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Abstract—Active Simultaneous Localization and Mapping
(SLAM) is the problem of planning and controlling the motion
of a robot to build the most accurate and complete model
of the surrounding environment. Since the first foundational
work in active perception appeared, more than three decades
ago, this field has received increasing attention across different
scientific communities. This has brought about many different
approaches and formulations, and makes a review of the current
trends necessary and extremely valuable for both new and
experienced researchers. In this work, we survey the state-of-
the-art in active SLAM and take an in-depth look at the open
challenges that still require attention to meet the needs of modern
applications. After providing a historical perspective, we present
a unified problem formulation and review the well-established
modular solution scheme, which decouples the problem into
three stages that identify, select, and execute potential navigation
actions. We then analyze alternative approaches, including belief-
space planning and deep reinforcement learning techniques, and
review related work on multi-robot coordination. The manuscript
concludes with a discussion of new research directions, addressing
reproducible research, active spatial perception, and practical
applications, among other topics.

Index Terms—Active SLAM, autonomous robotic exploration,
active perception, optimality criteria, belief-space planning, next
best view, deep reinforcement learning.

I. INTRODUCTION

AUTONOMOUS operation in robotics applications re-
quires robots to have access to a consistent model of the

surrounding environment, in order to support safe planning
and decision making. Towards this goal, a robot must have
the ability to create a map of the environment, localize itself
on it, and control its own motion. Active SLAM refers to
the joint resolution of these three core problems in mobile
robotics, with the ultimate goal of creating the most accurate
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and complete model of an unknown environment. Active
SLAM can be seen as a decision-making process in which the
robot has to choose its own future control actions, balancing
between exploring new areas and exploiting those already seen
to improve the accuracy of the resulting map model.

During the last decades, active SLAM has received in-
creasing attention1 and has been studied in different forms
across multiple communities, with the ambition of deploying
autonomous agents in real-world applications (e.g., search and
rescue in hazardous environments, underground or planetary
exploration). This divergence has broadened the scope of the
problem and provided a wider context, yielding numerous
approaches based on different concepts and theories that have
made the field flourish; but it also created a disconnect between
research lines that could mutually benefit from each other.
With this survey, we seek to fill this gap by providing a general
problem statement and a unified review of related works.

Currently, active SLAM is at a decisive point, driven by
novel opportunities in spatial perception and artificial intel-
ligence (AI). These include, for instance, the application of
breakthroughs in neural networks to prediction beyond line-
of-sight, reasoning over novel environment representations, or
leveraging new SLAM techniques to process dynamic and
deformable scenes. Throughout this paper, we give a fresher
picture of active SLAM that goes beyond the classical —
but still mainstream— entropy computation over discretized
grids. Besides, we identify the open challenges that need to
be addressed for active SLAM to have an impact on real
applications, shaping future lines of research, and describing
how they can nourish from the cross-fertilization between
research fields. Among those challenges, we emphasize the
urgent need for benchmarks and reproducible research.

A. Historical Perspective

Ever since the first mobile robots were built in the late
1940s, the ambition that they could perform autonomous
tasks has been one of the major focuses of robotics research.
To operate autonomously, a robot needs to form a model
of the surrounding environment —including localization and
mapping— and perform safe navigation [1]. While the former
involves estimating the position of the robot and creating a
symbolic representation of the environment, the latter refers to

1The number of publications on active SLAM has grown from 53 in 2010 to
over 660 in 2022 (a twelve-fold increase). The number becomes almost 5500
if we extend the search to include belief-space planning, active exploration,
and simultaneous planning, localization and mapping. Source: dimensions.ai.
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planning and controlling the movements of the robot to safely
achieve a goal location. Localization, mapping, and planning
have been often investigated in combination, resulting in
multiple research areas such as SLAM, active localization,
active mapping, and active SLAM.

Localization and mapping were treated deterministically
and solved independently until probabilistic approaches went
mainstream in the 1990s, when researchers realized that both
tasks were correlated and dependent of one another. SLAM
refers, thereby, to the problem of incrementally building the
map of an environment while at the same time locating the
robot within it [2]. This problem has attracted significant
attention from the robotics community in the last decades;
see [3]–[5] and the references therein.

SLAM, however, is a passive method and is not concerned
with guiding the navigation process. In contrast, active ap-
proaches do consider the navigation aspects of the problem.
Bajcsy [6], Cowan and Kovesi [7], and Aloimonos et al. [8]
were the first to study and analyze the problem of active per-
ception (also referred to as active information acquisition [9])
in the late nineties. Bajcsy [10] would later formally define it
as the problem of actively acquiring data in order to achieve a
certain goal, necessarily involving a decision-making process.
For the cases in which the objective is to improve localization,
mapping, or both, the problems are respectively referred to as
active localization, active mapping, and active SLAM.

Active mapping was the first problem to be addressed, dating
back to the work of Connolly [11] in 1985. Better known since
then as the next best view problem, active mapping tackles the
search of the optimal movements to create the best possible
representation of an environment. Subsequent examples date to
the 1990s [12]–[14], always under the assumption of perfectly
known sensor localization. This problem has been primarily
addressed in the computer vision community to reconstruct
objects and scenes from multiple viewpoints, since the nature
of the projective geometry for monocular cameras, occlusions,
and limited field of view often make impossible to do it from
just one viewpoint; see [15] and the references therein.

In a similar vein, active localization aims to improve the
estimation of the robot’s pose by determining how it should
move, assuming the map of the environment is known. First
relevant works can be traced back to 1998, when Fox et al. [16]
and Borgi and Caglioti [17] formulated it as the problem of
determining the robot motion so as to minimize its future
expected (i.e., a posteriori) uncertainty. In particular, it is
in [16] where the foundations of the current workflow were
laid: (i) goal identification, (ii) utility computation, and (iii)
action selection (we will extensively review these stages later
in this survey). Other relevant subsequent work can be found
in [18]–[21], but also in the related literature of perception-
aware planning [22] and planning under uncertainty [23].

Finally, active SLAM unifies the previous problems, and
allows a robot to operate autonomously in an initially unknown
environment. It refers to the application of active perception to
SLAM and can be defined as the problem of controlling a robot
which is performing SLAM in order to reduce the uncertainty
of its localization and the map representation [24]. Historically,
active SLAM has been referred to with different terminology,

which has significantly hindered knowledge sharing and dis-
semination within the robotics community. Relevant seminal
works can be found under the names of active exploration [25],
adaptive exploration [26], [27], integrated exploration [28],
[29], autonomous SLAM [30], simultaneous planning, local-
ization and mapping [31], belief-space planning (BSP) [32],
or simply robotic exploration [33], [34]. It was not until 2002
—when Davison and Murray [35] coined the term active
SLAM— that the robotics community started adopting this
nomenclature. Thrun and Möller [25] demonstrate that in order
to solve robotic exploration, agents have to switch between
two opposite principles depending on the expected costs and
gains: exploring new areas and revisiting those already seen,
i.e., the so-called exploration-exploitation dilemma. The first
approach in which a robot chooses actions that maximize the
knowledge of the two variables of interest is attributed to
Feder et al. [26], who also separate the procedure in three
major stages as in [16]. Table I contains a subset of relevant
works that have followed [26]. This table differentiates the
main aspects of each approach, including the type of sensors,
the state representation, and the theoretical foundations.

B. About Previous Surveys
Only two works have previously addressed the problem of

surveying active SLAM research. The first of them, published
in 2016, is a section of a more general survey on SLAM
carried out by Cadena et al. [5]. The other, by Lluvia et
al. [36], conducts a more extensive survey on “Active Mapping
and Robot Exploration”. Table II summarizes the topics they
address, along with those covered in the present survey.

Cadena et al. [5] describe both the history and the main
aspects of the problem, and identify three open challenges:
the decision of when to stop performing active SLAM, the
problem of accurately predicting the effect of future actions,
and the lack of mathematical guarantees of optimality. How-
ever, the brevity of the active SLAM section prevented delving
into a detailed discussion of the most relevant works or
providing a more unified mathematical formulation of the
problem. Moreover, since [5] was published, many relevant
contributions have been proposed and new open problems
have arisen. For instance, progress has been made on the way
uncertainties of the robot location and the map are represented
and quantified. Furthermore, recent work has also opened new
research endeavors, including deep learning (DL).

