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Abstract—This paper considers a non-cooperative two-player
game modeling the problem of adversarial information acqui-
sition in robotics. Each robot is equipped with a sensor, and is
tasked with choosing control inputs that maximize an information
(e.g. entropy) about the other player, while keeping its own
state as uncertain to the other player as possible, subject to
the available sensors. This adversarial information gathering
problem has applications in surveillance, or search-and-rescue
missions where the agent whose state is to be estimated may try
to actively avoid the sensing robot. We formulate the problem
of adversarial information acquisition, and provide an initial
solution based on a variant of Monte Carlo Tree Search for
simultaneous action games.

I. INTRODUCTION

In this paper, we consider the problem of two robots
interacting in an adversarial game where each robot attempts
to estimate the state of its adversary, while keeping its own
state hidden. This problem can have applications in search-
and-rescue applications, where the agent to be found is mobile,
and actively evades the sensing robot. In these problems, it is
important to both accurately localize the target agent, while
keeping one’s own state hidden so that the target’s ability to
actively evade is reduced.

There is much prior work in the literature concerning the
dynamics of pursuit-evasion in mobile robotic settings[3].
Approaches to the pursuit-evasion problem are split between
considering the worst-case evader (adversary), and using prob-
abilistic frameworks which consider the expected case. A
common theme in the pursuit-evasion literature is the objective
of reducing the distance to the evader to zero, or forcing the
evader into a sensing footprint. In contrast, our problem is
formulated using a probabilistic approach which optimizes
an information theoretic quantity, namely entropy, about the
distribution of the target to be tracked. Rather than closing
distance to the target, our approach aims to produce the best
estimate of the target’s state, subject to the sensors available.
Our previous work considers the information acquisition prob-
lem for target tracking [1], however this work assumes that
the target being tracked moves independently of the sensing
robot, and crucially is not trying to actively evade the sensing
robot. In this work, the problem formulation is symmetric in
the sense that the adversary is trying to maximize information
gained about us, and also minimize the information we can
gain about it.

We also draw attention to some biological inspiration for
this problem. Motion camouflage [9] is a strategy utilized
by dragonflies, which enables them to capture their prey by
minimizing the optical flow of their motion. Mischiati and
Krishnaprasad [8] consider the problem of mutual motion
camouflage, where two agents each pursue each other, but
attempt to maintain a constant bearing to avoid detection
by the other agent. Our problem is related, but rather than
considering pursuit-evasion, we consider the dynamics of an
adversarial information gathering game.

In the most general case, the information acquisition game
proposed is a stochastic game and is difficult to solve. McE-
neaney [7] discusses a class of stochastic games with finite-
dimensional solutions and dynamic programming algorithms
to solve them. With some assumptions on the motion and
observation models of the agents in our game, the problem
can be simplified to a deterministic game. McEneaney [6]
introduces a curse-of-dimensionality free max-plus method
for deterministic game problems, which is likely to be very
applicable to the linear Gaussian version of the information-
theoretic game introduced here. Additionally, Grünwald and
Dawid [4] present a game-theoretic argument that maximizing
entropy and minimizing worst-case expected loss are duals
of each other. A comprehensive treatment on adversarial
reasoning, is provided in the book by Kott and McEneaney
[5]. The approach taken in this work is a variant of Monte
Carlo Tree Search [11], for simultaneous action games. We
present the details of this approach in Sec. III.

II. PROBLEM FORMULATION

Consider a two-player partial information game with simul-
taneous moves. Each player i ∈ {1, 2} has a state xi,t that
evolves according to the following motion model:

xi,t+1 = fi(xi,t, ui,t, wi,t) (1)

where ui,t ∈ Ui is a finite space of admissible moves (control
inputs) and wi,t is a random variable specifying the motion
noise. Player i can observe its own state xi,t and chooses its
moves with the objective of tracking the evolution of the state
of the other player. Each player is equipped with a sensor used
to collect information about the other player according to the
following observation model:

zi,t = hi(xi,t, xj,t, vi,t) (2)



where vi,t is a random variable specifying the observation
noise. We assume that the players know their own and each
others motion and observation modes but cannot directly
observe the other player’s state and control inputs, resulting
in a partial information game. The information available to
player i at time t to choose its move ui,t is:

Ii,0 = zi,0, Ii,t := (zi,0:t, ui,0:(t−1)), t > 0, i = 1, . . . , n

Problem (Information Acquisition Game). Given its initial
state xi,0 and a prior probability density function pi,0 over the
state of the other player, the objective of player i is to choose
a sequence of functions µi,t(Ii,t) for a given finite planning
horizon T in order to optimize:

min
µi,0:(T−1)

max
µj,0:(T−1)

H(xj,T | zi,1:T )−H(xi,T | zj,1:T )

subject to ui,t = µi,t(Ii,t), i ∈ {1, 2},
xi,t+1 = fi(xi,t, ui,t, wi,t), i ∈ {1, 2},
zi,t = hi(xi,t, xj,t, vi,t), i ∈ {1, 2}.

