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Fig. 1: GeFF, Generalizable Feature Fields, provide unified implicit scene representations for both robot navigation and manipulation
in real-time. We demonstrate the efficacy of GeFF on open-world mobile manipulation, semantic-aware navigation, and zero-shot
manipulation by parts under diverse scenes ((a) work in a lab where a person walks in, (b) enter a meeting room with narrow entrance,
(c) fine part-level manipulation, (d) grasp objects in a parking lot, and (e) semantic-aware navigation near a lawn). The visualization of
the feature fields is obtained by PCA of rendered features. For best illustration, please check out the supplementary video.

AbstractÐ An open problem in mobile manipulation is how
to represent objects and scenes in a unified manner so that
robots can use both for navigation and manipulation. The latter
requires capturing intricate geometry while understanding fine-
grained semantics, whereas the former involves capturing the
complexity inherent at an expansive physical scale. In this work,
we present GeFF (Generalizable Feature Fields), a scene-level
generalizable neural feature field that acts as a unified repre-
sentation for both navigation and manipulation that performs
in real-time. To do so, we treat generative novel view synthesis
as a pre-training task, and then align the resulting rich scene
priors with natural language via CLIP feature distillation. We

demonstrate the effectiveness of this approach by deploying
GeFF on a quadrupedal robot equipped with a manipulator.
We quantitatively evaluate GeFF’s ability for open-vocabulary
object-/part-level manipulation and show that GeFF outper-
forms point-based baselines in runtime and storage-accuracy
trade-offs, with qualitative examples of semantics-aware navi-
gation and articulated object manipulation.

I. INTRODUCTION

Building a personal robot that can assist with common

chores has been a long-standing goal of robotics [12, 25,



50]. This paper studies the task of open-vocabulary mobile

manipulation, where a robot needs to navigate through

diverse scenes and manipulate objects based on language

instructions. This task, while seemingly easy for humans,

remains challenging for autonomous robots. Humans achieve

such tasks by understanding the layout of rooms and the

affordances of objects without explicitly memorizing every

aspect. However, when it comes to robots, there does not

exist a unified scene representation that captures geometry

and semantics for navigation and manipulation tasks.

Recent approaches in navigation seek representations such

as geometric maps (with semantic labels) [1, 32, 45] and

topological maps [38, 39] to handle large-scale scenes,

but are not well integrated with manipulation requirements.

Manipulation, on the other hand, often relies on dense

scene representation such as implicit surfaces or meshes [34,

48, 58] to compute precise grasping poses, which are not

typically encoded in navigation representations. More im-

portantly, supporting semantics-aware navigation with open-

vocabulary object queries requires grounding to geometric

and semantic concepts in the environment. The lack of a

unified representation leads to unsatisfactory performance in

open-vocabulary manipulation in large scenes [53]. Perform-

ing coherent open-vocabulary perception for both navigation

and manipulation remains a significant challenge.

We present a novel scene-level Generalizable Feature

Field (GeFF) as a unified representation for navigation and

manipulation, trained with neural rendering akin to Neural

Radiance Fields (NeRFs) [26]. Instead of fitting a single

static NeRF, GeFF only requires a single feed-forward pass to

update the scene representation during inference. As a unified

representation, GeFF stands out with two more advantages:

(i) GeFF can decode multiple 3D scene representations from

a posed RGB-D stream, including signed distance function

(SDF) and point cloud, and (ii) performing feature distillation

from a pre-trained Vision-Language Model (VLM), e.g.,

CLIP [33], GeFF provides language-conditioned semantics.

Thus, GeFF mitigates the aforementioned discrepancy by

supporting both real-time semantics-aware navigation (e.g.,

avoiding humans) and zero-shot object part manipulation

(e.g., grasping mugs and tools by handles).

Using a quadrupedal mobile manipulator, we demonstrate

that GeFF enables capabilities such as object-/part-level

manipulation, semantics-aware navigation, and the potential

to support articulated manipulation. We quantitatively show

that GeFF outperforms existing point-based [11] and im-

plicit [18] methods in open-vocabulary scene representation

for mobile manipulation. Notably, the overall success rate

outperforms the best baseline by 19.2 absolute points

on averaged object-level and part-level manipulation,

while maintaining real-time efficiency. In addition, we

also qualitatively show that GeFF can be used to provide

perception for other tasks such as semantics-aware navigation

and articulated manipulation. We plan to release the pre-

trained models and the source code.

