp (pt(·), z1:n,t)

)
pt(·).

For our specific choice of F [p, z1:n,t],

δF

δp
[pt(·), z1:n,t] = − δ

δp
〈log q(z1:n,t|·), p(·)〉

∣∣∣∣
p(·)=pt(·)

= − log q(z1:n,t| ·). (11)

Applying Prop. 2 leads to the following SMD algorithm over
the probability simplex:

pt+1(x1:n) ∝ q(z1:n,t|x1:n)αtpt(x1:n). (12)

B. Distributed SMD

Instead of solving the optimization problem (5) cen-
trally, we observe the additive structure of F to obtain
a distributed formulation, in which agents keep local es-
timates pi,t ∈ Fnd of the state pdf. The key idea was
proposed in [16] based on the observation that we can
introduce new agent-specific variables p̄i = p̄ in (2), along
with a constraint that their values agree, p̄i = p̄j for all
i, j ∈ V . Using the nodal independence of zi in obser-
vation models log(q(z1:n|x1:n)) =

∑n
i=1 log(qi(zi|x1:n))

and data generating densities q(z1:n,t) =
∏
i∈V qi(zi,t)



on Eqn. 4, the distributed objective satisfies F [p̄, z1:n] =∑n
i=1 Fi[p̄i, zi,t] is,

Fi[p̄i, zi,t] = E
x1:n∼p̄i

[− log(qi(zi,t|x1:n))]. (13)

The agent-wise optimization yields the same results as cen-
tralized upon enforcing the constraint p̄i = p̄j ,∀i, j ∈ V .

The SMD algorithm can now be applied locally at each
agent i with iterates pi,t(x1:n). To eventually enforce the
agreement constraint, p̄i = p̄j , [16] uses geometric averaging
with stochastic weights Aij , depending on the network
structure, of the pdfs pi,t:

pi,t(·) ∝
∏
j∈Vi

(pj,t(·))Aij .

Thus, the local SMD problem becomes:

min
p∈Fnd

{
−〈log qi(zi,t|·), p〉+

1

αi,t
DKL

(
p,
∏
j∈Vi

p
Aij
j,t

)}
, (14)

leading to the distributed update rule:

pi,t+1(x1:n) ∝ qi(zi,t|x1:n)αi,t
∏
j∈Vi

pj,t(x1:n)Aij . (15)

The convergence of the algorithm in (15) has been shown
in [16]. Applying (15) to the localization problem, leads
to a distributed algorithm but the amount of information
maintained and exchanged by the agents is still nd di-
mensional because pi,t ∈ Fnd. This significant memory
and communication requirement is counter-intuitive because
agents are interested in estimating only their own states
xi ∈ Rd and do not necessarily care about the states of
the entire network. Our main contribution in the following
section allows pdfs defined only over the local neighborhood
of i to be maintained and exchanged.

V. PROPOSED MARGINAL CONSENSUS ESTIMATION
ALGORITHM IN PARTIAL SPACES

For localization networks with relative measurements, the
pdfs are defined on the partial space of local neighborhood
states yi. This section derives the objective function based
on observation models in yi, propose an algorithm and
specialize it for Gaussian densities. We write the centralized
objective in terms of observation models pi(·|yi), and follow
the steps in distributed SMD section to decompose the
function along agent i’s observations zi,t. We start with
showing that the centralized estimation of node states in
equations (2) to (3) can be distributed along agents in partial
neighbor state space given by yi.

min
p̄

E
x1:n∼p̄

[DΨ(q(z1:n,t)|| q(z1:n,t|yi))]

=
∑
i∈V

min
p̄i

E
yi∼p̄i

[DΨ(qi(zi,t)|| qi(zi,t|yi)].