Lluvia et al. [36] also provide a thorough historical review
and relate the different communities that have been trying
to solve this problem under different nomenclatures. Similar
to [5], they do not attempt to present a unified mathematical
formulation of active SLAM nor do they cover utility computa-
tion, a field which has been mostly overlooked in the literature.
They delve, nevertheless, into the optimization of vantage
points and the trajectories to reach them, a new problem that
has attracted significant attention from the control community
and has seen many contributions in recent years. In [36], the
authors present a comparison between representative works
in active SLAM, although with a limited scope. Contrarily
to [36], we present a more complete analysis and a broader
set of open challenges, which extends the ones identified in [5].
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Topic Cadena
et al. [5]

Lluvia et
al. [36] Ours

Introduction
Historical review Briefly Yes Yes
Problem formulation No No Yes

Modular
scheme

Env. representation Yes Yes Yes
Goal identification Briefly Yes Yes
Information Theory Briefly No Yes
TOED Briefly No Yes
Graph Theory No No Yes

Alternative
approaches

Continuous domain No Yes Yes
Deep Learning No Briefly Yes
Multi-robot No No Yes

Open
problems

State prediction Yes Yes Yes
Stopping criteria Yes Briefly Yes
Novel representations No Briefly Yes
Data association No No Yes
Complex environments No No Yes
Reproducible research No No Yes
Practical applications No No Yes

TABLE II: Comparison between the topics and open chal-
lenges addressed in previous surveys and the current one.

C. Paper Structure

The remainder of this manuscript is organized as follows.
Section II provides a unified problem formulation for active
SLAM and describes the three subproblems (or stages) it has
traditionally been divided into. Sections III to V cover those
three stages separately. In particular, Section III deals with
the identification of vantage points, Section IV with utility
computation, and Section V with selection and execution of
the optimal action. Sections VI and VII consider, on the
other hand, alternative continuous-state optimization and DL
methods. Section VIII is devoted to multi-robot active SLAM.
Section IX outlines the open research questions in active
SLAM. Finally, Section X concludes the manuscript.

II. THE ACTIVE SLAM PROBLEM

A. Problem Formulation

Active SLAM can be framed within the wider mathe-
matical framework of partially observable Markov decision
processes (POMDPs), after some particularization. POMDPs
model decision-making problems under both action and obser-
vation uncertainties and can be formally defined as the 7-tuple
(S,A,Z, ξs, ξz, r, γ). In particular, a POMDP consists of the
agent’s state space S, a set of actions A, a transition function
between states ξs : S × A 7→ Π(S) where Π(S) is the space
of probability density functions (pdfs) over S, an observation
space Z , the conditional likelihood of making any of those
observations ξz : S 7→ Π(Z), where Π(Z) is the space of
pdfs over Z , a reward scalar mapping r : S × A → R, and
the discount factor γ ∈ (0, 1) ∈ R which allows to work with
finite rewards even when planning over infinite time horizons.

Contrary to the fully observable case, agents in a POMDP
cannot reliably determine their own true state, s. Instead, they
maintain an internal belief or information state, bt(st), which
represents the posterior probability over states at time t, given
the available data collected up to that time [2], [70], [71]:

bt(st) , p(st| z1:t,a1:t−1︸ ︷︷ ︸
history, h

) , (1)

where z1:t is the set of all available observations and a1:t−1
the set of past control actions (both collectively referred as
the history h). The belief space, B(S) ≡ Π(S), of probability
density functions over the set S is defined as:

B(S) , {b : S 7→ R |
∫
b(s)ds = 1, b(s) ≥ 0} . (2)

In order to evaluate the effect of future actions, agents must
be capable of predicting posterior belief distributions, that is,
the pdf over S after performing a certain action, at, and taking
a future observation zt+1:

bt+1(st+1) , p(st+1|zt+1,at, bt(st)) . (3)

Since the future measurements are unknown for the agent,
their expected value has to be studied instead. Consider that
an agent in the state defined by bt(st) executes a certain action
at, and transitions to another state with pdf p(st+1). Then, the
likelihood of making an observation will be given by [71]:

p(zt+1|bt(st),at) =

∫ ∫
ξz(st+1) ξs(st,at)

bt(st) dst dst+1 , (4)

where ξz(st+1) = p(zt+1|st+1) is the observation model and
ξs(st,at) = p(st+1|st,at) the motion model.

Since the belief is a sufficient statistic, optimal policies for
the original POMDP may be found by solving an equivalent
continuous-space MDP over B(S) [70], [72]. Such MDP is
defined by the 5-tuple (B,A, ξb, ρ, γ), where the transition and
reward functions are ξb : B×A 7→ Π(B) and ρ : B×A 7→ R.
To preserve consistency, this belief-dependent reward function
builds on the expected rewards of the original POMDP:

ρ(bt,at) =

∫
S
bt(st) r(st,at) dst . (5)

Then, the decision at time t will be provided by the
(control/action) policy πt, which maps elements from the
space of pdfs over S to the action space:

πt : B(S) 7→ A . (6)

The optimal policy, π?, that yields the highest expected
rewards for every belief state can be found via:

π?(b) = arg max
π

∞∑
t=0

E
[
γtρ(bt, π(bt))

]
, (7)

where expectation is taken w.r.t. p(zt+1|bt(st),at). In general,
computing the optimal policy for MDPs with continuous state
spaces is hard and most works resort to approximate solutions
or problem simplifications [70], [73].

The active SLAM problem requires, however, some vari-
ation and particularization of the above general POMDP
formulation. Let us consider a robot capable of moving in
an unknown environment while performing SLAM. That is,
at every time step, the robot can change its own linear and
angular velocities; moreover, the robot is able to process the
sensor data into a map representation, mt ∈ M, and an
estimate of its own state (e.g., pose), xt ∈ X . Thus, the state
space can be defined as the joint space S , X ×M.
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The evolution of both the state and the measurements in
SLAM is governed by probabilistic laws [2], as (1) and (4)
express. However, two assumptions are worth mentioning in
the context of active SLAM regarding each of the equations,
that further simplify its resolution. First, the robot state is
commonly assumed Gaussian with a pdf b(x) having mean x̂
and covariance Σr (see, e.g., [40], [43]). Thus, the map and the
robot state are usually treated independently, although some
representations allow for a joint distribution (e.g., in sparse
landmark maps or using Gaussian Processes to model dense
maps [53]). Secondly, despite less prevalent than the former,
some works (e.g., [32]) also assume maximum likelihood (ML)
observations, i.e., that executing an action in a given belief
state will always produce the same, most probable observation.
This allows to rewrite the expected measurements as:

zML
t+1 = arg max

z∈Z
p(zt+1|bt(st),at) . (8)

In addition, in active SLAM the reward typically reflects
the agent’s knowledge of the system (i.e., it involves the
uncertainty in the belief rather than focusing on reaching
specific states). These reward functions are known as utility
functions and may be defined mathematically as the scalar
mapping ρ : B(S)×A 7→ R. This reward mapping, however,
is inconsistent with both POMDPs (where the reward is
dependent on s and a) and belief MDPs (where the reward
is restricted to the form in (5)). To circumvent this limitation,
ρ-POMDP [73] extends the POMDP formulation to allow the
inclusion of beliefs’ uncertainty in the objective. This enables
the use of information-oriented criteria rather than control-
oriented, without losing basic properties such as Markovianity.

Finally, considering a finite-horizon and ML observations,
the discount factor and expectation over future measurements
in (7) can be dropped, and active SLAM can be reduced to
the following optimization for open-loop planning settings:

a?t:t+k = arg max
at:t+k∈Ak

t+k∑
τ=t

ρ (b(sτ ),aτ ) , (9)

where a?t:t+k is the optimal sequence of actions to execute
over the future planning horizon (k lookahead steps) and Ak ,
A×A× ...×A the space of sequences of actions over k.

B. Decoupling Active SLAM into Three Subproblems
While the previous section provided a unified formulation

for active SLAM, for computational convenience active SLAM
has been traditionally decoupled into three subproblems (or
stages) [16], [26], [28], which will be briefly described here-
after and covered in detail in Sections III to V:

1) Identification of the potential actions: solely to reduce
the computational burden, the first stage aims to deter-
mine a reduced subset of possible actions to execute.

2) Utility computation: the expected cost and gain of per-
forming each candidate action has to be estimated.

3) Action selection and execution: finally, the last stage
involves finding and executing the optimal action(s).

The entire process should be iteratively repeated until the
whole environment is accurately modeled, although in practice
it is done until some stopping conditions are met.

For clarity of presentation and because many existing works
do decompose active SLAM into these stages, we review each
stage separately in Sections III to V. However, this decoupling
can produce suboptimal results and lead to undesired behav-
iors. Performing the three stages simultaneously is certainly
advantageous, e.g. when optimizing over a continuous action
space, or when a control policy is optimized or learned
under the umbrella of POMDPs. We review these approaches,
alternative to the modular scheme, in Sections VI and VII.