II. RELATED WORK

Generalizable NeRFs. Generalizable NeRFs extend con-

ventional NeRFs’ ability to render detailed novel views to

scenes that come with just one or two images [27, 47, 49, 52,

56]. They replace the time-consuming per-scene optimization

with a single feed-forward process through a network. Exist-

ing work [35, 44] mainly focus on synthesizing novel views.

Our focus is to use novel view synthesis via generalizable

neural fields as a generative pre-training task. At test time,

we use the produced network for representation generation

on mobile robots.

Feature Distillation in NeRF. Beyond just synthesizing

novel views, recent work [18, 20, 46, 52] attempted to

combine NeRF with feature distillation [3, 28, 33, 36]

to empower neural fields with semantic understanding of

objects [20, 46, 52], scenes [18, 40] and downstream robotic

applications [40, 57]. PartSLIP [21] and FeatureNerf [52]

performs part-level segmentation of objects, but require

complete point clouds. Most closely related to our work,

LERF-TOGO [18, 34] and F3RM [40] distill CLIP features

for tabletop manipulation. We show that the conditional CLIP

queries proposed in LERF-TOGO [34] apply to GeFF for

part-based manipulation as well. Nonetheless, previous work

cannot be easily adapted for mobile manipulation due to

the expensive per-scene optimization scheme [18, 20] or

restrictions to object-level representations [52]. In contrast,

GeFF runs real-time on mobile robots.

Mobile Manipulation. Besides work that perform closed-

set mobile grasping [10, 16, 30, 31, 41, 43, 51, 54, 60], there

have been some recent work [5, 11, 14, 17, 22, 24, 55] that

leverage 2D foundation vision models to for open-vocabulary

mobile grasping and demonstration-based mobile manipu-

lation [2]. Existing open-vocabulary manipulation methods

project predictions from large-scale models [19, 33] directly

onto explicit representations. This may require (1) offline

optimization [11], expensive storage costs allowing only

room-scale scenes and object-level grasping [11, 22]. GeFF,

on the other hand, builds a latent and unified representation

for larger-scale outdoor environments and part-level grasping

in real-time.

III. GEFF FOR MOBILE MANIPULATION

A. Problem Statement

Given a coordinate x ∈ R
3 and a viewing direction d on

the unit sphere S
2, NeRF [26] adopts an occupancy mapping

σθ(x) : R3 → [0, 1] and a color mapping cω(x,d) : R3 ×
S
2 → R

3. Consider a ray r from a camera viewport with

origin o and direction d. NeRF estimates color along r by

Ĉ(r) =

∫ tf

tn

T (t)αθ(r(t))cω(r(t),d)dt , (1)

where tn and tf are minimum and maximum bounding

distances, T (t) = exp(−
∫ t

tn
σθ(s)ds) is the transmittance

capturing cumulative occupancy, and αθ(r(t)) is the opacity

value at r(t) (in NeRF [26], αθ = σθ).

Let Ω be the space of RGB-D images. Consider N

posed RGB-D frames D = {(Fi,Ti)}
N
i=1

, Fi ∈ Ω, Ti ∈



Camera Trajectory

Onboard RGB-D Stream

Robotics Application

Geometry 

Understanding

Language

Grounding

Scene Understanding

“Where’s hand lotion?”

Latent World Representation

𝑓!"#(𝐷)

Grasp(‘hand lotion’)

Nav(‘table’, avoid=‘lawn’)🧭

🦾

Input Data 𝐷 Implicit SDF

2D VLM Features

Gen-NeRF

3D Encoder

🔥

Vision

Language

Models

❄

Geometric Decoder

𝑔$!%

Semantic Decoder

𝑔&!'

Semantic-aware Planning
Outdoor Environment

Open-vocab. Manipulation
Indoor Environment

Fig. 2: Pre-trained as a generalizable NeRF encoder, GeFF provides a unified scene representation to support robot tasks from a onboard
RGB-D stream, offering both real-time geometric information for planning and language-grounded semantics query capability. Compared
to LERF [18], GeFF runs in real-time without costly per-scene optimization, which enables many potential robotics applications. We
demonstrate the efficacy of GeFF in open-world language-conditioned mobile manipulation. Feature visualizations are done by running
PCA on high-dimensional feature vectors and normalizing the 3 main components as RGB.

Fig. 3: Generalizable NeRFs acquire geometric and semantic
priors: RGB images are input views from ScanNet [6], color
images are PCA visualizations of feature volume projected to the
input camera view encoded by an RGB-D Gen-NeRF [8] encoder.
Note how semantically similar structures acquire similar features.

