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Abstract— This paper focuses on exploration and occupancy
mapping of unknown environments using a mobile robot.
While a truncated signed distance field (TSDF) is a popular,
efficient, and highly accurate representation of occupancy, few
works have considered optimizing robot sensing trajectories for
autonomous TSDF mapping. We propose an efficient approach
for maintaining TSDF uncertainty and predicting its evolution
from potential future sensor measurements without actually
receiving them. Efficient uncertainty prediction is critical for
long-horizon optimization of potential sensing trajectories. We
develop a deterministic tree-search algorithm that evaluates the
information gain between the TSDF distribution and potential
observations along sequences of robot motion primitives. Ef-
ficient planning is achieved by branch-and-bound pruning of
uninformative sensing trajectories. The effectiveness of our ac-
tive TSDF mapping approach is evaluated in several simulated
environments with complex visibility constraints.

I. INTRODUCTION

Signed distance functions describe the distance of each
point in space to the surface of the nearest object with a
sign indicating whether the point is inside or outside of the
object. The surface of the objects can be readily extracted
as zero crossings of the function. Signed distance functions
have been used widely in the computer graphics community
to represent surfaces of complex shapes [1]. A discrete
form of signed distance function, Signed Distance Fields
(SDFs), were introduced by Curless et al. as an optimal
method for estimating surfaces from range images [2] and
later used to great effect by Newcombe et al. with their
Kinect Fusion algorithm [3] and by the many following
algorithms [4], [5]. Mesh representations of the environment
can be extracted from the SDF representation by finding
zero crossings, for example using Marching Cubes [6]. More
recently SDFs have seen some use in the robotics community
as an alternative for the traditional occupancy grid for
representing maps [7], [8], [9]. The SDF representation offers
some advantages over occupancy grid maps as a method for
representing an environment. First, checking collision in an
SDF is trivial. For that reason versions of SDFs are often
used in motion planning algorithms which use potential fields
to increase the cost of unsafe paths [10], [11]. Second, the
obstacle surface in an SDF can represent general surface
contours more accurately than an occupancy grid because
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the surface is represented as a zero crossing of the field and
not directly tied to the edges of the underlying grid as it is
in an occupancy grid.

Active exploration has been widely studied as well.
Yamauchi made the first foray into generally applica-
ble autonomous exploration with his frontier seeking ap-
proach [12]. Holz et al. provide an evaluation of var-
ious frontier-based exploration strategies in 2D environ-
ments [13]. Oleynikova et al. also use the idea of seeking
unknown areas by using number of new cells that might be
seen if the robot moves to a new position as a measure of
exploration potential [11].

Although frontier based approaches work well as evi-
denced by their continued use, they are fundamentally based
on geometry and measures of coverage which do not take
into account models of uncertainty. Information theoretic ex-
ploration provides an alternative to frontier based approaches
in which increasing the certainty of the known map is
rewarded as well as expanding the map into unknown spaces.
Julian et al. examine the properties of mutual information
reward surfaces and prove it is an effective value func-
tion [14]. Some specific examples of information theoretic
exploration are as follows. Atanasov et al. use information
theoretic measures to actively track the state of a target. By
utilizing Gaussian assumptions, they compute information
efficiently and plan open loop trajectories [15]. Charrow
et al. use Cauchy-Schwarz quadratic mutual information to
evaluate the informativeness of trajectories in occupancy grid
maps [16].

Most closely related is the work of Krainin et al. [17].
The authors used an information-based cost function and
a TSDF to autonomously choose next views to build 3D
models of an object being manipulated by a robotic arm.
The authors calculate predicted information gain on the mesh
surface instead per TSDF cell and do not consider the sensor
noise model.

The contribution of this paper is an information theo-
retic active exploration algorithm which can be used to
autonomously build signed distance field maps of unknown
environments. This contribution includes a method for up-
dating the signed distance field given measurements from
a realistic sensor model with distance dependant variance as
well as an approach for predicting future measurements along
a trajectory. In Section II we define the active exploration
problem in the case of SDF maps. In Section III we define
our SDF update and prediction methods. In Section IV we
formulate the equation for predicted information gain along
a trajectory. Section V shows how informative trajectories
are selected. Lastly, in Section VI we verify our method in



three 2D simulated environments of varying complexity.