III. STAGE 1: IDENTIFICATION OF POTENTIAL ACTIONS

The first stage in modular active SLAM approaches consists
in generating the set of available actions the robot could
execute (i.e., goals the robot can reach); this can be understood
as a way to reduce (and discretize) the search space of
potential actions. Early works simply used random goals or
required human interaction, until the concept of frontiers was
introduced by Yamauchi [74]. This resulted in improved ex-
ploration strategies, and has consolidated as the most common
approach. Nevertheless, the advent of neural networks has
led to new ways of evaluating the space of potential goals.
In this section, we present the most important methods to
identify goal locations. Since they strongly depend on the
representation of the environment estimated by the SLAM
pipeline, we start by providing a brief description of the
different existing representations for active SLAM.

A. Representation of the Environment

We review four different types of map representations:
topological, metric, metric-semantic, and hybrid maps.

1) Topological maps use lightweight graphs to describe in-
formation about the topology of the environment. Historically,
vertices in this graph represent convex regions in the free
space, while edges model connections between them. The con-
struction of these graphs is a segmentation problem, usually
done over an occupancy grid; see [75] for a survey on these
methods. Despite these maps allow leveraging graph theory,
which provides powerful tools for planning and exploration,
they are not frequently used in active SLAM [76], [77].

2) Metric maps are the most used representations to encode
information about the environment in active SLAM. They can
be further divided into two categories: sparse and dense maps.
The former rely on a sparse set of interest points (or land-
marks) to represent a scene, and have been especially used in
optimal control [39], [62], [78] and belief-space planning [43]
approaches. Dense maps can be based on point clouds, meshes
or, more typically, a discretization of the environment into
cells that encode a certain metric (e.g., occupancy, distance
to obstacles). Occupancy grid (OG) maps, first proposed in
the late eighties for perception and navigation by Elfes [79]
and Moravec [80], assign to each cell its probability of being
occupied. They have been used in numerous active SLAM
frameworks, e.g., [51], [56], [57], [81]. Their extension to 3D
include OctoMaps [82], Supereight [83] and voxel maps [84],
all of which have been also used in active SLAM [85]–[88].
Jadidi et al. [53] use continuous occupancy maps (COM) to
leverage continuous optimization methods. There exist many
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other dense maps that encode more sophisticated metrics,
such as those based on signed distance fields (SDF), like
Voxblox [89]. Still, they are seldom used in active SLAM [90].

3) Metric-semantic maps go beyond geometric model-
ing and associate semantic information to classical metric
maps. Instead of geometric features, a sparse map can cap-
ture objects, described by a semantic category, pose, and
shape [91], [92]. Active object-level SLAM has been consid-
ered in [93], [94]. Examples of dense metric-semantic maps
include Voxblox++ [95] and Kimera [96] (which build upon
an SDF), and Fusion++ [97] and [98] (based on voxel maps).
Despite being used in some SLAM formulations (see [5], [96]
and the references therein), they have not yet been used in
active SLAM. An exception is the work of Asgharivaskasi and
Atanasov [99], [100] which develops a multi-class (semantic)
OctoMap and uses a closed-form lower bound on the Shan-
non mutual information between the map and range-category
observations to select informative robot trajectories.

4) Hybrid and hierarchical maps combine some of the pre-
vious representations to enhance the decision-making process.
Hybrid metric-topological maps have been applied to tackle
either navigation [101] or SLAM [102]. Rosinol et al. [103]
combine metric, semantic, and topological representations into
a single model, a 3D scene graph. These hierarchical represen-
tations break down metric-semantic maps into interconnected
high-level entities, paving the way for high-level reasoning.
The use of hybrid maps in active SLAM is mostly unexplored,
with [104] among the few works that have integrated them.

B. Detecting Goal Locations

The identification of all possible destinations the robot
could travel to easily proves to be intractable because of the
dimensions of the map and the action set [105]. In practice, a
finite subset of them is identified, allowing for computational
tractability despite not guaranteeing global optimality [43].
The simplest approach consists of randomly selecting the
goal destinations [106], [107]. Random exploration requires
low computational resources and works under the assumption
that every spot in the environment has the same information
associated. In 1997, Yamauchi [74] revolutionized the field
by introducing the concept of frontiers, i.e., the areas that
lie between known and unknown regions. Since its proposal,
frontier-based exploration has been the most used by far and
has been tailored to different map representations. Frontiers
have been effectively identified for topological maps as nodes
with no neighbors in certain directions [76]. For 2D OG maps,
a plethora of geometric frontier-detection methods have been
developed to circumvent the computational cost of searching
the entire space [108]. Keidar and Kaminka [109] propose the
wavefront frontier detector (WFD) and fast frontier detector
(FFD). WFD starts the search from the robot’s location and
restricts it to the free space; FFD performs the search after
each scan is collected, following the intuition that frontiers are
bound to appear in recently scanned regions. Following this
idea, the same authors present the incremental WFD [110], that
restricts the search to recently scanned areas. Quin et al. [108]
improve the performance of the previous algorithms by only

evaluating a subset of the observed free space. Refer to [108],
[111] for further discussion. Umari and Mukhopadhyay [49]
first present a frontier search method over a 2D OG based
on rapidly-exploring random trees (RRTs) that grow both
globally and locally to sample recently scanned regions. This
strategy, often combined with computer vision algorithms
has been widely used [81], [112]. The sample-based frontier
detector algorithm [113] reduces the computational load of
the previous methods by only storing the nodes of the search
tree. Frontier identification in 3D maps is less frequent, since
3D maps are more expensive to store and analyze, and are
often incomplete due to the sensed volume. Apart from simple
search techniques [88], [114], most methods evaluate map
portions incrementally [44], [64] or along surfaces [115].
Alternatively, in [116], authors propose a method that disperse
random particles over the 3D known space. No matter the
method used, after detecting frontiers, a clustering step is
frequently required to prevent the frontier set from being high-
dimensional (e.g., using K-means [117] or mean-shift [49]).

Shortly after the concept of frontiers was proposed, New-
man et al. [30] and Stachniss et al. [29] realized that, for
a robot with high uncertainty, potential loop closure areas
encode more information than frontiers; the ultimate goal of
active SLAM goes beyond simply covering the workspace: to
improve the accuracy of localization and mapping. Similarly,
Grabowski et al. [118] observe that regions of interest where
sensor readings overlap may be more informative than new
frontiers. In other words, these works explicitly account for the
exploration-exploitation dilemma in the frontier detection step.
It is a common practice in active SLAM to include potential
loop closure regions —along with frontiers— in the set of
goal candidates [40], [54], or to switch between exploring new
frontiers and revisiting known places [29], [61], [119].

In contrast to frontier-based approaches, some active SLAM
formulations allow the identification of goal locations locally
in the robot’s vicinity. However, note that decisions will be
optimal only locally and a short decision-making horizon may
induce wrong behaviors [26], [120]. This strategy is typical in
deep reinforcement learning (DRL) approaches [121]–[123],
for which local optimality is alleviated by network memoriza-
tion. Following the idea that evaluating larger neighborhoods
would lead to more robust decisions, in [40] authors use RRT-
based paths to several configurations over the free space as
the action set; and in [43] the entire environment is considered
under the umbrella of continuous-domain optimization.

IV. STAGE 2: UTILITY COMPUTATION

The second and main stage in modular active SLAM
approaches focuses on the evaluation of each possible des-
tination, in order to estimate the effect that executing the
set of actions to reach each destination would have. Naive
utility formulations using just geometric or time-dependent
functions often result in non-desirable behaviors [40], [81],
[124], since they do not properly capture the uncertainty in
the belief. The exploration-exploitation dilemma can be more
effectively solved by quantifying the expected uncertainty
of the two target random variables: the robot location and
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the map. Typically, the different objectives (e.g., travelling
cost, mapping and localization uncertainty) are aggregated into
a single utility function, although there are multi-objective
approaches in which they are kept separate and Pareto optimal
solutions are sought [125]–[127]. There is a plethora of metrics
and the choice of which one to use mainly depends on the
selected way to represent the variables of interest. Metrics
based on information theory usually aim at OG maps, while
those based on the theory of optimal design are more suitable
for Gaussian distributions. We review each choice below.

A. Naive Cost Functions

The simplest (and first-broadly-used) metrics are naive
geometric functions, such as the Euclidean distance to the goal
location [74], the time required to reach it [88], or the expected
size of the are to visit [49], [106], [107]. In fact, the latter
approximates the map’s entropy, which is strongly related to
the number of known cells in an OG map [28]. Since these
metrics are computed over Euclidean or temporal spaces, they
can be used regardless of the map representation chosen [54],
[64], [104]. Stachniss et al. [38] show that combining distance
and information-based functions results in better exploration
strategies, and this has since been a common approach [128].
However, manual tuning to overcome discrepancies between
the multiple terms involved is needed [49], [129].