SE(3). Our goal is to create a unified scene representation

that captures geometric and semantic properties for robot

loco-manipulation tasks. Specifically, we aim to design an

encoding function fenc(·) : (Ω × SE(3))N → R
N×C

that compresses D to a latent representation, and decoding

functions ggeo(·, ·) : R
3 × R

N×C → R
m and gsem(·, ·) :

R
3 × R

N×C → R
n that decode the latents into different

geometric and semantic features at different positions in 3D

space. The geometric and semantic features can then serve

as input to a downstream planner. We aim to design these

functions to meet the following criteria:

• Unified. The encoded scene representation fenc(D) is

sufficient for both geometric and semantic query (i.e.,

ggeo and gsem are conditioned on D only via fenc(D)).
• Incremental. The scene representation supports effi-

cient incremental addition of new observations, (i.e.,

fenc(D1 ∪ D2) = fenc(D1)⊕ fenc(D2))
• Implicit. The encoded latents fenc(D) are organized in

a sparse implicit representation to enable more efficient

scaling to large scenes compared to storing D.

• Open-world. The semantic knowledge from gsem is

open-set and aligned with language, so the robot can

perform open-world perception.

We build GeFF upon generalizable NeRFs to satisfy these

requirements. An overview of our method is shown in Fig. 2.

B. Learning Scene Priors via Neural Synthesis

Generalizable NeRFs (Gen-NeRFs) offer an effective pre-

training objective for rich geometric and semantic priors [8,

15, 52]. Fig. 3 shows an illustration, rendering the latent fea-

ture volume from an RGB-D Gen-NeRF encoder fenv(·) [8]

trained to synthesize novel views on the ScanNet [6] dataset.

The colors correspond to the principal components of the

latent features. We observe separations between objects and

the background, despite that explicit semantic supervision

was not provided during training.

GeFF uses two types of supervision to enhance these priors

Ð semantics using 2D features and geometry using SDF.

Supervision (i): Language-Alignment via Feature Dis-

tillation. Although we have shown that Gen-NeRF encoders

implicitly capture geometric and semantic cues, the repre-

sentation is less useful if it is not aligned to other feature

modalities, such as language. To enhance the representation

capability, in GeFF we use knowledge distillation to trans-

fer learned priors from 2D vision foundation models and

align the 3D representations with them. To the best of our

knowledge, GeFF is the first approach that combines scene-

level generalizable NeRF with feature distillation. In contrast

to previous works [18, 20, 52], which either require costly

per-scene optimization [18, 20] or is limited to object-centric

representation [52], GeFF both works in relatively large-scale

environments and runs in real-time, making it a powerful

perception method for mobile manipulation.

Specifically, we build a feature decoder gsem(x, fenc(D))
on top of the latent representation, which maps a 3D co-

ordinate to a feature vector. The output of gsem is trained

to be aligned with the embedding space of a teacher 2D

vision foundation model, termed fteacher. Note that gsem
is isotropic, as the semantics of an object should be view-

independent regardless of the viewing directions. We can
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Fig. 4: GeFF compresses and refines multi-view observations:
(a) single RGB view; (b) coarse 2D CLIP heatmap with query
‘toy duck’; (c) 3D heatmap from GeFF with clean boundary
reconstructed from compressed latent representation.

render 2D features for pre-training via

F̂(r) =

∫ tf

tn

T (t)α(r(t))gsem(r(t), fenc(D))dt , (2)

which is modified from Eq. 1. To further enhance the fidelity

of the 3D scene representation, we use the 2D features of the

input views computed by the teacher model as an auxiliary

input to fenc, which is

fenc(D) = CONCAT

(

f̂enc(D), fteacher(D)
)

, (3)

where f̂enc is a trainable encoder and fteacher is a pre-trained

vision model with frozen weights. The final feature rendering

loss is then given by standard L2 loss between F̂ and F,

where F is the reference feature obtained by running fteacher
on ground-truth novel views and F̂ is the predicted feature.

Note that the input views and the rendered novel views are

different adjacent views.

Model for Distillation. Our proposed feature distilla-

tion method for scene-level generalizable NeRFs is model-

agnostic. In this work, since we are interested in open-

vocabulary tasks, we choose MaskCLIP [59] as fteacher.

MaskCLIP offers coarse (see Fig. 4) features but runs in

real-time on mobile robots.

