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Abstract— This paper considers the problem of planning
trajectories for robots equipped with sensors whose task is to
track an evolving target process in the world. We focus on
processes which can be represented by a Gaussian random
variable, which is known to reduce the general stochastic
information acquisition problem to a deterministic problem,
which is much simpler to solve. Previous work on solving the
resulting deterministic problem focuses on computing a search
tree by Forward Value Iteration and pruning uninformative
nodes early on in the search via a domination criteria. In
this work we formulate the Active Information Acquisition
problem as a deterministic planning problem where algorithms
like Dijkstra and A* can produce optimal solutions. To use A*
effectively in long planning horizons we derive a consistent
and admissible heuristic as a function of the sensor model
which can be used in information acquisition tasks such as
actively mapping static and moving targets in an environment
with obstacles. We validate the results in several simulations
indicating that the resulting heuristic informed algorithm can
recover optimal solutions faster than existing search-based
methods.

I. INTRODUCTION

The problem of Active Information Acquisition has re-
ceived significant attention in the robotics community due to
its breadth of applications in localization and mapping [1]–
[4], active target tracking [5], security and surveillance [6],
and environmental monitoring [7], [8]. The core problem is
to plan trajectories for one or more robots equipped with
a sensor suite, such that some measure of information is
optimized. Common formulations of this problem choose
to maximize information theoretic quantities such as mutual
information, or to minimize uncertainty quantities related to
entropy.

We consider a non-myopic single robot information ac-
quisition problem where the goal is to track the evolution
of a multivariate Gaussian distribution for a fixed finite-
time horizon. We show how this problem is an instance
of a path planning problem, for which existing search and
sampling based algorithms apply. The search-based family
of algorithms includes the A* algorithm, a widely known
algorithm for computing shortest paths in planning problems.
The A* algorithm depends critically on having access to
a heuristic function which can approximate the remaining
cost-to-go of a state in the search tree. We propose the first
heuristic for planning in information acquisition problems,
and prove its consistency and admissibility, which guarantee
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that A* returns an optimal solution to the planning problem.
We demonstrate in several simulations that the usage of this
heuristic drastically reduces the size of the search tree in
comparison to other methods.

Related Work. There are many formulations of the active
information acquisition problem that differ in one or more
dimensions: size of the robot team (single [9] or multi-robot
[10]), length of the planning horizon (greedy [11], non-
myopic [12], [13], infinite horizon [14]), the class of tar-
get probability distribution (Gaussian [9], Gaussian Mixture
[15], Particle [16]), or the planning approach (search-based
[9], [12], sampling based [17]). As the problem becomes
more complex through the addition of robots, a longer
horizon or a more general probability distribution, sampling
based methods become more attractive, though they only
provide asymptotic optimality guarantees. On the other hand,
search based methods can obtain (sub)-optimality guarantees
in problems with linear assumptions [12] or submodular cost
functions [18]. There also exist optimization based methods
which can handle continuous action spaces, but are only
locally optimal [19].

Common to both search and sampling-based planning are
the concepts of pruning and heuristic-guided search. Pruning
based on branch and bound techniques has been applied in
[20], and domination-based pruning has been considered in
[21]. In contrast, heuristic-based search has been neglected
in information acquisition problems due to the difficulty of
constructing informative heuristics. A heuristic can loosely
be defined as a function that estimates how promising a state
is in a planning problem.

In this work, we cast the Linear Gaussian Information
Acquisition problem as a search-based planning problem,
which allows us to use well-known algorithms such as Dijk-
stra and A* search. To effectively utilize the A* algorithm,
which is a best-first search method that uses a heuristic to
estimate the cost-to-go until the goal region, we propose a
heuristic and prove its consistency and admissibility. Thus
using this heuristic for A* search enables us to recover the
optimal solution to the information acquisition problem. The
derived heuristic depends on upper bounds of the sensor
information matrix that comes from the Information Filter
form of the Kalman filter. We derive the necessary upper
bounds for a variety of sensor types, and demonstrate the
overall effectiveness of our planning approach in comparison
to existing search-based approaches that prune based on
domination criteria.