B. Information Theory (IT)

The most common approach to assess utility in active
SLAM uses information theory (IT) to quantify the uncertainty
in the joint belief state. Within it, there exist different metrics
that allow for such quantification, although all of them build
on the same concept: entropy. The notion of entropy was
introduced by Shannon [130] and can be defined as a measure
of a variable’s uncertainty, randomness, or surprise; this is in
fact strongly related to its associated information [131].

Early exploration strategies use only the map representation
as the variable of interest [74], [88], [132], thereby assuming
no error in the robot localization. However, soon after the first
of these works emerged, it was observed that high uncertainty
in the robot state estimation leads to wrong expected map
uncertainties [27]. The entropy of the SLAM posterior after
executing a candidate action can be computed as [38]:

H [p(x,m|h, ẑ,a)] ,

H [p(x|h, ẑ,a)]︸ ︷︷ ︸
robot’s H

+

∫
x

p(x|h, ẑ,a)H [p(m|x,h, ẑ,a)] dx︸ ︷︷ ︸
expected conditional map’s H

,

(10)

where ẑ are the expected (ML) future measurements, which
may be estimated using, e.g., ray-casting techniques [24].

The computation of the previous joint entropy is intractable
in general [38]. To overcome this, most approaches resort
to entropy approximations that first compute utility of the
two variables independently, and then combine them heuristi-
cally [27], [38], [61], [133]. Let us first consider the case of
graph-based SLAM, in which the problem is described using

a graph representation where nodes represent the robot poses
and edges encode the the constraints between them; see [2]–
[5]. The joint entropy in (10) can be approximated by [40]:

H [p(x,m|h, ẑ,a)] ≈ H [p(x|h, ẑ,a)] +H [p(m|h, ẑ,a)] .
(11)

The mismatch between the magnitudes of the addends above
is the main drawback of such approximation, calling for the
addition of weighting parameters to balance the contributions
of the two terms [42], [134]. Carrillo et al. [51] circumvent
this by embedding a metric of the robot’s uncertainty in a
combined Shannon-Rényi utility function; an approach that
also appears in [135]. On the other hand, the expectation-
maximization (EM) algorithm [136] embeds the impact of
robot’s uncertainty directly in a virtual map. A similar approx-
imation can be done for particle-filter SLAM, which represents
the belief over robot trajectories as a set of particles [2], [3],
[37]. The integral in (10) will be now approximated by the
weighted mean of all possible solutions (i.e., particles) [38].

The first term in (10) refers to the robot state entropy, which
can be computed as a function of the posterior covariance log-
determinant, assuming that it is an `-dimensional Gaussian
distribution with covariance Σr ∈ R`×`,

H [p(x|h, ẑ,a)] =
1

2
ln
(
(2πe)` det (Σr)

)
. (12)

On the other hand, the second term is the expected map’s
entropy, and its computation depends on the representation
chosen. For instance, in landmark-based maps it can be com-
puted in the same way as the robot’s entropy, under the same
assumption [137]. For discrete metric maps, and assuming
cells independent from each other, it can be defined as [31]:

H [p(m|x,h, ẑ, a)] = −
∑
c∈m θc log θc , (13)

with θc = p(c) being the occupancy probability of cell c. This
entropy measure has been used in both 2D [28], [133] and 3D
OG maps [85], [88], [117]. More efficient approaches that only
evaluate of cells in the robot’s vicinity have been proposed in
the context of particle-filter SLAM [42], [134], [138].

The most common metric to assess utility in active SLAM
is not Shannon’s entropy of the SLAM posterior, but its
expected reduction. This utility function is known as mutual
information (MI) [27], [33] and is defined as the difference
between the entropy of the actual state and the expected
entropy after executing an action, i.e., the information gain:

I(a) , H [p (x,m|h)]︸ ︷︷ ︸
current H

−E [H[p(x,m|h, ẑ,a)]]︸ ︷︷ ︸
expected H for candidate a

, (14)

where expectation is taken w.r.t. ẑ.
Kullback-Leibler divergence (KLD) or relative en-

tropy [139] has also been used as utility function. KLD
measures the change in the form of a pdf (as MI), but also how
much its mean has translated [140]. It is defined as follows:

DKL (p1|p2) , E
[
log

p1(x)

p2(x)

]
=
∑
x

p1(x) log
p1(x)

p2(x)
, (15)

with p1(x) and p2(x) the prior and posterior distributions (as
in MI) [141], or the estimated and true posteriors assuming
the latter can be somehow approximated [42], [142], [143].
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For OG maps, the three metrics above (entropy, MI, and
KLD) ultimately rely on counting the number of cells in a map,
being thus discrete and ill-suited for optimization techniques.
To mitigate this issue, Deng et al. [87], [144] propose a
differentiable cost-utility function for both 2D OG and voxel
maps that can be used with continuous optimization methods
(albeit the approach still assumes perfect robot localization).

In the context of information-theoretic planning, there exists
a problem variation in which the uncertainty of only a subset of
variables is reduced. The motivation comes from the fact that
maximizing information of all variables does not always imply
maximizing that of the subset of interest. This problem varia-
tion has been referred to as focused active inference [145]. In
general, focused active inference is more computationally in-
tensive than the standard case, since it requires marginalization
of the (posterior) Fisher information matrix via, e.g., Schur
complement. Kopitkov and Indelman [146], [147] present a
method based on the matrix determinant lemma that does not
require the posterior covariance to calculate entropy consider-
ing both the unfocused (entropy over all variables) and focused
(entropy over a subset of variables) cases.

C. Theory of Optimal Experimental Design (TOED)

There exists a second group of utility functions built upon
optimal design theory (TOED) that tries to quantify uncer-
tainty directly in the task space (i.e., from the variance of the
variables of interest). Unlike information-theoretic metrics that
target binary probabilities in the grid map, task-driven metrics
apply to Gaussian variables. Following TOED, a set of actions
to execute in active SLAM will be preferred over another if the
covariance of the joint posterior is smaller, i.e., the posterior
covariance matrix, Σ, has to be minimized. In order to com-
pare matrices associated to different candidates, several func-
tions —known as optimality criteria— have been proposed,
such as the trace (originally known as A-optimality) [148],
its maximum/minimum eigenvalue (E-optimality) [149], or
its determinant (D-optimality) [150]. The latter was often
disregarded in active SLAM because its traditional formulation
did not allow for checking task completion and generated
precision errors (det(Σ) → 0 rapidly when there are low-
variance terms) [34], [140]. However, Carrillo et al. [24] show
these problems can be solved using Kiefer’s formulation of D-
optimality [151], thus re-establishing the latter as an effective
measure of uncertainty for active SLAM.

On the basis of TOED, Kiefer [151] proposes a family of
mappings ‖Σ‖p : Rn×n → R, parametrized by a scalar p:

‖Σ‖p ,
(

1

n
trace(Σp)

) 1
p

, (16)

which can be particularized for the different values of p and
expressed in terms of the eigenvalues of Σ, (λ1, . . . , λ`), by
leveraging the properties of the matrix power:

‖Σ‖p =


(

1
n

n∑
k=1

λpk

) 1
p

, if 0 < |p| <∞

exp

(
1
n

n∑
k=1

log(λk)

)
, if p = 0

. (17)

In essence, utility functions are functionals of the eigenval-
ues of Σ. The boundary cases p = {0,±∞} and p = ±1
result in the four modern optimality criteria:
• T-optimality criterion (p = 1) captures the average

variance:
T -opt ,

1

n

∑n
k=1 λk . (18)

• D-optimality criterion (p = 0) captures the volume of the
covariance (hyper) ellipsoid:

D-opt , exp

(
1

n

∑n
k=1 log(λk)

)
. (19)

• A-optimality criterion (p = −1) captures the harmonic
mean variance, sensitive to a lower-than average value:

A-opt ,
(

1

n

∑n
k=1 λ

−1
k

)−1
. (20)

• E-optimality criterion (p → ±∞) captures the radii of
the covariance (hyper) ellipsoid:

E-opt , min(λk : k = 1, ..., n) , (21)

Ẽ-opt , max(λk : k = 1, ..., n) . (22)

Optimality criteria were first used in active SLAM by
Feder et al. [26], where utility was computed as the area of
the covariance ellipses describing the uncertainty in the joint
posterior. Since then, many active SLAM methods based on
TOED have been proposed, mostly based on T -opt [34], [39]
and, recently, D-opt [61], [123]. Even so, IT-based methods
remain the most popular. Note that both the map and robot
uncertainties must be described by a covariance matrix Σ ∈
Rn×n, either by using a full covariance matrix in landmark-
based representations (i.e., n � `) or by including the effect
of the map’s uncertainty in Σr (and thus n = `) [152].