Supervision (ii): Depth Supervision via Neural SDF.

We use a signed distance network s(x) = ggeo(x, fenc(D))
to decode feature field into metric geometry, which is based

on existing work [8, 29, 49]. Doing so has two advantages

over previous work [56]: 1) it leverages depth information

to efficiently resolve scale ambiguity for building scene-

level representation, rather than restricted to object-level

representation, and 2) it creates a continuous implicit SDF

surface representation, which is a widely used representation

for robotics applications such as computing collision cost in

motion planning [29].

To provide supervision for ggeo during pre-training, we

differentiably convert SDF values into 2D depths following

iSDF [29]. The main difference with iSDF [29] is that

we condition ggeo with fenc(D), which does not require

optimization for novel scenes. We represent the opacity

function α in Eq. 2 using s(x)

α(r(t)) = MAX

(

σs(s(x))− σs(s(x+∆))

σs(s(x))
, 0

)

, (4)

where σs is a sigmoid with a learnable parameter s. The

depth along a ray r is then rendered by

D̂(r) =

∫ tf

tn

T (t)α(r(t))didt , (5)

where di is the distance from the current ray marching

position to the camera origin. Similar to Eq. 2, the rendered

depth can be supervised via standard L2 loss.

Final Training Objective. Combining all the above equa-

tions, the total loss we used to train fenc for a unified latent

scene representation is given by

L = λ1Lcol+λ2Ldepth+λ3Lsdf +λ4Leik+λ5Lfeat , (6)

where λis are empirically insensitive hyperparameters used

to balance loss scales; Lcol, Ldepth, and Lfeat are rendering

loss for Eq. 1, Eq. 5, and Eq. 2. The SDF loss Lsdf and

Eikonal regularization loss [9] Leik are standard losses used

by existing methods to ensure smooth SDF values.

C. Implementing Open-Vocabulary Mobile Manipulation

Scene Mapping with GeFF. GeFF encodes posed RGB-

D frames to a latent 3D volume represented as a sparse latent

point cloud, which can be built by concatenating per-frame

observations. The camera poses are provided by an off-the-

shelf VIO method [37].

Decoded Representations. Though GeFF supports con-

tinuous decoding, it is inefficient to generate all possible

representations densely on-the-fly. For this work, we decode

the latent representation into discretized point clouds as

geometric representations for navigation and manipulation.

We then compute 2D grid by projecting the decoded 3D

points and compute features for each grid cell by averaging

the features of related points. This enhances basic units (i.e.,

points and grid cells) with features from gsem.

Handling Language Query. Following standard proto-

cols [33], GeFF takes in positive text queries and negative

text queries (e.g., ceiling). To rate the language similarity,

we compared decoded point features with text features using

cosine similarity with a temperatured softmax. We sum up

the probabilities of positive queries as the similarity score.

For part-level language query, we use the conditional CLIP

query technique proposed by Rashid et al. [34]. After the

initial object is segmented, conditional CLIP query performs

another pass of language query conditioned on the segmented

object with part-level prompt for part segmentation.

GeFF for Navigation. We consider the navigation of

the quadruped robot as a 2D navigation problem following

existing work [4, 53, 55]. Given text queries, we compare

text embedding to grid embeddings. We use DBSCAN [7]

to cluster high-response points for goal location and assign

semantic affordances to grid cells. With an affordance-aware

A∗ planner, this achieves semantic-aware navigation. Note

that the 2D occupancy map is updated in real-time.

GeFF for Object-level Manipulation. After the robot

arrives at the goal receptacle, it searches for the target object

by comparing semantics in points with given text, and uses

DBSCAN to represent the target object as a centroid. In

practice, we found that the parallel gripper has a high success



TABLE I: Open-vocabulary mobile manipulation. Navigation success (Nav. Succ.) and composite mobile manipulation

success (Mobile. Mani. Succ.) are reported for object-level tasks. For part-level tasks, we report manipulation success rates

with different object-part queries (e.g., mug-handle: grasping various mugs by handles). Latency reports the delay from

reception of frames to decoded semantic features on the onboard AGX Orin. The overall success is the average of object-

level and part-level manipulation. ⋆ methods require offline optimization with all observations batched together.

Object-level Mobile Manipulation Part-level Manipulation

Method Latency Nav. Succ. Mobile Mani. Succ. Mug-Handle Tool-grip Cart-bar Avg. Succ. Overall Succ.