II. PROBLEM STATEMENT

Consider a robot with kinematics:

ṗ = Rv Ṙ = Rω× (1)

where p ∈ R3 is the world-frame position, R ∈ SO(3)
is the world-frame orientation, v ∈ R3 is the body-frame
linear velocity, ω ∈ R3 is the body-frame angular velocity
and (·)× : R3 → SO(3) is the hat operator mapping
vectors to skew-symmetric matrices. The robot is controlled
by piecewise-constant velocities v(t) ≡ vk, ω(t) ≡ ωk for
t ∈ [tk, tk+1), leading to discrete-time kinematics:

pk+1 = pk +RkJL((tk+1 − tk)ωk)vk,
Rk+1 = Rk exp ((tk+1 − tk)(ωk)×) ,

(2)

where pk := p(tk), Rk := R(tk), and JL(ω) is the
left Jacobian of SO(3) with closed-form expression in [18,
Ch.10]. The twist uk :=

(
v>k ,ω

>
k

)>
is selected from a finite

set U of possible inputs.
The robot is tasked with creating a map of an unknown

static environment. The environment is discretized into a
finite set of voxels. The true unknown map is represented
as a vector m, whose elements mi ∈ R specify the signed
distance from each voxel centroid to the nearest obstacle. In
detail, a positive distance mi > 0 indicates that voxel i is
located in free space, while a negative distance signifies that
the voxel is within an obstacle. The robot assumes a prior
Gaussian distribution over the signed distance field:

m ∼ N
(
µ0,diag(σ0)

2
)

(3)

where σ0,i ∈ R is the standard deviation of the signed
distance associated with the i-th voxel. While an inde-
pendence assumption among the signed distance values at
different voxels may lead to a loss in accuracy, it significantly
reduces the memory required by the representation in large
environments as well as the computational complexity of its
updates.

The robot is equipped with a depth sensor (e.g., lidar or
depth camera) measuring the distances rk,j from the robot
to the visible obstacles at time k along a set of rays ρj ∈
R3. The rays are defined in homogeneous coordinates in the
sensor frame, e.g., e>3 ρj = 1 where e3 is a standard basis
vector. Given a visible obstacle point xj along the j-th ray,
the sensor returns:

zk,j = rk,j + ηk,j , (4)

where the true depth rk,j and the noise ηk,j satisfy:

rk,j := e>3 R
>
k (xj − pk) ηk,j ∼ N (0, λ(r2k,j)

2) (5)

Note that the standard deviation λ of the measurement noise
depends on the squared distance r2k,j . This noise model has
been empirically shown to work well with RGBD sensors
such as the Kinect camera [19], [20].

The sensor depth measurements zk are used to infer
measurements associated with the signed distance field m.

Let xi ∈ R3 be the centroid of the i-th voxel. Each voxel xi
within the sensor field of view is projected onto the image
plane to determine which measurements zk,j it is associated
with. A depth measurement ẑk,i is associated with xi via
interpolation from the depth measurements zk,j of the two
nearest rays ρj . This measurement is exact in cases where
the object measured is flat between the measured points. In
detail, let ρj1 , ρj2 be the rays that minimize:∥∥∥∥ρj − 1

e>3 R
>
k (xi − pk)

RT
k (xi − pk)

∥∥∥∥2. (6)

Then, the measurement associated with xi is:

ẑk,i = hk(zk,j1 , zk,j2 ,xi)

= αzk,j1 + (1− α)zk,j2 − e>3 R
>
k (xi − pk)

= αrk,j1 + (1− α)rk,j2 − e>3 R
>
k (xi − pk) + η̂k,i,

= hk(rk,j1 , rk,j2 ,xi) + η̂k,i,
(7)

where the noise η̂k,i ∼ N
(
0, ζ2k,i(rk,j1 , rk,j2)

)
has variance

ζ2k,i(rk,j1 , rk,j2) := α2λ(r2k,j1)
2 + (1 − α)2λ(r2k,j2)

2, and
α ≤ 1.