Monotonicity. One of the most important assumptions in
active SLAM is that uncertainty increases as exploration
takes place. However, the seminal work in [153] notes how
monotonicity is lost for some utility functions under cer-
tain conditions, concluding that only D-opt guarantees this
property and is thereby the only appropriate utility function
for this task. Kim and Kim [154] and Rodrı́guez-Arévalo et
al. [155] demonstrate, however, that rather than on the utility
function chosen, monotonicity depends on how the error and
uncertainty are represented. In [155], the authors prove that
only differential representations guarantee monotonicity for all
utility functions. In summary, representation of uncertainty is
a key issue in active SLAM, since certain representations do
not guarantee its monotonicity property during exploration,
and thus may lead to incorrect decisions.

D. The Graphical Structure of the Problem

Quantification of uncertainty via scalar mappings of the
covariance matrix may be a computationally intensive task,
mostly due to the fact that the covariance is a large and
dense matrix. Therefore, most works resort to reasoning over
the Fisher information matrix (FIM), i.e., the inverse of the
covariance, which is generally sparser. Still, their evaluation is
expensive, especially for large state spaces. To circumvent this
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issue, some works have proved that analyzing the connectivity
(i.e., Laplacian) of the underlying pose-graph in active graph-
SLAM is equivalent to computing optimality criteria. The link
between graph and optimum design theories can be traced
back to Cheng [156], who related the number of spanning
trees of concurrence graphs with D-optimal incomplete block
designs. Khosoussi et al. [157] show that classical D- and
E-opt are related to the number of spanning trees of the SLAM
pose-graph and its algebraic connectivity, respectively, for the
case of 2D graph-SLAM with constant uncertainty along the
trajectory. In [158] and [159], these results are extended to
the Rn × SO(n) synchronization problem, and also relate
T -opt to the average node degree of the graph. Placed and
Castellanos [81], [160] study the general active graph-SLAM
problem formulated over the Lie group SE(n); showing the
existing relationships between modern optimality criteria of
the FIM and connectivity indices when the edges of the pose-
graph are weighted appropriately, and reporting substantial re-
ductions in computation time. These results have been used in
coverage problems [62], multi-robot exploration [128], active
visual SLAM [66], or to develop a stopping criterion [161].

The graph structure of the problem has also been recently
exploited in conjunction with IT utility functions. Kitanov and
Indelman [162] relate the number of spanning trees of the
graph to entropy (which ultimately depends on the covariance
determinant) and its node degree to Von Neumann entropy.
The latter has been also applied to the focused case, thus
relating the graph topology to the marginalized FIM [163].

V. STAGE 3: ACTION SELECTION AND EXECUTION

Once every possible destination has an associated utility
value, the last stage of active SLAM involves the selection
of the optimal destination. This can be formulated as an
optimization problem w.r.t. the set of actions to reach every
possible goal location, cf. (9). When the set of candidate
destinations is discrete (and typically consists in a handful of
options), the solution of the optimization can be obtained via
enumeration [49], [74], [114]. For the case of TOED-based
utility functions, it will be a minimization or maximization
problem depending on whether the covariance (Σ) or the FIM
(Φ) is analyzed. Since Σ = Φ−1 and ‖Σ‖p = (‖Φ‖q)−1 ∀p
with q = −p, the optimization problem is

a? = arg min
a∈A

‖Σ‖p = arg max
a∈A

‖Φ‖q , (23)

where ‖ · ‖p refers to Kiefer’s optimality criteria, see (16).
Information-based utility functions will seek to minimize

entropy (or, equivalently, to maximize MI). Following [40],
the optimal set of discrete actions can be found as:

a? = arg max
a∈A

IG = arg min
a∈A

H [p(x,m|h, ẑ,a)] . (24)

In any case, after selecting the most informative destination,
it all comes down to navigating to it using, e.g., sampling-
based planning methods as RRT [164], probabilistic road maps
(PRM) [165], or their asymptotically optimal variants [166].
Note that despite selecting the optimal destination among a
discrete set of candidates, the executed path to reach it rarely

represents an optimal solution for the original problem (9);
this suboptimality is caused by decoupling the problem into
first computing and evaluating a set of goal locations, and then
computing a path to one of these goals.

VI. BELIEF-SPACE PLANNING AND
CONTINUOUS-SPACE OPTIMIZATION

As a potential solution to the suboptimality induced by
classical decoupled approaches, there exists a second family of
methods in which the future trajectory of the robot is directly
optimized. These methods represent an alternative solution to
the modular scheme and may be divided into two categories,
depending on whether they discretize the action space or
not. The first category relies on path planning algorithms to
generate a discrete set of candidate paths towards the unknown
space, in order to later evaluate their utility. Works from
Oriolo et al. [167] and Freda et al. [168] are among the
first to apply these algorithms for exploration, evaluating robot
configurations inside the not-previously-sensed free space. In
contrast to discrete frontier optimization, that compares utility
only at candidate locations, these methods evaluate it over the
paths to reach them, guaranteeing that the path to execute is
optimal among the considered subset. Bonetto et al. [68], [169]
go one step further and optimize exploration in all three steps
of modular approaches, considering not only the destination
and the path to reach it, but also its execution.

On the other hand, globally optimal solutions have been
considered under the umbrella of continuous-state POMDPs.
Despite their resolution would ideally require to compute a
policy over the infinite-dimensional space of posteriors of the
joint state space [170] and computing an exact solution is
known to be intractable in general [171], active SLAM as a
continuous-state POMDP can be approximately solved under
the frameworks of belief-space planning (BSP) or optimal
control. Such optimization techniques require a continuous
utility function, which can be obtained directly from complex
continuous representations of the environment [53] or inferred
from discretized representations. For example, Vallvé and
Andrade-Cetto [133] compute a dense entropy field from the
posteriors’ evaluation over the discretized configuration space.

A. Belief-Space Planning (BSP)

Continuous-domain BSP optimizes the future trajectory of
the robot without discretizing the action space, but rather
performing a continuous optimization. Bai et al. [172] and
Kontitsis et al. [143] use sampling-based methods to maximize
an objective function that rewards uncertainty reduction and
goal achievement. Platt et al. [32] apply linear quadratic
regulation (LQR) to compute locally optimal policies. Van Den
Berg et al. [120] relax the assumption that future observations
are consistent with the current robot pose belief (ML obser-
vations). Indelman et al. [43] extend [120] to the case where
the belief describes both robot poses and unknown landmarks
in the environment, while also modeling missed observations.
Porta et al. [173] generalize value iteration to continuous-state
POMDPs while assuming state-dependent reward functions.
Van den Berg et al. [170] present a highly efficient method for
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solving continuous POMDPs in which beliefs can be modeled
using Gaussian distributions over S. Prentice and Roy [174]
develop a belief-space variant of the PRM algorithm called the
belief road map (BRM), incorporating predicted uncertainty of
future position estimates into the planning process. Valencia
et al. [175] contribute a pose-SLAM path-planning approach
that leverages the BRM to find a path to the goal with the
lowest accumulated pose uncertainty.

B. Active SLAM as Optimal Control
Converting a POMDP formulation of active SLAM into an

equivalent continuous-space MDP, as discussed in Section II,
leads to a stochastic optimal control problem in general.
Depending on the transition and observation models, noise
distribution, and the reward function, the problem may be sim-
plified further. Le Ny et al. [176] and Atanasov et al. [9] show
that when the transition and observation models are linear in
the state s and the noise is Gaussian, then the time evolution
of the belief state bt may be obtained by the Kalman filter and
the covariance is independent of the measurement realizations.
If the reward function ρ depends only on the covariance,
as for the MI, active SLAM reduces from a stochastic to a
deterministic optimal control problem. Deterministic optimal
control problems are easier to solve, and techniques such as
linear quadratic Gaussian (LQG) regulation [177] or search-
based [9], [178], and sampling-based [179]–[181] motion
planning are applicable. If the assumptions necessary for the
deterministic reduction cannot be satisfied, the stochastic ac-
tive SLAM problem may be solved by obtaining an open-loop
control sequence under deterministic dynamics first, followed
by a closed-loop feedback policy, under stochastic dynamics
linearized around open-loop trajectory [182].

In the presence of state or action constraints, the optimal
control formulation of active SLAM can be approached using
differential dynamic programming (DDP) or model predictive
control (MPC). Rahman and Waslander [183] introduce an
augmented Lagrangian formulation of iterative LQG, which
captures belief-state constraints via a penalty function. The
approach iterates between iLQG trajectory optimization in
an unconstrained stochastic optimal control problem and La-
grange multiplier updates for the penalty function. This and
several other works [177], [183], [184] develop differentiable
formulations of sensor field-of-view constraints amenable to
gradient-based optimization. Carlone and Lyons [185] split the
environment into convex regions and formulate the problem
using mixed-integer programming. Chen et al. [62] employ a
spectrahedral description of the convex hull of the space of
orientations and relax non-convex obstacle constraints using a
convex half-space representation.