Contributions. Previous work has shown that the general
Active Information Acquisition problem is a deterministic



optimal control problem under Linear and Gaussian assump-
tions, and provided efficient methods to prune an exhaustive
forward search tree. In this paper:

1) We propose the first consistent heuristic function for
information acquisition problems, and define it in terms
of upper bounds on the Sensor Information Matrix.

2) We derive the necessary upper bounds on the Sensor
Information Matrix for the commonly used position,
range, bearing, and camera sensing models.

3) We provide simulation results using an A* algorithm
with our proposed heuristic, and show it can generate
optimal solutions to the planning problem in less time
than existing approaches.

II. PROBLEM FORMULATION

Consider a mobile sensing robot, with discrete-time dy-
namics described by the following motion model:

xt+1 = f(xt, ut), (1)

where xt ∈ X ∼= Rnx is the nx-dimensional state of the
robot at time t, with metric dX , ut ∈ U is the control action
applied to the robot at time t, and the set U of possible
control inputs for robot i is finite. The goal of the robots
is to track the evolution of a target process with (unknown)
state yt and dynamics:

yt+1 = a(yt) + wt, wt ∼ N (0,Wt) (2)

where yt ∈ Rny , and wt is Gaussian with covariance Wt,
and independent across all timesteps. We also define a metric
dxy(x, y) : X × Rny → R+.

The operation of each sensor is described by the following
sensor observation model:

zt = c(xt, yt) + vt(xt), (3)
vt(xt) ∼ N (0, Vt(xt)), (4)

where zt ∈ Rdzi is the measurement obtained by the robot
at time t, and vt(xt) is a sensor-state-dependent Gaussian
noise, whose values are independent at any pair of times.
Here we note that the sensor model is allowed to be a general
nonlinear function of xt and yt.

The information available to the robot at time t is denoted:

It := (z0:t, u0:(t−1)), t > 0 (5)

It was shown in [12] that if both the target process dynamics
and sensor observation model are linear in the target state,
that is yt+1 = Ayt + wt, and zt+1 = C(xt)yt + vt, a
separation principle holds and the stochastic optimal control
problem can be reduced to a deterministic optimal control
problem.

Problem 1 (Deterministic Information Acquisition). Given
an initial sensor state x0 ∈ X , a Gaussian prior distribution
of the target states (y0,Σ0), and a finite planning horizon

T , choose a sequence of control inputs u0:T−1 ∈ U for t =
1, . . . , T , which minimize the sum of stage costs c:

min
u0:uT−1

JT =

T−1∑
t=0

log det Σt (6)

s.t. xt+1 = f(xt, ut), t = 0, ..., T − 1

Σt+1 = ρext+1
(ρpt (Σt)), t = 0, ..., T − 1

where ρex(Σ) is the Kalman filter measurement update, and
ρpt is the Kalman filter prediction step, as follows:

Predict: ρpt (Σ) := AtΣA
T
t +Wt

Update: ρex(Σ) := (Σ−1 +M(x))−1 = Fx(Σ)Σ

M(x) := C(x)TV (x)−1C(x)

Fx(Σ) := I −Kx(Σ)C(x)

Kx(Σ) := ΣC(x)TR−1
x (Σ)

Rx(Σ) := C(x)ΣC(x)T + V

where M(·) ∈ Rny×ny is called the sensor information
matrix.

We note here that although the linear models may appear
restricting, it is possible to apply nonlinear process and
observation models by linearizing about a predicted target
trajectory and considering the covariance predictions pro-
duced by the Extended Kalman Filter. This technique has
been applied in information acquisition problems in [13],
and we will also do so in this work.