Given a sequence of measurements ẑ1:k associated with
the voxels x within the sensor field of view, the signed
distance field distribution can be updated via the extended
Kalman filter:

m | ẑ1:k ∼ N
(
µk,diag (σk)

2
)

(8)

Problem 1. Given a prior Gaussian distribution over the
signed distance field m with mi ⊥ mj , i 6= j and mean
µk and standard deviation σk, choose a sequence of twists
uk, . . . ,uk+K−1 ∈ U such that the mutual information
between m and the observations ẑk+1, ẑk+K is maximized:

max
uk,...,uk+K−1∈U

I(m; ẑk+1, . . . , ẑk+K |ẑ1:k)

s.t. eq. (2), eq. (7)
(9)

III. TRUNCATED SIGNED DISTANCE FIELD

Maintaining an SDF distribution µk,i, σk,i for every voxel
xi in the environment is not feasible when memory is limited.
In fact, the SDF values of all voxels can be recovered based
only on the obstacle boundaries, i.e., points where the SDF is
zero. Hence, it is sufficient to keep in memory only voxels
with indices I := {i | |mi|< τ}, whose SDF is truncated
by a threshold τ > 0. This map representation is called a
truncated signed distance field (TSDF) and is widely used
for representing maps [7], [3], [8]. Voxels xi for i /∈ I in
known space far from an obstacle surface or those that have
not been observed yet may be stored for exploration and
planning purposes but their SDF values mi are not stored or
updated.

A. Updating TSDF Voxels

We rely on measurements ẑk at time k, obtained according
to eq. (7) to update a prior SDF distribution with parameters
µk, σk. The independence assumption for the SDF values
allows each voxel to be updated separately. Since after
interpolation in (7) ẑk,i is a direct measurement of mi, the



posterior parameters µk+1,i, σk+1,i can be computed via a
Kalman filter update:

kk,i = σ
2
k,i

(
σ2
k,i + ζ

2
k,i(zk,j1 , zk,j2)

)−1
µk+1,i = µk,i + kk,i

(
hk(zk,j1 , zk,j2 ,xi)− µk,i

)
σ2
k+1,i = (1− kk,i)σ

2
k,i

(10)

In the context of exploring an unknown environment, voxels
will be encountered for which there is no prior because ẑk, i
is the first measurement made of that voxel. In those cases,
a voxel is initialized with the mean and variance of ẑk, i and
added to m. Note that the update above can be simplified
to:

σ2
k+1,i =

(
1

σ2
k,i

+
1

ζ2k,i(zk,j1 , zk,j2)

)−1

µk+1,i =σ
2
k+1,i

(
µk,i
σ2
k,i

+
hk(zk,j1 , zk,j2 ,xi)

ζ2k,i(zk,j1 , zk,j2)

) (11)

which can be recognized as the standard SDF update with
weights wk,i = 1/σ2

k,i which was proposed by Curless [21]
to estimate a least squares optimal estimate of the obstacle
boundary assuming measurements of the distances that are
Gaussian along the line of sight of the sensor. The main
difference with [21] is that the noise of the measurements
depends on the distance between the robot and the obstacle
surface.

B. Predicting TSDF Updates

When exploring an uncertain map, it is essential to be able
to predict the change in variance of m from potential future
sensor measurements without actually receiving them. This is
critical for planning an informative sensing path based on the
current SDF distribution µk, σk. To predict a measurement
ẑk,i, we must predict the value of rk,j1 and rk,j2 as seen in
(7). Let Ik,j be the subset of voxels within the sensor field
of view intersected by ray ρj at time k. Then, the true depth
rk,j of ray ρj is closely approximated by

rk,j = mi∗ + e>3 R
>
k (xi∗ − pk) , (12)

where i∗ ∈ Ik,j is the voxel with minimum absolute TSDF
value. When mi are uncertain, the priors µk,i, σk,i can
be used to obtain a Laplace approximation [21] rk,j ∼
N
(
µ̃k,j , σ̃

2
k,j

)
, where:

σ̃2
k,j =

 ∑
i∈Ik,j

1

σ2
k,i

−1

µ̃k,j =
1

σ̃2
k,j

∑
i∈Ik,j

1

σ2
k,i

(
µk,i + e>3 R

>
k (xi − pk)

) (13)

This approximate Gaussian distribution of rk,j allows us to
compute an update to the variance σk+1,i of voxel i based
on (7):

σ2
k+1,i =

(
1

σ2
k,i

+
1

ζ2k,i(µ̃k,j1 , µ̃k,j2)

)−1
(14)

Note that an accurate update to the mean µk is not possible
without actual measurements. However, it is also not needed
because the cost function in (9) depends only on σk as
discussed in Sec. IV.