Striking a suitable balance between exploration and ex-
ploitation in active SLAM is challenging because the effects
of potential future loop closures are not easy to capture in
the predicted evolution of the belief bt(st). Leung et al. [39],
[186] introduce attractor states to guide the robot based on
three modes (explore, improve map, and improve localization),
determined using uncertainty thresholds. Attractor states were
combined with a right-invariant extended Kalman filter in
[187] to achieve active range-bearing landmark-based SLAM.

VII. DEEP-LEARNING-BASED APPROACHES

Advances in DL have created new opportunities in using
neural networks to solve active SLAM; these techniques follow
a completely different scheme, circumventing the split into
three stages that characterizes modular approaches. Usually,
goal identification is not required due to the chosen action
set, and utility computation and selection of the best action are
both embedded in the network. In this section, we particularly
focus on DRL methods for autonomous robotic exploration
and discuss the design of the state, action, and reward spaces,
as well as the problems of partial observability, generalization,
and the necessity for training environments.

A. Deep Reinforcement Learning (DRL)

A question that arose in the early work on learning-based
active SLAM was which type of learning was suitable for this
decision-making problem, in which (i) agents must directly
learn from interaction with the environment, (ii) states may
not be fully observable, and (iii) policies have to generalize
to other scenarios in which a priori knowledge is nonexistent.
This premise soon led the community to explore DRL, build-
ing on existing methods that approached active SLAM with
RL [188] and using neural networks to represent the policies
or value functions. Within DRL, model-free techniques have
been the center of attention, although isolated approaches
that combine them with model-based learning do exist [189].
Methods based on supervised learning can also be found in the
literature [190], [191], although they are a minority. Contrary
to model-based active SLAM, the computational effort in DRL
approaches is mostly confined to the training phase, while
the testing phase reduces to a forward pass on the network.
However, the behavior depends entirely on the model learned
from training data, thus limiting its generalization to novel
operational conditions.

The great success of the work from Mnih et al. [192]
boosted the research in model-free DRL and several value-
and policy-based methods emerged shortly after. The behavior
of deep Q-networks [192] improves using the double [193]
and double-dueling [194] architectures. Actor-critic techniques
combine both value-iteration and policy gradient methods,
e.g., deep deterministic policy gradient [195], asynchronous
advantage actor-critic [196]. See [197] and [198] for a sur-
vey on the methods. Although these strategies were initially
proposed for different decision-making problems (e.g., video-
games), they have been applied to robotic exploration.

B. On the Reward Function Design and the Action Set

Tai and Liu [199] are among the first to employ DRL
for robotic exploration in simulation environments, extracting
the next best actions to execute from raw observations using
a 2-layer Q-network. Convergence to policies valid in more
complex and previously unseen scenarios is achieved in [121],
[200] with parallel architectures. In any case, the above works
use purely extrinsic reward functions (i.e., by instrumenting
the environment), which ultimately addresses the obstacle
avoidance problem rather than active SLAM [123]. As a
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response, the notions of motivation and curiosity [201] were
exploited to design intrinsic rewards, giving origin to curiosity-
driven methods that motivate agents to visit unknown con-
figurations [202]. Chen et al. [203] and Chaplot et al. [56]
propose holistic, open-source approaches that employ a cov-
erage reward to explore complex 3D simulation environments.
The detailed study in [203] shows the benefits of pre-training
and combining inputs from different sources. Similarly, the
idea of uncertainty minimization led to uncertainty-aware
approaches. This is the case of [204] that encourage the visit
of high-covariance states, and [20], [122] where the reward
encodes the belief accuracy. All these methods are publicly
available except active target localization. Many of the DRL-
based methods, including all of the above, aim to directly
generate optimal control commands, either discrete [203]
or not [205]. They represent end-to-end solutions in which
the safe navigation task is embedded into the network and
therefore do not require planning and the SLAM estimates.

True uncertainty metrics inherited from classic theories have
also been introduced in the reward function design, seeking
more robust foundations. The robot’s D-opt is incorporated
in [123] and T -opt of virtual landmarks in [58], whereas the
map’s MI is used in [57], [59]. Agents trained under this new
perspective perform active SLAM in complex scenes, albeit
only targeting location or mapping uncertainties. Designing
effective reward functions that account for both is still an open
problem. In addition, this new family of methods has promoted
the use of learning as a part of the solution rather than a
replacement to well-established planning algorithms. Utilizing
planning and learning together, may make policies easier to
learn, generalize better and transfer across platforms. In this
vein, Niroui et al. [57] and Chen et al. [58] employ DRL to
extract the best candidate among previously-detected frontiers,
thereby creating a link with modular approaches. Li et al. [59]
and Lodel et al. [206] use nearby sampled locations instead,
but they also leave the motion planning task out of the scope of
learning. Chaplot et al. [56] use different policies to infer long-
term (i.e.., frontiers) and short-term (i.e., control commands)
goals, linked through a model-based trajectory planner.

C. Partial Observability and Generalization
Partial observability and generalization are two inherent and

often-forgotten concepts in active SLAM. First of all, the
uncertainty about the observations and actions taken, and the
limited observations make the problem not fully observable.
Consequently, agents are unable to distinguish their own
true state based on single observations, and learned policies
are bound to be suboptimal [207]. Mirowski et al. [200]
alleviate this by expanding the network inputs with previ-
ous observations and rewards. Hausknecht and Stone [208]
demonstrate that recurrent architectures can also handle partial
observability, teaching agents to learn about previous data on
their own. Long short-term memory units are used for robotic
exploration in [57], [200], [203], and Karkus et al. [189]
embed the computation structure of the belief (and thus the
history) in a recurrent neural network.

The second element intrinsic to active SLAM is the lack
of prior knowledge of the environment. Learning policies

that generalize to unseen scenarios is therefore crucial, and
currently represents a key limiting factor for learning-based
methods. Overfitting can be mitigated by expanding the sample
space (e.g., using random starting locations [57], [204], con-
sidering noise in the observations [209]) or by using sparser
network inputs [207]. For example, agents trained in [121],
[210] learn policies generalizable to real environments after
reducing sensory data to a sparse range input. Similarly, Shi et
al. [211] specifically use sparse range measurements to reduce
the simulation-to-reality (sim-2-real) gap. Lodel et al. [206]
improve generalization by feeding the network with egocentric
limited observations, following [203]. Chen et al. [58] lever-
age graph neural networks, in which the inputs are already
compressed representations. The task of transferring trained
agents to real scenarios is still an open research problem, and
few efforts have been made in this direction [59], [121], [211].

D. Training Environments

The use of DRL introduced a major challenge during
training: the need of a simulation environment to acquire data
online. Unlike supervised methods, training with offline data
is not possible and real-world training seems infeasible. To
overcome this problem, some works use their own simplified
simulation scenarios, thus limiting the network inputs to
ground-truth data or range perfect observations. To use more
realistic data that bridge the gap from simulation to physical
robots, more complex simulators need to be used in training.

Stage [212] is one of the simplest engines used in the liter-
ature [57], although it restricts perception to two-dimensional
bitmapped environments. Gazebo [213] is a much more
complete simulator which allows for 3D simulations, real-
istic rendering, visual sensors, etc. In addition, it is tightly
integrated into the widespread Robotic Operating System
(ROS), which makes its use commonplace [121], [123], [199].
CoppeliaSim/V-REP [214] also allows for online mesh ma-
nipulation, but it is not an open-source solution and is less
integrated into ROS, limiting its adoption. Combination of a
physics engine (i.e., robot motion and sensor models) with
a DRL framework is not always straightforward. Zamora et
al. [215] present a powerful framework by integrating the RL
toolkit OpenAI Gym [216] with ROS and Gazebo.

In contrast to the above platforms, initially designed for
robotics and later adapted to DRL, there is a second family
of simulators born in the age of AI. They tend to prioritize
training speed over the breadth of simulation capabilities.
DeepMind Lab [217] allows agents to move discretely in low-
textured, game-like scenarios, and provides access to a visual
sensor and velocity. Habitat-Sim [218] takes a leap forward by
supporting physics simulation and different robot and visual
sensor models. More interestingly, it has the powerful capabil-
ity of rendering simulation environments from image datasets,
e.g., Replica [219]. iGibson [220] also provides fast visual
rendering and physics simulation, and includes simulation of
lidar and optical flow sensors. The ROS ecosystem is already
integrated in [220], whereas [218] requires the use of external
libraries. Despite their potential, none of these platforms has
yet been used for DRL in the context of active SLAM.