III. INFORMATION ACQUISITION AS A DETERMINISTIC
SHORTEST PATH

In this work, we view the information acquisition optimal
control problem as a planning problem. We state a standard
definition of a planning problem for clarity:

Problem 2 (Planning Problem). Given a set of states S, an
initial state s0 ∈ S, a boolean function G : S → {0, 1}
which tells us whether the state is in the goal region, a
function A(s) which produces the valid control inputs in a
given state s, a transition function T (s, a) : S × A(s)→ S
for s ∈ S and a ∈ A(s), and a function c(s, s′) : S×S → R
returning the cost of being in state s and transitioning to
state s′, find a path P = {s0, . . . , sn}:

min
P

J(P ) =
∑
P

c(s, s′) (7)

s.t. si+1 = T (si, ai) (8)
G(sn) = 1 (9)

We now define the information acquisition problem as an
instance of the planning problem. We define the planning
state space to include both the spatial state and the informa-
tion state of the information acquisition problem, in addition
to the number of elapsed time steps since the initial time:

S := {(xt,Σt, t) | xt ⊆ X ,Σt � 0, t ≥ 0}

Then we can let the initial state s0 be defined:

s0 := (x0,Σ0, 0)



In the classic planning problem, the length of the path is
unknown a priori and is determined as part of the search
procedure. In this problem, we focus on a fixed horizon
control problem, so our goal function can be defined:

G(s) := G(xt,Σt, t) =

{
1 if t = T

0 otherwise

Next, we can define the available actions at any state to be
the set of actions that give collision-free paths.

A(s) := A(xt,Σt, t) = {u | u ∈ U}

We also define the transition function that allows us to
evaluate the next state given the current state and action:

T (s, a) :=T (xt,Σt, t, ut)

=[f(xt, ut), ρ
e
f(xt,ut)

(ρpt (Σt)), t+ 1]

Finally, we define the state cost function to be the log
determinant of the target covariance matrix:

c(s, a) := c(xt,Σt, t, ut) = log det Σt+1.

Deterministic shortest path problems such as Problem 2
can be solved using search or sampling-based methods. For
example, A* is a best-first graph-search algorithm that works
by expanding the most promising nodes in a search tree
beginning at a root state. Let g to be the cost incurred to
reach the state (xk,Σt, t) from the root:

g(xt,Σt, t) =

t−1∑
k=0

log det Σk. (10)

Next, we define a heuristic function h(xt,Σt, t), which
serves as an estimate of the remaining cost-to-go along
the path going through the state (xt,Σt, t). An informative
heuristic function massively improves exploration in a plan-
ning problem by delaying or ruling out regions of the graph
which appear to be unpromising. If a planner has access
to an optimal heuristic h∗, that is a heuristic which exactly
equals the lowest possible cost-to-go from the desired state
to the goal region, the planner will explore the exact optimal
path and result in a linear time search. On the other hand, a
trivial heuristic can be defined by h(·) = 0. This would be
considered an uninformative heuristic, since it provides no
information about how promising or unpromising the current
state is. Moving forward, our goal will be to design effi-
cient and informative heuristic functions for the information
gathering problem, since this will help remove unpromising
regions from the search space.

A* is typically implemented with a priority queue, OPEN,
where the order of state expansion is determined by the
element in the priority queue with minimal p-value, which
is the sum of the cost-to-come and the cost-to-go:

p(xt,Σt, t) = g(xt,Σt, t)︸ ︷︷ ︸
cost-to-come

+h(xt,Σt, t)︸ ︷︷ ︸
cost-to-go

Applying the algorithm above yields an optimal solution,
provided the following two conditions hold on the heuristic
function h(·):

Algorithm 1 A* Algorithm (x0, Σ0, T , Xg)

1: g(x0,Σ0, 0) = 0; OPEN = ∅
2: Insert (x0,Σ0, 0) into OPEN with p(x0,Σ0, 0) =

h(x0,Σ0, 0)
3: (xt,Σt, t) ← arg min

(xt,Σt,t)∈OPEN
p(xt,Σt, t)

4: while (xt,Σt, t) /∈ Xg do
5: for For u ∈ U do
6: (x,Σ, k) = (f(xt, u), ρef(xt,u)(ρ

p
t (Σt)), t+ 1)

7: g(x,Σ, k) = g(x) + log det Σt
8: p(x,Σ, k) = g(x,Σ, k) + h(x,Σ, k)
9: Insert (x,Σ, k) into OPEN with p(x,Σ, k)

10: (x,Σ, t) ← arg min
(x,Σ,t)∈OPEN

p(x,Σ, k)

• Admissibility: h(s) ≤ h∗(s) ∀s ∈ S
• Consistency: h(s) ≤ c(s, s′) + h(s′) ∀s ∈ S

IV. INFORMATION ACQUISITION HEURISTICS

While the method detailed in Algorithm 1 is optimal,
without an informative heuristic, the algorithm will default
to Dijkstra’s algorithm and will require the expansion of all
nodes, causing the search complexity grow exponentially as
O(|U|T ). An informative heuristic dramatically speeds up
the planning procedure, so we now focus our attention on
deriving heuristics for the information acquisition problem.