C. Variance Multiplier

While eq. (11) may be used to update the TSDF distribu-
tion directly, it may be desirable to artificially increase the
measurement variance for cells greater than a chosen distance
ε < δ behind the observed surface indicating uncertainty
that those cells behind the surface are within the occupied
space. This is effect can recognized as the weight taper
as is used in the majority of the TSDF literature [21],
[7], [8]. This leads to a weighted measurement variance
wζ2k,i(zk,j1 , zk,j2), where:

w =

{
1 −ε < hk(zk,j1 , zk,j2 ,xi) < δ

δ−ε
hk(zk,j1

,zk,j2
,xi)+δ

−δ < hk(zk,j1 , zk,j2 ,xi) < −ε

This is equivalent to the linear weight taper used in [7].

IV. INFORMATION GAIN

A strong benefit of using SDF maps over occupancy grid
maps is the simplicity of calculating mutual information
in them. Under the assumption that the cells in the map
hold independent Gaussian variables and that the sensor can
provide Gaussian updates to those variables, the Shannon
mutual information between the current map and the cell
measurement can be computed in closed form.

Given the distribution of the map m, we would like
to chose a plan u1:T producing measurements z1:T to a
planning horizon T such that the uncertainty in the map
after those measurements is minimized. Conditional Shannon
entropy (H) can be used to quantify uncertainty, but in the
case of incremental updates this is equivalent to maximizing
the Shannon mutual information, from here on referred to as
mutual information (I).

H(m|z1:T ) = H(m)− I (m; z1:T |p1:T ) (15)

The expression I (m; z1:T |p1,T ) can be simplified by the
assumption that the elements of m are independent and the
rays in z are independent given the robot pose p

I (m; z1:T |p1:T ) =
∑

i∈F1×T

I (mi; ẑ1:T,i|p1:T ) (16)

Where F1×T =
⋃T
t=1 Ft and Ft is the set of voxel indices

seen at time t.

I (mi; ẑ1:T,i|p1:T ) = I (mi; ẑ1,i|p1)

+ I (mi; ẑ2,i|ẑ1,i,p1:2)

+ ...+ I (mi; ẑT,i|ẑ1:T−1,i,p1:T )

(17)

Thus the mutual information for a sequence of measure-
ments z1:T can be calculated as

I (m; z1:T |p1:T ) =
∑

i∈F1×T

T∑
t=1

I (mi; ẑt,i|ẑ1:t−1,i,p1:t)

(18)



with the observation that I (mi; zt,i|z1:t−1,i,p1:t−1) = 0 for
i 6∈ Ft indicating if that no measurement of voxel i was
made at time t, no information is gained about voxel i at
time t.

The quantity I (mi; zt,i|z1:t−1,i,p1:t−1) is equivalent to
the difference

H(m|z1:t−1,i,p1:t−1)−H(m|z1:t,i,p1:t) (19)

which can be computed via the definition of differential
entropy for Gaussian random variables

1

2
log(2πeσ2

t−1,i)−
1

2
log(2πeσ2

t,i) (20)

At t = 1, σ2
t−1,i is known from the map prior for voxel i,

mi ∼ N (µ0,i,σ
2
0,i). For t > 1, σ2

t,i can be estimated using
(13) and (14) recursively so that mi|z1:t,i ∼ N (µ0,i,σ

2
t,i).

This leads to the mutual information calculation

I (mi; zt,i|z1:t−1,i,p1:t) =
1

2
log

(
σ2
t−1,i + ζ

2
t,i

ζ2t,i

)
(21)

where ζt,i is computed with the prior mean µ0,i and recur-
sively estimated variance σ2

t−1,i. The mean is not updated
during these predictive steps as this would require new sensor
measurements.