GeFF (Ours) 0.39s 94.4% 61.1% 44.4% 66.7% 80.0% 63.7% 62.4%

LERF⋆ [18] ∼2 hrs⋆ 72.2% 44.4% 36.1% 20.0% 70.0% 42.0% 43.2%
ConceptGraph⋆ [11] ∼200s⋆ 94.4% 72.2% 0% 20% 15% 11.6% 41.9%
ConceptGraph-Online 4.63s 5.56% 5.56% 0% 0% 15% 5% 5.3%

TABLE II: Ablation of auxiliary CLIP input (Eq. 3) on

object-level mobile manipulation in diverse scenes. Naviga-

tion success rates (Navi.) and composite mobile manipulation

success rates (Mani.) are reported.

Meeting Room Kitchen

Methods Navi. Mani. Navi. Mani. Overall

GeFF (Ours) 13/15 8/15 12/18 8/18 41/66

GeFF (no aux) 9/15 5/15 7/18 4/18 25/66
LERF [18] 6/15 3/15 8/18 5/18 22/66

rate in object-level grasping via an intuitive open-push-close

gripper action sequence with trajectories computed by a

sample-based planner (OMPL planner [42]).

GeFF for Part-level Manipulation. For objects that

involve intricate geometry (e.g., mug/tool with handles), it

is counter-intuitive to solve the grasping problem with a

centroid. In such cases, the user can provide specific parts

to grasp via language. In GeFF, after the object centroid is

localized, the robot can optionally use its in-wrist camera to

gather multiple views, which adds millimeter-scale details to

the representation. We then perform conditional CLIP queries

and DBSCAN using significantly smaller EPS (e.g., 1cm) to

determine grasping location.

IV. EXPERIMENTS

A. Experimental Setup

Training Details. GeFF is pre-trained on the ScanNet

dataset [6]. for 50 epochs with 8 RTX3090 GPUs in 6

days. We use the ViT-L CLIP model as fteacher. Encoders

are implemented as a mixture of PointNet and ResNet [13]

following Fu et al. [8]. Decoders are implemented as MLPs.

Robot Platforms. We use the Unitree B1 as the base robot

with a Unitree Z1 arm mounted on top of it. Besides a stereo

camera and a structured light camera mounted at the robot

head, the part-level experiments also uses an in-wrist camera

to gather multi-view images. (See website for visuals).

Real-world Evaluation. For quantitative experiments, we

use 4 environments: a 25m2 lab , a 30m2 meeting room,

a 60m2 community kitchen, and a 15m2 office. For object-

level experiments, unless otherwise noted, we use a total

of 17 objects (6 misc., 5 office items, and 6 culinary

items) including 8 novel categories that GeFF had not seen

during pre-training. For part-level manipulation, we use three

different object categories with 4 instances each.

TABLE III: Mobile manipulation under scene change, where

objects are added after the initial scan. Note that meth-

ods [11, 18] with expensive training requirement do not

handle scene change.

Method Change Lab Meet. Rm. Kitchen

GeFF ✗ 7/9 7/9 8/9
✓ 4/9 6/9 8/9

LERF [18] ✗ 6/9 7/9 4/9
✓ NA∗ NA∗ NA∗

Experiment Protocol. For all settings, we first manu-

ally drive the robot to build an initial representation of

the scene to perceive receptacles (replaceable by standard

robotic exploration algorithms). Then we provide task-related

receptacle and object names to the robot.

Baseline Implementation. We choose two recent open-

vocabulary scene representations as baselines. Concept-

Graphs [11] is a state-of-the-art open-vocabulary scene-level

representation. Similar to OK-Robot [22], it uses pre-trained

vision models [19, 23] for perception. Since both Con-

ceptGraph⋆ and LERF⋆ require offline batch processing

of all images, we process observed frames on a desktop

computer. After which we manually provide object goals.

ConceptGraph-Online is an online variant of CG, where it

drops incoming frames if the previous frame is not finished

processing. Since CG does not run on the AGX Orin, we re-

use the same pipeline of ConceptGraph⋆ but downsample

the frames to match the latency. All representations are

constructed by poses estimated by onboard VIO.

B. Evaluation

We answer important Research Questions: How is GeFF

compared to other open-vocabulary scene representation

methods (A1, A2, A3, A4)? How is GeFF compared to

simple projection baseline (A6)? What were the design

choices (A5)? Can GeFF be used for diverse tasks (A7)?