A. Reduction to Bounding Sensor Information Matrix

A key observation we make in the problem structure is
the relationship of the cost function to the Kalman filter
covariance matrix Σt � 0, and the sensor information matrix
M(x) = H(x)TV (x)−1H(x) � 0. Our objective is to
reduce the computation of a heuristic to computation of
an upper bound on the sensor information matrix over the
reachable state space of the sensor.

Definition 1 (Reachable-Set). Given an initial sensor state
x0, the t-step reachable set can be defined for t > 0 as:

Rt(x0) := {x′ | x′ = f(x, u) ∀u ∈ U ∀x ∈ Rt−1(x0)}

where R0(x0) := {x0}.

Lemma 1. Given a prior covariance matrix of a Gaussian
distribution Σ � 0, the Kalman filter prediction step ρpt (Σ) �
0. Moreover, given 0 �M(x) � M̄1(x), the following holds:

ρpt (Σt) +M(xt) � ρpt (Σt) + M̄1(xt)

(ρpt (Σt) + M̄1(xt))
−1 � (ρpt (Σt) +M(xt))

−1

Theorem 1 (Heuristic Functions for Information Acquisi-
tion). Let the reachable set by the robot at state x in t > 0
timesteps be denoted by Rt(x). Suppose there exists a matrix
M̄ t(x̄) such that M̄ t(x̄) � M(x̄) ∀x̄ ∈ Rt(x). Then the
following heuristic is consistent and admissible:

h(xt,Σt, t) =

T∑
k=t

log det((ρpk(Σk)−1 + M̄k−t+1(xt))
−1),



where Σk+1 = (Σ−1
k + M̄k−t+1(xt))

−1 and (xk,Σk, k) =
(xt,Σt, t)

Proof. In [22], it is shown that consistency implies admis-
sibility for heuristic functions. Therefore, we only need to
show the proposed heuristic is consistent, which requires the
following

h(xt,Σt, t) ≤ log det(Σt+1) + h(xt+1,Σt+1, t+ 1)

We have:

h(xt,Σt, t)− h(xt+1,Σt+1, t+ 1) ≤ log det(Σt+1)

=

T∑
k=t

log det((ρpk(Σk)−1 + M̄k−t+1(xt))
−1)

−
T∑

k=t+1

log det((ρpk+1(Σk+1)−1 +Mk−t+1(xt))
−1)

= log det((ρpt (Σt)
−1 + M̄1(xt))

−1)

≤
a

log det((ρpt (Σt)
−1 +M(xt))

−1)

=
b

log det(Σt+1)

Where (a) holds by monotonicity of log det(·), and by
Lemma 1 since M(x) � M̄1(x). Then (b) holds by the
Kalman Filter Riccati Map.

Corollary 1 (Optimality and Inflated Heuristic). The solution
obtained by Algorithm 1 with the heuristic function proposed
in Theorem 1 returns an optimal solution J∗T . If the heuristic
is scaled by a factor of ε, the returned solution Jε has
bounded sub-optimality such that J∗T ≤ Jε ≤ εJ∗T .

Proof. The proof follows immediately from the consistency
and admissibility properties proved in Theorem 1, and from
the bounds on inflated heuristics obtained in [23].

Remark. The result obtained in Theorem 1 holds for any
monotone cost function of the covariance Σt, and is not
restricted to log det(Σt). For instance, other commonly used
uncertainty measures such as the trace tr(Σt) also lead to
consistent heuristics.