V. PLANNING

Planning is done with a receding horizon where T is
the length of the planning horizon indicating the number
of successive predicted measurements which are evaluated
before selecting the next best step. We seek the next set of
twists u1:T such that

max
u1,...,uT∈U

V =
∑

i∈F1×T

T∑
t=1

1

2
log

(
σ2
t−1,i + ζ

2
t,i

ζ2t,i

)
s.t. eq. (2), eq. (7), eq. (13), eq. (14)

(22)

which is Problem 1 given (18) and (21). The complexity
of the evaluation of the next best step scales linearly with
‖F1×T ‖ the total number of voxel updates predicted, there-
fore the planning horizon trades off the computational com-
plexity of plan evaluation with the myopia of the resulting
plan. The information computation described in (22) can be
used with any method for generating sets of trajectories e.g.
with lattice based motion primitive planners [22] or pruned
motion primitive trees [15].

For the purposes of this paper, trajectories are generated
as a tree of successive motion primitives starting with the
current robot state and resulting in a set of poses p1:T :=
{p1, ...,pT } where pt ∈ Pt. Simple pruning is done to
ensure that the tree remains a reasonable size by preventing
overlap of new each tree level with the previous levels as an
unpruned tree will grow exponentially in size.

The mutual information is calculated for each trajectory
p1:T using V from (22) and the first step of the maximizing
plan, u∗1 is executed.

In a partially explored map which contains frontiers, the
robot may encounter voxels for which no previous measure-
ments have been made. For these voxels the information
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Fig. 1: Search trees of various depths showing possible trajectories
shown in white with the chosen trajectory shown with black arrows.

calculations in Section IV cannot be used because there is
no prior µi or σi for computing an expected measurement.
Unmeasured voxels adjacent to free space are frontiers and
for the purposes of planning these boundaries are treated as
obstacle surfaces with high (but bounded) variance. Thus
(11) may still be computed with the pseudo-prior mi ∼
N (0,σ0) where σ0 functions as a parameter controlling the
perceived value of free space.

To encourage longer path planning when necessary, the
robot will extend its current search tree to another level if
the best path does not have more information than a pre-
selected information threshold. An example of a deep search
tree can be seen in Figure 1.

Algorithm 1: Planning
Input Current Pose: curPose
Param Min. Horizon: T, Min. Info: INFOMIN
Output Next Pose

1: maxV alue = −1
2: maxV alueLeaf = []
3: MP [0] = generateMotionPrimitives(curPose)
4: for level = 0 to T do
5: for mp in MP [level] do
6: (newcells, info) = predictV iew(mp.Pose)
7: value = calculateV alue(newcells, info)
8: if (value > maxV alue) then
9: maxV alue = value

10: maxV alueLeaf = mp
11: end if
12: newMP = generateMotionPrimitives(mp.Pose)
13: MP [level + 1].append(newMP )
14: end for
15: if level == T and (maxV alue ≤ INFOMIN) then
16: T = T + 1
17: else
18: break
19: end if
20: end for
21: return first step that lead to maxValueLeaf



VI. SIMULATIONS

We conduct simulated exploration in three 2D environ-
ments. The first is a simple square environment containing
circular obstacles randomly situated around the space. The
second is a simple hallway environment with a few dead
ends. The third is the Intel Research Lab, an office floorplan
generated from a popular dataset collected by Dirk Haehnel
[23]. This environment is an interesting one for exploration
because it is complex with both narrow hallways, curved
walls, and many rooms.

In our simulations we consider a Kinect sensor whose
noise properties have been measured empirically [19], [20].
Though the resulting empirically derived equations differ in
minor details, they indicate that σ2 scales with z4. For its
simplicity we choose [19] for simulations.

σ2(z) = (1.425× 10−3z2)2 = 2.03× 10−6z4 (23)

Due to the 2D nature of the exploration environment, we
simulate a single row of depth pixels from the depth image
and use this as our sensor model. In future work we will use
the full image for mapping 3D environments.