The decomposition leads to a distributed version of (3)
by introducing pdfs’ pi(yi) along with constraints ensuring

agreement on common states estimated by any two agents.

min
p̄
F [p̄; zt] =

∑
i∈V

min
p̄i

E
yi∼p̄i

[−〈qi(zi,t), log qi(zi,t|yi)〉],

further leading to the approximation,

min
p̄
F [p̄; zt] =

∑
i∈V

min
p̄i

E
yi∼p̄i

E
zi,t∼qi

[− log(qi(zi,t|yi))]

=
∑
i∈V

min
p̄i

T∑
t=1

E
yi∼p̄i

[− log(qi(zi,t|yi))].

The distributed objective function then becomes,

Fi[p̄i; zi,t] = E
yi∼p̄i

[− log(qi(zi,t|yi))]. (16)

The SMD algorithm locally learns pdf over local neighbor
variables pi,t(yi) with likelihood update as the Gateaux
derivative δ

δp̄i
Fi[p̄i; zi,t] = − log(qi(zi,t|yi)), the same as

presented in (15). The agent wise optimization matches the
centralized estimates under the constraints p̄i =

∫
X\Xi p̄,

which depend on the unknown global p̄. Therefore, the
constraints are instead represented as agreement in marginal
agent pdfs p̄i,∀i ∈ V over a common space,∫

p̄idxk|k∈Vi\Vij =

∫
p̄jdxk|k∈Vj\Vij , ∀(i, j) ∈ E .

Since every agent’s state is estimated by its one and two-hop
neighbors, all marginals of the estimated pdfs on any com-
mon set of variables are equal. These constraints requiring
marginal agreement on edges are enforced with geometric
averaging on self-conditional and neighbor-marginals prod-
uct p̃ji,t as detailed below. Each agent messages marginal
density estimates pji,t over common states to neighbors.

pi,t ∝
∏
j∈Vi

(p̃ji,t)
Aij ,

p̃ji,t = pi,t({xk}k∈Vi\Vij |{xk}k∈Vij )pji,t({xk}k∈Vij ),

pji,t({xk}k∈Vij ) =

∫
pj,t({xk}k∈Vj )dxk|k∈Vj\Vij .

Our Algorithm 1 thus consists of the following steps: edge
merging, geometric pooling, likelihood update and mes-
sage generation performed by each agent at each time step.

Data: estimate pi,t(yi), weights {Aij}j∈Vi , neighbor
messages pji,t({xk}k∈Vij ), measurement zi,t,
measurement model qi(zi,t|yi)

// Combine neighbor estimates.
for j ∈ Vi do

Product of j’s marginal and i’s conditional:
p̃ji,t = pi,t({xk}k∈Vi\Vij |{xk}k∈Vij )pji,t({xk}k∈Vij );

Weighted average: p̃i,t(yi) :=
∏

j∈Vi p̃ji,t(yi)
Aij ;

// Bayesian update.
pi,t+1(yi) = qi(zi,t+1|yi)p̃i,t(yi);
// Generate neighbor messages.
for j ∈ Vi do

Find common neighbor marginal
pij,t+1({xk}k∈Vij ) =

∫
V\Vij

pi,t+1(yi);
Algorithm 1: Marginal density averaging at agent i



In comparison to distributed algorithm in Section IV-
B, this algorithm reduces the size of the communicated
messages from a density over all the network states in V to
a partial common set Vij between sensors (i, j). Whereas,
on computational front, there is an added step for finding the
conditional density at each node. This trade-off depends on
the number of connections in the sensor network.

Gaussian marginal density averaging

This section specializes our proposed Algorithm 1 to
Gaussian marginal updates. We present the Gaussian estimate
equivalent to the four algorithm steps in the following
lemmas. Here, we denote a Gaussian random variable with
mean µ and information matrix as Ω N (µ,Ω−1), and its
associated density function as φ(·|µ,Ω−1).

Lemma 1 (Neighbor messages): The marginal density of

the Gaussian pdf φ

([
x1

x2

] ∣∣∣∣∣
[
µ1

µ2

]
,

[
Ω11 Ω12

Ω21 Ω22

]−1
)

with re-

spect to x1 is given as,

φ(x1

∣∣∣µ1,
(
Ω11 − Ω12Ω−1

22 Ω21

)−1
).