B. Approximation of the Reachable Set

The implication of Theorem 1 is two-fold. First, it con-
structs a consistent, and admissible heuristic function that can
be used to speed up the planning process. Second, it reduces
this heuristic computation to the problem of computing
an upper bound on the sensor information matrix over a
reachable set Rt, i.e. M(x) � M̄ t(x) ∀x ∈ Rt.

A first step towards computing an upper bound on the
sensor information matrix is to approximate the t-step reach-
able set Rt(x) from a given sensor state x. Because we
consider finite action spaces, the true reachable set from
a given configuration grows exponentially in the number
of timesteps. Though there are more intricate methods to
compute the reachable set of a dynamical system as detailed
in [24], we resort to an over-approximation by a ball of finite

(a) Reachable set R1(0, 0). (b) Reachable set R2(0, 0).

Fig. 1: Here we show the evolution of a finite set of motion
primitives, and the approximate reachable set computation. Figure
(a) shows one timestep, and Figure (b) shows two timesteps.

radius rU (x), with an increasing radius in the number of
timesteps for its simplicity.

rU (x) = max
u∈U

dX (x, f(x, u)) (11)

Thus, an over-approximation R̄t(x) ⊇ Rt(x) for the set
reachable in t timesteps can be constructed as:

R̄t(x) := {x̄ ∈ X | dX (x̄, x) ≤ t ∗ rU (x)} (12)

Note that for this to be an over-approximation, some minor
continuity assumptions must hold on the motion model. .
See Figure 1 to visualize the construction of the approximate
reachable set R̄t(x)

Given a construction of a reachable set, we focus on the
problem of computing a bounding sensor information matrix
such that M(x̄) � M̄ t(x̄) ∀x̄ ∈ R̄t(x). Doing this requires
examination of specific sensor models.

V. BOUNDING THE SENSOR INFORMATION MATRIX

In this section, we derive bounding sensor information
matrices for several common sensors that are often used
in essential robotics tasks such as localization and mapping
problems, target tracking, and others. We begin by extending
the reachable set concept to account for observability:

Definition 2 (Reachable-Observable Set). Given an initial
sensor state x0, a t-step reachable setRt(x0), and a function
O(x, y) : X × Rny → {0, 1} indicating whether the target
process y is observable from a sensor state x, we can define
the reachable-observable set as:

Ot(Rt(x0)) := {y | O(x, y) = 1 ∀x ∈ Rt(x0)} (13)

The reachable-observable set includes all target states y
which the sensor may observe in t-steps. Since we are only
seeking upper bounds on the sensor information matrix,
we can resort to an over-approximation of the reachable-
observable set, similar to the method for approximating the
reachable set itself. We assume here that a sensor has a
maximum range for which it can observe a component of
the target from r̄(y):

r̄(y) = max
x∈X

dxy(x, y)

s.t. O(x, y) = 1



Now, to over-approximate the reachable-observable set, we
can build on top of the reachable set construction from
Equation 12 as follows:

Ōt(x) := {y | O(x, y) = 1 ∀x ∈ R̄t(x) } (14)

We now have all the machinery to derive bounds on the
sensor information matrix for a variety of sensor types.

A. Unobservable Case

A simple but important case to begin with is when y /∈
Ōt(x), that is a target is strictly non-observable in t-steps
from a given sensor location. There is no possibility of
obtaining a measurement in this case, the Kalman Filter
resorts to a prediction only step. An alternate way to view
this, is that the observation matrix C(x) from sensor state x
is simply zero. Since taking C(x) = 0 implies M(x) =
C(x)TV −1(x)C(x) = 0, a trivial upper bound can be
obtained as:

M̄(x) = 0

when y /∈ Ōt(x). The remaining sections now assume the
target y is observable.