SURVEY PAPER. MARCH 12, 2023 12

VIII. MULTI-ROBOT ACTIVE SLAM

The active SLAM problem can be extended to a multi-agent
setting, where n robots optimize their sensing trajectories
collaboratively to estimate a common map m ∈ M of the
environment. Each robot has its own state space Xi and action
space Ai. Applying an active SLAM algorithm to the joint
state space S = X1 × · · · × Xn ×M and joint action space
A = A1 × · · · × An can generate desirable behavior but
becomes computationally infeasible as the number of robots
increases because the complexity of centralized algorithms
scales exponentially with n [78]. Such algorithms also require
collecting all robot measurements and performing joint op-
timization at a centralized server before communicating the
planned actions back to the individual robots. If the robot
team is small and connectivity is maintained at all times,
centralized algorithms can be used to plan all robot trajectories
simultaneously. For example, Charrow et al. [221] achieve
multi-robot target tracking by maximizing the MI between
the target location and range-only observations over a set of
motion primitives. However, larger teams with intermittent
communication and limited onboard computation require de-
centralized algorithms, where individual robots solve smaller
instances of the active SLAM problem, or fully distributed
algorithms, where the robots exchange information only with
their neighbors. Kantaros et al. [181], [222] propose an infor-
mative planning2 technique which constructs random trees of
control sequences and is particularly simple to distribute. The
algorithm scales to very large numbers of sensors and targets
and is probabilistically complete and asymptotically optimal.

A particularly important instance of the problem is col-
laborative multi-robot exploration, where the robots aim
to coordinate how to efficiently explore different regions of
the environment. Early works such as [105], [223] present
an approach for choosing appropriate frontiers, while simul-
taneously taking into account their utility and the cost of
reaching them. Each time a target point is assigned to some
specific robot, the utility of the unexplored area visible from
that frontier is reduced. This mechanism is used to assign
different frontiers to different robots. Colares and Chaimow-
icz [132] develop a decentralized multi-robot formulation of
the classical frontier-based exploration method. The authors
use an objective function that captures the frontier entropy
and distance, and a robot coordination factor that penalizes
regions that other robots are already exploring. Atanasov et
al. [78] consider a multi-agent active information acquisition
problem, in which an information measure is maximized over
a discrete space of agent trajectories, and propose a decentral-
ized planning scheme using coordinate descent in the space of
agent trajectories. Schlotfeldt et al. [224] introduce an anytime
search-based planning formulation that progressively reduces
the suboptimality of the multi-agent plans while respecting
real-time constraints. Instead of using search-based planning,
Ossenkopf et al. [225] generate candidate robot actions using
RRT*. The sampling is biased to prioritize exploration, map

2Informative path planning can be considered a generalization of active
SLAM to include objectives beyond the quality of localization and mapping,
e.g., for target tracking or environmental monitoring.

improvement, or localization improvement. The map and robot
state entropy is evaluated along the planned trajectories in two
stages: short-horizon exact computation using filter updates,
and long-horizon approximation using predicted loop closures.
Lauri et al. [226] introduce a decentralized ρ-POMDP, allow-
ing the specification of an information-theoretic objective. The
authors show that a multi-agent A* algorithm that searches
the joint policy space can be applied to belief-dependent
rewards to achieve cooperative target tracking with periodic
communication. Hu et al. [205] design a hierarchical control
approach for cooperative exploration, combining a high-level
region-assignment layer and a low-level safe-navigation layer.
The former uses dynamic Voronoi partitions to assign different
regions to individual robots; the latter achieves collision-free
navigation to successive frontier points using DRL.

Another important instance is collaborative multi-robot
active estimation, where the goal is to seek actions that
actively reduce the uncertainty over relevant random variables.
For instance, Kontitsis et al. [143] develop a multi-robot
active SLAM method that uses a relative entropy optimization
technique [227] to select trajectories which minimize both
localization and map uncertainties. Indelman [228] develops a
collaborative multi-robot BSP framework, which incorporates
reasoning about future observations of environments that are
unknown at planning time. That approach has been extended
in [229] to a decentralized setting. Best et al. [230] propose
the self-organizing map algorithm, considering the problem
of multi-robot path planning for active perception and data
collection tasks. Chen et al. [128] leverage graph connectivity
indices and their relationship to optimality criteria to achieve
multi-robot active graph-SLAM. Each robot aims to improve
the pose graphs of the other agents by sharing its observations
when it moves near areas where they have low connectivity.

IX. OPEN RESEARCH QUESTIONS

Active SLAM still requires much research in order to
support the deployment of fully autonomous robots in complex
environments. Many are the challenges and research fields
involved, so cooperation between them is crucial to achieve
real-world impact. In this section, we present some of what
we consider the most important research questions. Although
some of them are long-known challenges and are already under
intense investigation, others have not received such attention.

A. Prediction Beyond Line-of-sight

Resolution of active SLAM relies on fast and precise predic-
tions of future states for the variables of interest. The accurate
prediction of the scene and robot pose after executing a set
of candidate actions can be the difference between making
the right decision or not. The expected sensed space and the
resulting map representation have traditionally been predicted
using a sensor model together with ray-casting techniques [51],
[105]. Recent related work, however, addresses the problem
of scene completion and occupancy anticipation from a DL
perspective. Fehr et al. [231] use a neural network to augment
the measurements of a depth sensor and Ramakrishnan et
al. [232] directly predict augmented OG maps beyond the
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sensor’s field-of-view using auto-encoders (AE). Rather than
using raw sensor measurements, Katyal et al. [233] and
Hayoun et al. [234] extend an input OG map beyond the line-
of-sight also using AE. Shrestha et al. [235] predict maps
of occupancy probabilities instead with variational AE. Dai
et al. [236] perform scene prediction over 3D SDF-based
maps. All these methods seem promising for fast and precise
online map prediction beyond line-of-sight, although their
integration into active SLAM is yet to be done and brings with
it numerous challenges. How does scene prediction behave in
unstructured environments? How to account for uncertainty?
Is measurement prediction more reliable and informative than
map prediction? How to predict the effect of only a certain
set of non-myopic actions in the map rather than augmenting
the whole scene? Regarding the latter, [237], [238] and [239]
subordinate predictions to candidate actions.

On the other hand, the robot state is straightforwardly
estimated using motion models or path planners. However,
the prediction of its associated uncertainty is not trivial and
requires more attention. Work from Asraf and Indelman [239]
is among the very few efforts made to combine data-driven
scene prediction with BSP. In addition, they use the predicted
observations to forecast the posterior uncertainty over the robot
trajectory. Besides the robot’s movement, it is the appearance
of loop closures (exploitation) that significantly affects the new
states’ uncertainty, thus making its forecast critical. Despite
some isolated works have partially studied this problem [29],
[240], it still remains as an open challenge.

B. From Active SLAM to Active Spatial Perception

Most active SLAM approaches reason over geometric repre-
sentations of the environment (e.g., OG maps). However, when
we explore new environments as humans, we are mostly inter-
ested in semantic elements of the environment (e.g., presence
of objects, rooms) rather than the shape of the environment per
se. Modern SLAM systems are now able to build 3D metric-
semantic maps in real-time from semantically labeled images,
see [96] and the references therein. These maps include
both occupancy information and semantic labels of entities
(e.g., chairs, tables, humans, etc.) in the environment. Very
recent work goes even further and develops spatial perception
systems that infer hierarchical map representations, in the form
of 3D scene graphs [103], [241], [242]. They symbolize high-
level representations of an environment, that capture from low-
level geometry (e.g., a 3D mesh of the environment) to high-
level semantics (e.g., objects, people, rooms, buildings, etc.).
While there is a growing amount of work in estimating these
high-level representations from sensor data, their use in active
SLAM is still uncharted territory. Very early effort in this
direction includes the work from Ravichandran et al. [243],
which focuses on object search using 3D scene graphs.

Active metric-semantic information acquisition, or Active
Spatial Perception, has the potential to impact many aspects
of robot autonomy: (i) by leveraging semantic knowledge, a
robot can more effectively predict unseen space (e.g., predict
the presence of rooms or objects in each room), (ii) the
use of semantics can further enhance SLAM performance

(e.g., allowing for novel loop closure detection methods [242]),
and (iii) hierarchical representations may enable novel and
more computationally efficient planning methods. However,
each opportunity comes with many open research questions,
for instance: How to quantify uncertainty over metric-semantic
or even hierarchical scene representations? How to leverage hi-
erarchical structures to improve computation? How to perform
spatial prediction in hierarchical representations?