The robot carrying the sensor is simulated as differential
drive vehicle according to (2) with vk = [vk, 0, 0] and
ωk = [0, 0, ωk] as body frame inputs. With this model we
construct motion primitives consisting of constant velocity
trajectories created using a set of possible linear and angular
velocities (vk, ωk). As the tree is expanded, the motion
primitives are pruned to reduce conflict with the rest of the
tree. The pseudo-prior used for calculating information on
frontiers was set to be σ0 = 0.001. The truncation distance
selected to be unequal on the positive and negative parts of
the TSDF. The positive truncation distance is chosen to be the
robot’s radius plus a safety margin to allow for fast collision
checking, while negative truncation distance is chosen to be
smaller, just large enough to accommodate 2 voxels in the
TSDF discretization. The negative truncation distance limits
the minimum size of the obstacles as the negative voxel
measurements from one surface may no be contained in the
interior of the obstacle if it is too thin.

In the first environment, the robot has many options to
explore because there are very few obstacles restricting its
movement. This simulation is shown in Figure 2 where the
robot trajectory can be seen in white. The robot explores the
environment by traveling across the diagonal then circling
around, discovering much of the free space before returning
to refine the measurements it has made.
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Fig. 2: Robot exploring a nearly open environment. The robot can
be seen exploring the much of the free space before touching up
the rest of the map.

Figure 3 shows the robot actively exploring the second
environment. This environment has a series of narrow hall-
ways which restrict the robot’s motion. By t = 99s, the robot
has explored around the bottom loop and reached its starting
point. Between t = 99s and t = 125s, the robot returns
to improve the TSDF in the small hallway to the right. At
t = 228s the robot has explored most of the environment
though there are still places of high uncertainty. For the
remainder of the simulation the robot refines the TSDF by
travelling to locations of high uncertainty.
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Fig. 3: Snapshots of the robot’s exploration of the second environ-
ment starting from the green x. From left to right, top to bottom
t = 99s, t = 125s, t = 228s, t = 391s. At each time step
the current TSDF and the current variance, with darker regions
indicating a smaller variance. Robot pose is shown with a green
dot.

Figure 4 shows the results from the final and most complex
environment. The emergent strategy appears the similar to
the in the previous environment. At t = 180s the robot has
completed a loop around a hallway, from t = 180s to t =
450s the robot travels through the remaining hallways. By
t = 1050s much of the map has been seen and the robot
returns to observe small areas and improve the TSDF. At
t = 1478s, the robot can be seen returning to the large room
in the top left which is still very uncertain.

The active exploration algorithm proposed in this paper
was evaluated in the Intel Map environment. The results of
this evaluation can be seen in Figure 5. The first two plots
show that the entropy H(m|z1:t) decreases with time The
average entropy H(m|z1:t)/‖m‖, shown in the second plot
in general decreases. Increases in this quantity are due to high
uncertainty measurements as new TSDF cells are discovered.
Lastly, the third figure shows the number of TSDF cells in the
map compared with the total number of cells that have been
seen. This shows the memory efficiency benefits of using the
TSDF representation as opposed to the un-truncated SDF.

VII. CONCLUSION & FUTURE WORK

We present a method for active exploration in truncated
signed distance fields using Shannon mutual information.
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Fig. 4: Snapshots of the robot’s exploration of the Intel Map starting
from the green x. From left to right, top to bottom t = 180s,
t = 450s, t = 1050s, t = 1478s. At each time step the current
TSDF and the current variance, with darker regions indicating a
smaller variance. Robot pose is shown with a green dot.
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Fig. 5: Evaluation of the entropy and cell storage while exploring
the Intel Map: Left: The sum of entropy in the TSDF not counting
unknown cells. Middle: The average entropy of a cell in the TSDF.
Right: Compares the number of cells which have been explored to
the number of cells required to be stored in the TSDF.

This method is able to efficiently compute Shannon mutual
information by taking advantage of the closed form expres-
sion for Shannon mutual information when using Gaussian
random variables. Used in conjunction with a graph or
tree search trajectory planning method, trajectories can be
chosen to decrease the uncertainty in the environment. Our
proposed SDF update method directly uses a realistic sensor
model for an RGB-D camera whose depth measurement
variance is dependant on the distance from the measured
surface. We show a robot equipped with our proposed active
exploration algorithm successfully explore three simulated
2D environments of varying complexity. Future work will
focus on improving the map estimation by relaxing the in-
dependence assumption between cells in the map, accounting
for uncertainty in localization of the robot within the map,
and cooperative exploration with multiple robots.
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