B. Position-Sensor

The position sensor reports the relative position of a point
y ∈ R3 from a sensing location x = (p,R) with position
p ∈ R3, and orientation R ∈ SO(3).

z = c(x, y) = RT (y − p) + v, v ∼ N (0, V (x)) (15)

In the case where the point y is observable, the sensor
observes a noisy estimate of the translated state y−p, where
C(x) = RT is the orientation of the sensor in the world
frame. In this case, we have that M(x) = RV (x)−1RT .
We can bound V (x)−1 above by it’s maximum eigenvalue,
i.e. λmaxI3 � V (x)−1. This yields a bound of M(x) =
λmaxRR

T = λmaxI3, since RRT = I3. Thus, we can derive
the following bound on the sensor information matrix:

M̄ t(x̄) = λmaxI3 (16)

C. Range-Sensor

The range sensor reports the relative distance of a point
y ∈ R3 from a sensing location x = (p,R) with position
p ∈ R3, and orientation R ∈ SO(3).

z = c(x, y) = ‖p− y‖2 + v, v ∼ N (0, σ2
r) (17)

The range sensor is a non-linear sensor model, which
requires us to adapt our formulation. Previous work has
approached this problem by linearizing and planning based
on the Extended Kalman Filter (EKF) covariance, which we
will consider here. The linearized observation model is:

∇y=ŷc(p, y) = C(x) =
(ŷ − p)T

‖p− ŷ‖2
(18)

Here we note that the linearized C(x) is a row vector,
and the sensing noise covariance V (x) = σ2

r is a scalar
due to the 1-dimensional measurement. Thus the sensor
information matrix M(x) = C(x)TV −1(x)C(x) is an outer

product scaled by the inverse noise covariance σ−2
r . This

outer product has one eigenvalue λ = σ−2
r ‖C(x)‖2, and the

remaining eigenvalues are zero. Taking the norm of C(x):

‖C(x)‖ =
1

‖p− ŷ‖22
(ŷ − p)T (ŷ − p) (19)

=
‖ŷ − p‖22
‖ŷ − p‖22

(20)

= 1. (21)

Thus we can upper bound the sensor information matrix as:

M̄ t(x̄) = σ−2
r I3 (22)

D. Bearing Sensor

The bearing sensor reports the relative bearing of a point
y ∈ R2 from a sensing location x = (p, θ) with position
p ∈ R2, and orientation θ ∈ [−π, π].

z = c(x, y) = tan−1

(
y2 − p2

y1 − p1

)
− θ + v, v ∼ N (0, σ2

b )

(23)
As for the range-sensor, we note that this is a non-linear
sensor and must be linearized to obtain covariance estimates
using the EKF. The linearization about the point y is given:

∇y=ŷc(x, y) = C(x) =
1

‖p− ŷ‖22

[
−(ŷ2 − p2) (ŷ1 − p1)

]
(24)

Because the sensor is one dimensional with inverse noise
covariance given by σ−2

b , it can be easily seen that the sensor

information matrix M(x) =
σ−2
b

‖p−ŷ‖2 , by applying the result
from above for the range sensor. The difficulty in computing
this bound is the need to place a limit on how close the
sensor and target can be to avoid the singularity in M(x),
owing to the fact that there is an extra division by ‖p− y‖2.
To avoid this singularity, suppose we place a range limit of
r to denote the minimum range a measurement can be taken,
similar to the maximum sensing range requirement. Then the
following bound holds for y ∈ Ōt(x̄):

M̄ t(x̄) =
σ−2
b

max {r,minp∈R̄t(x̄) ‖p− ŷ‖2}
I2 (25)

E. Camera Sensor

Lastly, we consider the camera sensor, which reports the
pixel location z ∈ N2 in image coordinates of a point y ∈ R3

in 3-D space, given a camera pose x = (p,R) with p ∈ R3

and R ∈ SO(3), and an intrinsic camera matrix K ∈ R2×3.

z = c(x, y) = Kπ(RT (y − p) + v), v ∼ N (0, V ) (26)

where π(y) := 1
y3 y is a projection function.

We can take the gradient of the observation model with
respect to a linearization point: ŷ:

∇y=ŷc(x, y) = C(x) = Kπ′(RT (y − p))RT (27)

π′(x) =
1

x2
3

x3 0 −x1

0 x3 −x2

0 0 0

 (28)



To simplify notation, we let P = π′(RT (y−p)). The sensor
matrix M(x) = C(x)TV (x)−1C(x) can be written as:

M(x) = RP (x)TKTV (x)−1KP (x)RT (29)

Let λKV be the maximum eigenvalue of the matrix
KTV −1K � 0. Then let λP be the maximum eigenvalue
of the matrix PTP .