Lemma 2 (Pre-edge merging): Let (X1, X2) be random
vectors represented by a joint Gaussian distribution with

mean
[
µ1

µ2

]
and information matrix Ω =

[
Ω11 Ω12

Ω21 Ω22

]
. The

pdf associated with conditional distribution is,

(X1|X2 = x2) ∼ N
(
µ1 − Ω−1

11 Ω12(x2 − µ2),Ω−1
11

)
.

Proposition 3 (Edge merging): Let X1, X2 be random
vectors with a joint Gaussian distribution. Assume that
X1 conditioned on X2 = x2 is distributed as N (µ1 −
Ω−1

11 Ω12(x2 − µ2),Ω−1
11 ) and that the marginal distribution

of X2 is N (µ̄2, Ω̄
−1
22 ). Then, X1 and X2 joint distribution is

N

([
µ1 + Ω−1

11 Ω12(µ2 − µ̄2)
µ̄2

]
,

[
Ω11 Ω12

Ω>12 Ω̄22 + Ω>12Ω−1
11 Ω12

]−1
)
.

Lemma 3 (Geometric averaging): Let Ωw =
∑n
i=1AiΩi.

The weighted geometric product of Gaussian density func-
tions φ(x|µi,Ω−1

i ),∀i ∈ {1, . . . , n} with corresponding
weights Ai is given as,

n∏
i=1

φ(x|µi,Ω−1
i )Ai = φ

(
x
∣∣∣Ω−1
w

n∑
i=1

AiΩiµi,Ω
−1
w

)
.

Lemma 4 (Likelihood update): Let the likelihood density
be described as qi(zi,t|yi) = φ (zi,t|Hiyi, Vi). Then the
posterior Gaussian density obtained as likelihood prior prod-
uct φ

(
zi,t|Hiyi, V

−1
i

)
φ
(
yi;µ,Ω

−1
i

)
is

N
((

H>i ViHi + Ωi

)−1

(H>i Vizi,t + Ωiµi),
(
H>i ViHi + Ωi

)−1
)

These results lead to the closed-form implementation as
described in Algorithm 1.

VI. SIMULATIONS

A. Cooperative localization with relative measurements

Consider a network of 10 nodes with unknown loca-
tions x = [xi]i∈V ,xi ∈ R2, which perform cooperative
localization via noisy relative measurements. To guarantee
network identifiability, and since the states lie in a two-
dimensional space, we assume there is one unique anchor
node with a known position in the network. Each node i
obtains relative measurements from node j of the form zij =
(xj−xi)+ε, ε ∼ N (0, Vi), Vi = Id. The collected measure-
ments at node i at time t are given as zi,t = [zij,t]j∈Vi .

1) Full state estimation (FS): The Gaussian form of the
distributed SMD for the state vector x = [x>1 . . .x

>
n ]> and

observation model qi(x) = N (Hix, Vi) for each i ∈ V , is
given in [1]. The update rules employ the mean µi,t and
information matrix Ωi,t(= Σ−1

i,t ) for each agent as

Ωi,t =
∑
j∈Vi

Ωj,t−1; µi,t = Ω−1
i,t (

∑
j∈Vi

Ωj,t−1µj,t−1).

2) Belief propagation (BP): This long-established, dis-
tributed algorithm aims to compute a joint probability
distribution of the form

∏n
i=1 pi(xi), where pi(xi) (with∑n

i=1 pi(x) = 1) refers to the pdf representing the agent
estimate of xi in the network. In absence of any loops in the
communication network, BP [22] has been shown to estimate
the correct marginals at each node. BP implements message
generation and pooling steps as follows

mt,ij(xi) =
∑
xi

qi(zij |xi,xj)pi,t(xi)
∏

k∈Vj\i

mt−1,kj(xi),

pi,t(xi) =
pi,t−1(xi)

∏
k∈Vi mki(xi)∑n

j=1 pj,t−1(xj)
∏
k∈Vj mkj(xj)

.