A1. ConceptGraph requires offline optimization and

breaks when real-time requirement is enforced. From

Tab. I, we can see that ConceptGraph works at the cost

of expensive offline processing, which is not suitable for

mobile robots. When ConceptGraph is granted offline pro-

cessing using desktop-level compute, it achieves slightly

better results than GeFF on object-level grasping. However,

when it is forced to perform online inference, we empirically



(a) Avoiding Dynamic Obstacle (b) Part-Level Representation (c) Entering Doorway (d) Semantic-aware Planning

Fig. 5: Qualitative results of GeFF for diverse tasks: (a) real-time update for dynamic person detection; (b) GeFF enables

manipulation by parts; (c) entering a narrow doorway; (d) semantics-aware planning with affordance of ‘lawns’. The results

are animated in the supplementary video. Images in the second row are PCA visualization of first-person GeFF features.

TABLE IV: GeFF learns geometric priors to reconstruct

geometry from compressed latent representation. Both

GeFF and projection baselines downsample the depth and

MaskCLIP features to at most 512 points. Depths are recon-

strcuted/upsampled and compared to reference depth.

Method Depth L2 Error↓

GeFF 0.012
Projection (Nearest interpolation) 0.061
Projection (Bilinear interpolation) 0.040

observe its internal point cloud merging design breaks due

to its assumption of adjacent frame proximity, which leads

to degenerate representations and bad success rate.

A2. ConceptGraph fails to respond to part-level queries.

Specifically designed for object-level representations, Con-

ceptGraph can not support part-level grasping (e.g., grasping

a screwdriver by handle instead of shank), which is evident

from Tab. I. Specifically, it generates no or bad responses to

part-level queries such as handles or grips, which is due

to lack of part-level training data in the open-vocabulary

detector [23] that ConceptGraph relies on.

A3. Unlike GeFF, LERF requires offline processing and

does not provide clear boundary. LERF [18], another

feature field method, is an RGB-only method with view-

dependent features. Thus we select the point with maximum

responses in features rendered from training views as the goal

location. Due to lack of geometric supervision, LERF often

fails due to (1) noisy responses from under-observed areas

and (2) unclear object boundaries. However, as a continuous

implicit method, LERF show significantly better perfor-

mance on part-level manipulation than ConceptGraph,

which is consistent with our finding that continuous repre-

sentation is better suited for part-level representation.

A4. GeFF works when scene changes with slightly worse

performance. For manipulation under scene change, we

place a subset of objects (hand lotion, bottle, dog toy) on the

table after the initial scan with 3 trials each. Tab. III shows

the results. Both LERF [18] and CG [11] are not applicable

for scene changes as they require costly re-training. One

potential cause for the decrease is the lack of multi-view

observations as the robot only gets a front view when it

approaches the receptacle.

A5. Auxiliary 2D input helps with generalization. We

ablate GeFF the effectiveness of Eq. 3 in more diverse

environments in Tab. II. Specifically, we found that, if

auxiliary input is not used, GeFF shows decreased perfor-

mance especially on objects absent from pre-training on

ScanNet [6]. We believe that auxiliary input provides a

‘shortcut’ generalization beyond training data, which may

replaced by a significantly larger training scale.

A6. The learned geometric priors are effective at com-

pression. To evaluate the learned geometric priors, we re-

construct depth from the latent representation to compare

it with reference depth. For a given RGBD frame, GeFF

encodes it to 512 latent points and reconstructs the depth. The

simple projection baseline downsamples the given RGBD

frame to 512 pixels, and interpolates back to the original

resolution. The resulting L2 errors between reconstructed

depths and reference depths are given in Tab. IV using 10

validation scenes of the ScanNet dataset, where GeFF shows

significantly better geometric error.

A7. GeFF can serve as the 3D perception backbone

for diverse tasks. We show qualitatively in both Fig. 5

and the supplementary material that GeFF features are

fine-grained and real-time enough to perform diverse tasks

beyond grasping, such as dynamic obstacle avoidance,

semantic-aware navigation, and articulated manipulation

for door opening, which highlights its potential to provide

3D representation for robotics tasks.

V. CONCLUSION

In this paper, we present GeFF, a scene-level generalizable

neural feature field with feature distillation from VLM that

provides a unified representation for robot navigation and

manipulation. Deployed on a quadruped robot with a manip-

ulator, GeFF demonstrates zero-shot object retrieval ability

in real-time in real-world environments. Using common

motion planners and controllers powered by GeFF, we show

competitive results in open-set mobile manipulation tasks.
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