M � λKV λPRRT (30)
� λKV λP I3 (31)

The eigenvalues of PTP are λ = {1/x2
3, ‖x‖22/x4

3, 0}, so the
maximum is always (x2

1 +x2
2 +x2

3)/x4
3. The final bound can

be expressed as:

M̄ t(x̄) = λKV I3 max
p∈R̄t(x̄)

‖y − p‖22
(e3RT (y − p))4

(32)

If the minimum depth approaching zero causes a singularity
in the above expression, bounds can be introduced similar to
the bearing sensor to ensure the information matrix remains
finite.

VI. APPLICATION TO ACTIVE MAPPING

A. Problem Setup

We apply the A* planning algorithm with the proposed
information acquisition heuristic to an active mapping prob-
lem. We consider a scenario with six static landmarks with
uncertain positions and a robot equipped with a range-only
sensor aiming to minimize uncertainty in the landmark posi-
tion distribution (see Fig. 2). The robot follows differential-
drive dynamics discretized with sampling period τ :x1

t+1

x2
t+1

θt+1

 =

x1
t

x2
t

θt

+

ντ sinc(ωτ2 ) cos(θt + ωτ
2 )

ντ sinc(ωτ2 ) sin(θt + ωτ
2 )

τω

 (33)

The action space is composed of discretized control inputs:
{(ν, ω)| ν ∈ {1, 3} m/s, ω ∈ {0,±1,±3} rad/s}.

The target state has dimension n = 12 as it is composed
of the 2D landmark locations. The targets are assumed static:

yt+1 = yt (34)

Any of the previously described sensing models c(x, y),
corresponding to equations (15), (17), (23), or (26) could
be used. Our example illustrates the behavior for a range
sensor (17) with measurement noise standard deviation of
σr = 0.15 m.

The joint measurement space consists of possible mea-
surements for each landmark m ∈ {0, ...M − 1}, where
M is the total number of landmarks being mapped. The
linearized observation model for the joint target state can
then be expressed as a block diagonal matrix,

C(x, y) =

∇yc(x, y0) . . . 0
...

. . .
...

0 . . . ∇yc(x, yM−1)

 (35)

Similarly, the bounding sensor information matrix M̄ t(·) is
the block diagonal matrix consisting of the blocks of each
individual sensor information matrix for each target.

In the simulations, we let the sampling period be τ = 0.5,
which means the maximum displacement from any action
rU = 3 m/s × 0.5 (s) = 1.5 meters. Then the reachable
set approximations are constructed from Equation 12. The
maximum sensing range for the range sensor is 1 meter, with
an omnidirectional field of view, which makes the reachable-
observable set simple to evaluate given a target distribution.
In cases with a limited field of view, the observable set can
be over-approximated by an omnidirectional field of view
for faster heuristic computation while still ensuring an upper
bound on the sensor information matrix.

In Figure 3 we visualize the range sensing heuristic gen-
erated with a cost and heuristic based on the trace function:
JT =

∑T
t=1 tr(Σt), for T = 12 timestep trajectories. The

trace cost is used in the active mapping problem because it is
less prone to leaving a target unobserved. Under determinant
cost objectives, it is possible to find a path which localizes
one target very well drastically reducing its minimum eigen-
value and thus the volume of the confidence ellipsoid, while
other targets go unobserved.

We simulate the six target active mapping task, while
varying the initial location of the sensing robot 100 times
across the obstacle free space. To compare performance
of the two algorithms, we consider the average cost of a
node in the search tree generated by each algorithm. In
Figure 4 we plot this distribution for the cost function J =∑T
t=1 trace(Σt). A lower score on this metric indicates that

an average node taken from a given search tree has a more
optimal score, and thus the search tree has been constructed
more effectively.

The heuristic cost map clearly demonstrates the idea that
states whose t-step reachable sets may observe the target
given the reachable set and observable set approximations,
have a much lower heuristic value. The more targets that
are observable from a given state, the smaller the remaining
cost-to-go in a given state.