BP incurs into a significantly larger number of messages
passed between agents as compared to the method presented
here.

A Gaussian BP algorithm is described in [4] for agents
with observation model zi = H

[
xi xj

]>
+ ε, ε ∼

N (0d×1,Ω
z
i ), with H =

[
−1, 1

]
⊗Id, where ⊗ is a kronecker

product. The update rule for each agent is given as

Ωjj,t =
∑
i∈Vj

Ωij,t−1; µjj,t = Ω−1
jj,t

∑
i∈Vj

Ωij,t−1µij,t−1

 ,

which depends on the messages sent to j from i ∈ Vj :

Ωij,t =

[
Ωii,t − Ωji,t−1 0

0 0

]
+H>i ΩziHi,

µij,t = Ω−1
ij,t

([∑
k∈{Vi\j} Ωki,t−1µki,t−1

0

]
+H>i Ωzi zij,t

)
.

3) Algorithm comparison: We compare our algorithm for
Gaussian estimates with the previous ones. Figure 1 presents
the performance of the three algorithms for a ring network.
As expected, the FS estimation performs better than our
algorithm based on partial updates, which outperforms BP.
In fact BP fails to converge in a reasonable amount of time,



Fig. 1. (Row 1) Convergence of self-estimates to true agent positions.
(Row 2) Estimate error for each agent’s self estimate across time. (Row
3) Maximum eigenvalue of the self-covariance estimates in BP, full, and
partial state estimation algorithms for a ring network of 10 agents.

TABLE I
COMPARING THE ITERATIONS AND COMMUNICATED NUMBERS FOR

CONVERGENCE TO A FIXED ERROR IN A 25-NODE GRAPH

Iterations Information units

BP FS CS BP FS CS

Line NA 18 1356 NA 2203k 1301k
100 edges 9 2 28 29.8k 846.6k 291k
287 edges 7 2 15 51k 1856k 2709k

whereas our algorithm does. Based on the log singular value
updates of self-covariance, BP and the proposed algorithm
exhibit more confidence in their estimates compared to the
full-state algorithm. We next compare the amount of shared
information needed to reach the same estimated error level in
Table I over a 25-node network. We define that communicat-
ing d-dimensional Gaussian densities requires sharing d+d2

units corresponding to the mean and covariance respectively.
Even though the proposed algorithm requires more iterations
for convergence, fewer information units are shared over the
network than full state iterations in relatively sparse graphs.

Figure 2 presents the results for a large-scale network of
100 nodes and 400 edges, showing convergence in each case.
For dense graphs, we observe that BP converges faster than
our proposed algorithm. We also observe that the log singular
value of the covariance matrix converges faster for BP than
for other methods. This confidence does not coincide with the
quality observed in the full-state updates. The computation
complexity of our algorithm is contingent upon the number
of matrix inverses. We observe that computational time
progresses from BP, full-state estimation and our algorithm.

To further contrast our algorithm and BP, we simulated
several 10 node networks with increasing number of edges
in {9, . . . , 45}. In all cases, we observed that the full-
state algorithm outperformed the other two algorithms wrt
final error estimates. An interesting pattern was observed
between BP and proposed algorithm. The latter outperformed

Fig. 2. (Row 1) Self position estimates among agents and (Row 2) Max-
imum eigenvalue of the self-covariance estimates in a 100-node, 400-edge
connected network via BP, full, and partial state estimation algorithms.

Fig. 3. Error in self position estimates via BP, full and partial state
estimation algorithms. (a) With increasing graph diameter after 500 steps.
(b) With increasing connectivity captured by Fiedler Eigenvalue.