(3)

where H(xj,T | zi,1:T ) denotes the entropy of the state of
player j conditioned on sequence of measurements zi,1:T
obtained by player i.

III. TECHNICAL APPROACH

Assuming that the players know each other’s prior densities
pi,0, pj,0, the information acquisition game in (3) is a zero-
sum two-player stochastic game. Since the control spaces Ui,
i ∈ {1, 2} are finite and the playing horizon T is finite, the
results of Shapley [10] show that the minimax theorem applies
to the information acquisition game and its value is finite.
The value of the game and the optimal (potentially mixed)
strategies for the two players can be determined via value
iteration. However, since the state space of the game includes
the sets of all density functions over the players’ states, the
curse of dimensionality limits the use of value iteration only
to very small instances.

Instead, we propose a Monte Carlo Tree Search (MCTS)
algorithm specifically designed for the simultaneous-move
formulation. MCTS and its variants are a class of algo-
rithms for searching game trees and collecting statistics on
the performance of various moves. Various approaches for
simultaneous-move games with MCTS are suggested in Tak
et al. [11], including the Sequential Upper Confidence Trees
algorithm (SUCT). This algorithm applies the classic UCT
algorithm, which is a selection algorithm for MCTS to balance
exploration and exploitation based on optimizing regret [2].
The SUCT algorithm applies UCT on a sequential relaxation
of the simultaneous game, to approximate a solution. Our idea
follows from this algorithm, but also introduces randomization
of the starting player on the serialized game tree.

Given a computational budget, simulations are generated
from a root node containing the current robot state xi,0,
and distribution on the adversary state pj,0. Each iteration
consists of four stages, namely selection, expansion, rollout,
and backpropagation [2]. In the selection step, the algorithm
moves down the search tree through nodes that have already

been visited, with a selection criteria based on the UCT
approach for balancing exploration and exploitation (see line
32 in Alg. 1). The expansion step adds a single new leaf node
to the tree (line 20). Once a single new node has been added in
the expansion, a random rollout of the game through the rest
of the horizon is executed via uniform random actions (line
34), returning the terminal cost. Finally, the cost is recursively
backpropagated up to the root of the tree.

Once a sufficient number of simulations have been played
out, the best action can be selected by considering the cost of
the children of the root node, and selecting the node that has
the lowest aggregated cost (line 6).

IV. EVALUATION

To evaluate the proposed MCTS algorithm, we consider an
information acquisition game between two robots 1 and 2,
one equipped with a range-only sensor and the second robot
equipped with a bearing sensor, respectively. Suppose that the
robots have trivial deterministic dynamics xi,t+1 = xi,t+ui,t,
i ∈ {1, 2}, but their observation models differ:

z1,t = ‖x2,t − x1,t‖+ v1,t (4)

z2,t = arctan

(
eT2 (x1,t − x2,t)
eT1 (x1,t − x2,t)

)
+ v2,t (5)

where e1, e2 are standard basis vectors and vi,t ∼ N (0, Vi)
represent observation noise. In the game playouts generated
by the MCTS algorithm 1, since robot 1 has access to the
simulated control sequence u2,0:T−1 of player 21, player 1
can linearize its observation model (4) around an estimated
trajectory of x2,t and propagate a Gaussian distribution over
x2,t via the Extended Kalman Filter (EKF).

Thus, for the control additive motion model and observation
models (4, 5), we can reduce the general formulation in (3) to
a linear Gaussian information acquisition game:

min
ui,0:(T−1)

max
uj,0:(T−1)

log det Σj,T − log det Σi,T

subject to xi,t+1 = xi,t + ui,t, i ∈ {1, 2},
µi,t+1,Σi,t+1 = ρ(µi,t,Σi,t, xj,t), i ∈ {1, 2}.

(6)

where ρ specifies the evolution of the mean and covariance of
the distribution over xi,t that player j maintains.