To visualize the resulting paths output from the A* algo-
rithm with our proposed heuristic, we plot the planned paths
for a single sensor tasked with localizing six landmarks. The
prior uncertainty for each target is given as Σ0 = .25I2. The
environment is a 10 meter by 10 meter region, containing
three rectangular obstacles in the center. We visualize the
sensing robot’s planned trajectory and chosen observation
points, along with the set of states which have been expanded
during the construction of the search tree in Figure 2 (a).

B. Analysis

In Figure 2 (b) we compare our method with the Any-
time Reduced Value Iteration algorithm, which is another
algorithm for solving information acquisition problems of
the form we proposed in [25]. That algorithm does not use
a heuristic when constructing the search tree, but instead
attempts to iteratively construct the tree in a breadth first
manner, pruning any nodes which satisfy a domination



(a) Expanded search tree with the proposed A* heuristic method. (b) Expanded search tree for Anytime Reduced Value Iteration.

Fig. 2: State expansions resulting from an A* algorithm using the proposed information acquisition heuristic (a) and Anytime Reduced
Value Iteration algorithm [25] (b). Note that in (a), the state expansions are focused only in the areas where there are possible observations
to be obtained about a landmark. In contrast, figure (b) shows state expansions covering the whole state space. Despite expanding more
densely, the algorithm gets stuck in local minima observing only three of the six possible landmarks.

Fig. 3: Heatmap of the heuristic function for the range-sensor,
showing the estimated cost-to-go over the state space.

criteria, which removes nodes which early in the search are
deemed unlikely to lead to an optimal path. The tree is
built by expanding non-dominated node, in contrast to the
A* algorithm which expands only the node with the most
promise.

The results in Figure 2 depict a scenario where a sensing
robot with the dynamics and sensing models described in
the previous section needs to navigate around the obstacles
to localize six landmarks. The A* method based on our
proposed heuristic is able to find an optimal path which
observes all six landmarks in less than 10 seconds, while the
Anytime RVI algorithm fails to find a path that observes all
the targets quickly enough, despite being given 60 seconds of
execution time on a 2.4 GHz quad core CPU. This improved

Fig. 4: Graph showing the distribution of the average cost per path
in the search tree for both A* (Mean=2.67) and ARVI (Mean=3.14).

success in the active mapping task is due to the heuristic
which intelligently constructs the search tree in areas where
there are possible observations, while the ARVI algorithm
spends too much search time in uninformative areas. The
algorithms and heuristics are implemented with open source
C++ and Python bindings at https://bitbucket.
org/brentsc/infoplanner/src/iros_2019/.

The graph in Figure 4 shows that the average cost per
node in the A* generated search tree is larger than the
average cost of nodes in the ARVI generated search tree. This
demonstrates quantitatively that the search tree is constructed
more effectively, since on average it contains a set of nodes
that lead to better trajectories for the sensing robot. We note
here however, that due to the continuous motion model, the



actual number of nodes can grow quite large in a given
horizon. With an action space of size ‖U‖ = 10, the search
tree can grow in T = 12 steps to 1012, or one trillion possible
states. The heuristic method drastically reduces the search
space to make this tractable, but future work may include
methods to join states that cross within a given radius δ via
the ideas described in [12], [13], which results in smaller
overall tree size.

VII. CONCLUSION

In this work, we formulate the information acquisition
problem as a shortest path planning problem, and solved
it with A*. To do this efficiently, we proposed the first
consistent and admissible heuristic, which guarantees an
optimal A* algorithm. Computation of the heuristic requires
bounds on the sensor information matrix for the given
observation model, which we derive for position, range,
bearing, and camera sensing models. The simulation results
demonstrate the search space is explored more efficiently
than existing methods. Despite the benefits of the heuristic
planning method demonstrated here, the heuristic offers
little advantage when information is very dense in space,
or the heuristic is otherwise unable to guide the search in
very ambiguous cases. Furthermore, with continuous motion
models for the sensors, the size of the search tree can grow
very large since previous states will not be visited again
exactly. To alleviate these issues, future work can combine
domination criteria with a heuristic, which may lead to an
algorithm suitable for a more diverse set of environments.
Additional work may include deriving heuristics for more
types of sensors, and extending the heuristic method to multi-
robot planning.
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