BP accuracy for lower connectivity networks with fewer
edges. Figure 3 shows how lower connectivity measured by
Fiedler eigenvalue implies that BP performs worse than our
algorithm, while being comparable in denser graphs.

VII. CONCLUSIONS

This paper presents a distributed and scalable estimation
algorithm to solve cooperative localization problem. We pose
this problem as a joint optimization in space of pdfs, as a pdf
formulation allows for characterizing higher order moments
of the estimated positions. The optimization is subject to
constraints over estimated pdf’s marginals to ensure estima-
tion consistency. The proposed algorithm employs a novel
edge averaging estimation step that follows likelihood update
in SMD optimization. We then specialize this algorithm
to Gaussian estimates and compare its performance with
well established Belief propagation and full state estimation
distributed algorithms. Simulations show that our algorithm
converges on sparse networks, where Belief propagation
fails, and remains competitive w.r.t. other cases.
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[16] A. Nedić, A. Olshevsky, and C. A. Uribe. Distributed learning for
cooperative inference. arXiv:1704.02718, 2017.
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APPENDIX

PROOF OF PROPOSITION 3

Let X1, X2 be random vectors with a joint Gaussian
distribution. Assume that X1 conditioned on X2 = x2 is
distributed as N (µ1 −Ω−1

11 Ω12(x2 − µ2),Ω−1
11 ) and that the

marginal distribution of X2 is N (µ̄2, Ω̄
−1
22 ).

Using the reparametrization trick, X1|X2 = x2 can be
expressed as the sum of a deterministic “mean” component
and a zero-mean random variable Y ∼ N (0,Ω−1

11 ):

X1 = Ω−1
11 Ω12x2 + µ1 + Ω−1

11 Ω12µ2 + Y

Let us now compute the product of the condi-
tional p1(x1|x2) with the marginal p2(x2),

E[x2] = µ̄2,

E[x1] = Ex2 [E[x1|x2]]

=

∫
x2

p2(x2)
(
Ω−1

11 Ω12(µ2 − x2) + µ1

)
dx2

= Ω−1
11 Ω12(µ2 − µ̄2) + µ1.

We can now compute the covariance matrix of the new
distribution. We know that E[(x2− µ̄2)(x2− µ̄2)>] = Ω̄−1

22 .
The random variable Y is independent of X2 by definition,
thus we get,

E[(x1 − E[x1])(x1 − E[x1])>]

= Ω−1
11 Ω12E[(x2 − µ̄2)(x2 − µ̄2)>]Ω>12Ω−1

11 + E[ηη>]

= Ω−1
11 Ω12Ω̄−1

22 Ω>12Ω−1
11 + Ω−1

11 ,

E[(x1 − E[x1])(x2 − E[x2])>]

= E[(x1 − (Ω−1
11 Ω12(µ2 − x2) + µ1))(x2 − µ̄2)>]

= E[−(x1 − µ1)(x2 − µ̄2)> − Ω−1
11 Ω12(x2 − µ2)(x2 − µ̄2)>]

= 0− Ω−1
11 Ω12Ω̄−1

22 ,

E[(x2 − E[x2])(x1 − E[x1])>] = −Ω̄−1
22 Ω>12Ω−1

11 ,

E[(x2 − E[x2])(x2 − E[x2])>] = Ω̄−1
22 .

Using the following block matrix inversion formula on the
covariance matrix blocks,[
A B
C D

]−1

=

[
Ω−1

11 Ω12Ω̄−1
22 Ω>12Ω−1

11 + Ω−1
11 −Ω−1

11 Ω12Ω̄−1
22

−Ω̄−1
22 Ω>12Ω−1

11 Ω̄−1
22

]−1

we can obtain the updated normal distribution as

N

([
Ω−1

11 Ω12(µ2 − µ̄2) + µ1

µ̄2

]
,

[
Ω11 Ω12

Ω>12 Ω̄22 + Ω>12Ω−1
11 Ω12

]−1
)