To investigate the behavior generated by the SM-MCTS
algorithm, we choose control inputs for the range-only sensing
robot, while holding the bearing-only robot in a fixed position,
i.e. U2 = ∅. The sensing robot moves on an 8-connected
grid. We use a planning horizon T = 8, with range sensor
noise variance v1 = .15m, and bearing variance v2 = 5◦. We
compare with uniformly random selected actions, in order to
visually interpret the behavior. Example trajectory realizations
are illustrated in Fig. 1. We note that the motion produced
by the MCTS algorithm attempts to keep a far distance from
the bearing sensor. Only once it achieves a sufficient distance,
it exploits its own sensor to localize the bearing-sensor. This

1 We emphasize here that each robot only knows the adversary’s control
inputs in the planning phase, i.e. when game playouts are simulated.



Algorithm 1 Simultaneous Move Monte Carlo Tree Search

1: function SM-MCTS(x1,0, p1,0, x2,0, p2,0, T , κ)
2: i← random player in {1, 2}, j ← opposite player of i
3: root ← NODE(i, xi,0, pi,0, xj,0, pj,0, 0)
4: while within computational budget do
5: SIMULATE(root)

6: return argmin
u∈U(xi,0)

root.costs(u)

root.vists(u)

7:
8: function SIMULATE(node)
9: if ENDSIMULATE(node) then

10: cost = ROLLOUTPOLICY(node)
11: else
12: u← TREEPOLICY(node)
13: new node ← GETSUCCESSOR(node, u)
14: cost ← SIMULATE(new node)
15: node.visits(u) += 1
16: node.costs(u) += cost
17: return cost
18:
19: function ENDSIMULATE(node)
20: if node /∈ Tree then
21: add node to Tree
22: return true
23: else if node.t = (2T − 1) then
24: return true
25: else
26: return false
27:
28: function TREEPOLICY(node)
29: V ← {u | node.visits(u) = 0}
30: if V not empty then
31: return uniform sample from V
32: else

33: return argmin
u∈U(node.x)

node.costs(u)

node.vists(u)
− κ

√
log

∑
a node.visits(a)

node.visits(u)

34:
35: function ROLLOUTPOLICY(node)
36: for t = node.t . . . (2T − 1) do
37: u← uniform sample from U(node.x)
38: node ← GETSUCCESSOR(node, u)
39: return ENTROPY(node.q)−ENTROPY(node.p)
40:
41: function NODE(i, x, p, y, q, t)
42: node.i ← i, node.x ← x, node.p ← p
43: node.y ← y, node.q ← q, node.t ← t
44: node.visits ← zeros(|Ui(x)|,1) . Visitation counts for each child
45: node.costs ← zeros(|Ui(x)|,1) . Long-term costs for each child
46: return node
47:
48: function GETSUCCESSOR(node, u)
49: i← node.i
50: x← fi(node.x, u, w)
51: p← BAYESINFERENCE(node.p, x)
52: if node.t is odd then
53: j ← random player in {1, 2}
54: else
55: j ← opposite player of i
56: return NODE(j, node.y, node.q, x, p, node.t +1)

is because when the robot is far from the bearing sensor, the
bearing angle difference is minimized between timesteps, and
this reduces the ability for the bearing-sensor to detect our
robot. The cost function, averaged over ten trials is included
in Fig. 2.
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Fig. 1: Range-only sensor trajectories generated by MCTS (Blue),
and by Random actions (Red). The bearing sensor is the green dot
located in the center.
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Fig. 2: Value of cost function attained by the range-only sensing
robot. In blue, the MCTS algorithm was used, and in red are
randomly chosen actions. The plots are averaged over ten trials of
100 timesteps.

V. CONCLUSION AND FUTURE WORK

In this paper, we have posed the problem of adversarial
information acquisition, and given some initial insight into
its solution with methods based on a variant of Monte Carlo
Tree Search (MCTS). We demonstrated some behaviors that
arise in a two-robot simulation, where the robots are equipped
with range-only, and bearing-only sensors respectively. Future
work will aim to prove some properties of the linear-Gaussian
information acquisition game described, and in particular
investigate the circumstances necessary to achieve a Nash
Equilibrium in the game. Additionally we would like to
investigate strategies that yield better performance than the
uniform rollout policy in the MCTS algorithm described. We
also plan to evaluate more extensively the behaviors that arise
in environments with obstacles and occlusions.
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