C. Robust Online Belief Space Planning and Active SLAM

Another key aspect is data association, i.e., association
between measurements and the corresponding landmarks (or
other entities in the map representation). In perceptually
aliased and ambiguous environments, determining the correct
data association is challenging, and incorrect associations
may lead to catastrophic failures. The research community
has been investigating approaches for robust perception to
allow reliable and efficient operation in ambiguous environ-
ments (see, e.g. [244]–[249]). Yet, these approaches focus
on inference (rather than planning), i.e., actions are given.
Only recently, ambiguous data association was considered
also within BSP and, in particular, active SLAM. Pathak et
al. [250] incorporate, for the first time, reasoning about future
data association hypotheses within a BSP framework, enabling
autonomous hypotheses disambiguation. Another related work
in this context is [251], that also reasons about ambiguous
data association in future beliefs while utilizing the graphical
model presented in [248]. A first-moment approximation to
Bayesian inference with random sets of targets, known as
the probability hypothesis density (PHD) filter, has been
successfully applied to active target tracking problems [252].
However, explicitly considering all possible data associations
leads to an exponential growth of the number of hypotheses,
and determining the optimal action sequence quickly becomes
intractable. Shienman and Indelman [253] recently presented
an approach that utilizes only a distilled subset of hypotheses
to solve BSP problems while reasoning about data association
and providing performance guarantees considering a myopic
setting. Nevertheless, BSP and active SLAM in these challeng-
ing settings remain open problems. More generally, finding an
appropriate simplification of the original BSP or active SLAM
problem, which is easier to solve, with no, or bounded, loss in
performance, is an exciting and novel direction [253]–[256].

D. Reasoning in Dynamic and Deformable Scenes

One of the most common assumptions in active SLAM
is to consider the environment static —or slightly dynamic,
at best. Real scenes, however, contain moving agents most
of the times, and even deformable elements (e.g., clothes,
water). Handling these elements would greatly impact the
robot’s autonomy, its reasoning ability and awareness, and
would facilitate its deployment in real-world scenarios.

The study of dynamic environments has long been a topic
of interest for the path planning [257] and the SLAM [258]
communities; but its investigation in the context of active
SLAM has been typically restricted to the action execution
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step (i.e., re-planning) [259], [260]. However, many other as-
pects emerge when reasoning with dynamic elements: How to
foresee their effects in planning? How to integrate them in the
utility function? How to maintain a lightweight representation?

Non-rigid environments present an even greater challenge.
Planning for mobile robots in deformable environments started
receiving some attention a couple of decades ago [261], [262].
Medical applications have also stimulated progress on SLAM
in deformable environments [263], [264]. However, to date,
no efforts have been made towards developing a deformable
active SLAM framework. We believe this is partly due to the
unavailability and complexity of simulators for mobile robots
in deformable environments, and partly due to the difficulty
in extending the current map representations to deformable
scenes. Given the importance of obtaining accurate robot tra-
jectory estimates towards mapping deformable environments,
active SLAM can play a major role in this area.

E. Towards Meaningful and Autonomous Stopping Criteria

Unlike with coverage and exploration in known environ-
ments, determining the moment in which the task of active
SLAM is complete is non-trivial. Performing active SLAM
is known to be a computationally expensive process: a vast
amount of resources is required to estimate and optimize utility
online, thereby conditioning the execution of other tasks;
therefore, it is crucial to understand when such process can
be considered complete and other tasks can be prioritized.
Cadena et al. [5] already identified this issue as an open
research question, but little research has been done on the
topic. Even recent active SLAM works still rely on traditional
temporal [51], [81] or spatial [62], [265] constraints to decide
when exploration has terminated. These metrics, however,
cannot be used in truly unknown environments nor do they
assert task completion (see [161]). The use of TOED-based
metrics has been identified as a promising tool [5], [36], [161]
to determine when a given exploration strategy is no longer
adding information. Nevertheless, many questions remain to
be answered: How to guarantee task completion? How to
transition between exploration strategies? Also, the advent of
DRL approaches raises a new question: when to stop training?

F. Reproducible Research in Active SLAM

The increasing attention towards active SLAM creates the
need for new benchmarks to objectively evaluate new findings
against existing research. This has long been a challenge
in the robotics community [266], where real-life robotics
experiments are often difficult to replicate across research
groups. In related problems, such as SLAM, static datasets
are commonly used for benchmarking. However, in active
SLAM, the agent must interact with the environment, making
the use of datasets impractical. In recent years, a significant
effort has been made in robotics to address challenges in
benchmarking [267] and reproducibility [268]. Despite these
efforts, such benchmarks are still lacking in active perception.

Typically, in active SLAM, researchers select a set of
scenarios (e.g., platform, task, and environment) representative
of the desired application, and experiments are conducted in

simulation via customized simulators or in the real world via
specialized hardware. While such an evaluation is adequate for
validation, the specified scenario may not be general enough or
sufficiently specified to be reproduced. Consequently, one-to-
one comparisons are rarely made between approaches. While
targeting more general embodied agents, several open-source
datasets [269] and simulators [218], [265], [270] show promise
for active SLAM research. Also, open-source frameworks (see
Table I) make the comparison and testing of new algorithms
straightforward, only by modifying the decision-making por-
tion. While some works take advantage of these simulators and
datasets [56], establishing a proper methodology for evaluating
active SLAM when it comes to generalization from simulation
to the real world remains an open question. Besides, there
is a dire need to establish adequate performance metrics for
active SLAM that go beyond commonly-used exploration time
and coverage. Improving the quality of estimates is the main
objective of active SLAM, and should therefore be measured.

G. Practical Applications

Although active SLAM methods have practical relevance in
many real-world problems such as search and rescue, where
constructing a sound representation of the environment is time
critical, very few practical implementations and deployments
of active SLAM have been described in the literature. Walter
et al. [271] propose a partially autonomous system for un-
derwater ship hull inspection. Kim and Eustice [119] deploy
a complete active SLAM system. Palomeras et al. [54], [85]
report the autonomous exploration of complex underwater en-
vironments for environmental preservation purposes. Fairfield
and Wettergreen [240] investigate terrestrial applications and
autonomous mapping of abandoned underground mines. A
roughly similar application but in the archaeological context of
catacomb exploration is presented in [272]. Strader et al. [22]
report experiments of active perception in a Mars-analogue
environment. Finally, assistive mapping examples for office-
like environments can be found in [30], [251], [273]. Aerial
applications of active SLAM are significantly less common.
Chen et al. [62] propose an MPC framework to address
coverage tasks while maintaining low uncertainty estimates.

Overall, there are very few reports of field experiments
involving active SLAM systems. Besides, by 2022, there is
a large imbalance between the patents using the terms SLAM
and active SLAM3, about 39,000 for the former and 31 for
the latter. This indicates that the technology readiness level
of active SLAM is not in a deployment phase but in early
development. Furthermore, it raises the question of whether
active SLAM is important for all applications or whether
human supervision is still preferred. Among the roadblocks
preventing the transition from theory to applications (includ-
ing the challenges mentioned in the previous sections), we
also remark that the high computational complexity of active
SLAM often clashes with application constraints, e.g., the low
computational budget available on aerial robots.

3We used “simultaneous localization and mapping” after:priority:19920101,
and ”active slam” OR ”active simultaneous localization and mapping” af-
ter:priority:19920101 as queries search in the Google patents search platform.
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X. CONCLUSIONS

The active SLAM problem, which consists in actively
controlling a robot such that it can estimate the most accurate
and complete model of the environment, has been a topic
of interest in the robotics community for more than three
decades, and is now receiving renewed attention —also thanks
to the novel opportunities offered by learning-based methods.
Despite the role of active SLAM in many applications, the
disparity and lack of unification in the literature has prevented
the research community from providing a cohesive framework,
bringing algorithms to maturity, and transitioning them to real
applications. In this paper, we take a step toward this goal by
taking a fresh look at the problem and creating a complete
survey to serve as a guide for researchers and practitioners.

In particular, we present a unified active SLAM formula-
tion under the umbrella of POMDPs, highlighting the most
common assumptions in the literature. Then, we discuss the
modular resolution scheme, which decouples the problem into
goal identification, utility computation, and action selection.
We delve into each stage, reviewing the most important
theories and presenting state-of-the-art techniques. We then
review alternative approaches that have drawn great interest
and have undergone major advances in recent years, including
(continuous) BSP and learning-based approaches. Finally, we
discuss relevant work in multi-robot active SLAM.

Besides discussing the historical evolution and current
trends in active SLAM, we also identify the most relevant open
challenges in this field. These include prediction beyond line-
of-sight and active spatial perception, among others. We also
emphasize the need for a unified formulation and evaluation
metrics that allow for direct comparison between works.
Reproducibility and benchmarking need to be addressed for
this field to mature and achieve real-world impact.
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dad Javeriana, Bogotá, Colombia, in 2010; and the
M.Sc and Ph.D. degree in Computer Science from
Universidad de Zaragoza, Zaragoza, Spain, in 2010
and 2014, respectively. He is currently a Computer
Vision Delivery Lead with Genius Sports, a U.K.-
based sports technology company with an office in
Medellı́n, Colombia. Prior to moving to the industry

sector in 2019, he was an Associate Professor with Universidad Sergio Ar-
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