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Abstract— The graph identification problem consists of dis-
covering the interactions among nodes in a network given their
state/feature trajectories. This problem is challenging because
the behavior of a node is coupled to all the other nodes
by the unknown interaction model. Besides, high-dimensional
and nonlinear state trajectories make it difficult to identify
if two nodes are connected. Current solutions rely on prior
knowledge of the graph topology and the dynamic behavior
of the nodes, and hence, have poor generalization to other
network configurations. To address these issues, we propose
a novel learning-based approach that combines (i) a strongly
convex program that efficiently uncovers graph topologies with
global convergence guarantees and (ii) a self-attention encoder
that learns to embed the original state trajectories into a feature
space and predicts appropriate regularizers for the optimization
program. In contrast to other works, our approach can identify
the graph topology of unseen networks with new configurations
in terms of number of nodes, connectivity or state trajectories.
We demonstrate the effectiveness of our approach in identifying
graphs in multi-robot formation and flocking tasks.

I. INTRODUCTION

The study of networked systems is essential in many
disciplines like brain network imaging [1]–[3], genetics [4],
[5], power networks [6], social networks [6]–[9], environ-
mental monitoring [7], [10], [11], or general large-scale
physically interconnected systems [12], [13]. The interac-
tions among entities play a central role in understanding
networked systems and motivates an extensive effort to
identify the interactions (i.e., the graph topology) from data
[14]–[16]. For example, graph topology identification is
crucial for modeling multi-robot interactions [17] in learning
collaborative behaviors from observations or demonstrations
[18]–[20]. In this paper, we aim to develop an algorithm to
identify the underlying graph topology that best describes the
behavior of a networked system given its node trajectories.

A widely used approach for graph topology identification
is graph signal processing [21]. Diffusion-based methods [6],
[11] assume that the node signals diffuse through the edges
following heat kernels. The proposed approaches are posed
as minimization problems over the heat kernels’ parameters
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and the Laplacian matrix. However, the constraints on Lapla-
cian matrix are non-convex, and an a priori dictionary of
functions is required to find the kernels’ parameters. Another
line of research focuses on the reconstruction of a graph
shift operator by means of its eigenvalue and eigenvector
pairs, under perfect observations and known eigenvectors
[10], [22] or linear time-invariant single-input single-output
nodes [23]. A common issue is how to encode the constraints
of adjacency and Laplacian matrices [24], which lead to NP-
hard problems. Learning a Laplacian can be recast to a L1
norm minimization by exploiting a smoothness assumption
[25], [26]. This perspective has been extended to develop fast
online algorithms [27], [28] which benefit from the fact that
the L1-norm and the Laplacian constraints can be rewritten as
a vectorized multiplication and an indicator function, leading
to unconstrained convex problems [29]. Nevertheless, these
algorithms assume scalar node signals, which is not the usual
case in general networked systems.

A promising alternative to graph signal processing is
machine learning algorithms that use attention [30] and
self-attention [31] mechanisms. Self-attention discovers the
relationships among elements of a sequence by computing an
attention map, and its structure can be combined with linear
layers and activation functions to encode nonlinear behaviors.
Furthermore, attention layers allow for a time-varying size of
one of the input dimensions, e.g., the number of robots in a
robotic team. Regarding multi-robot systems, self-attention
layers can be found in recent path planning [32], [33] or
task scheduling [34] applications. It is worth mentioning that
there are learning techniques related to graphs which cannot
be applied to our problem because they assume a known
graph: relation prediction, graph regression, clustering [35],
and graph neural network solutions [36], [37].

We formulate the problem of identifying the graph topol-
ogy of a networked system from state trajectories of its
nodes (Section II). Our main contribution is a graph topol-
ogy identification approach (Section III) that captures high-
dimensional node features in a strongly convex optimiza-
tion problem for weighted adjacency matrix optimization.
In contrast with learning-based techniques, our approach
exploits principled strongly convex optimization to generate
weighted adjacency matrices with guarantees of convergence.
Compared to graph signal processing techniques, our ap-
proach relies on a self-attention-based neural networks to
represent high-dimensional node features for the adjacency
matrix optimization problem. The neural networks are trained
to balance between the loss function and the regularizers in
the objective function so that it best captures the sparsity



of the graph. The approach is validated through multi-robot
formation and flocking experiments in Section IV, and the
the benefits of our proposal are discussed in Section V.

II. PROBLEM FORMULATION

Consider a networked system characterized by an undi-
rected weighted graph G = (V, E ,W). The set of nodes
is V = {1, . . . , n}, with n > 1 the number of nodes. The
interactions among nodes are represented by the set of edges
E ⊆ V × V . The weighted adjacency matrix W ∈ Rn×n

represents the intensity of the interactions among nodes, and
it is such that [W]ij = wij ∈ R>0 if (i, j) ∈ E and
[W]ij = 0 otherwise. We assume that there are no self-
loops, i.e., wii = 0. The set of neighbors of node i is
Ni = {j ∈ V|(i, j) ∈ E}. Since G is undirected, (i, j) ∈ E
implies that (j, i) ∈ E and wij = wji. We define the edge
density as ρ(G) = |E|/n2, with |E| the number of edges. The
(weighted) Laplacian is L = diag(W1n)−W, where 1n is
the column vector of ones of size n.

Node i is characterized by a state xi(t) ∈ Xi ⊆ Rs at a
discrete time t ∈ N, where Xi is the space of admissible
states of dimension s ∈ N. Each node obeys unknown
discrete-time dynamics,

xi(t+ 1) = fi(xi(t),xNi
(t)), (1)

where xNi
(t) = {xj(t)}j∈Ni

is the state of the neighbors
of node i at time t. Let xd

i (t) = [xi(t − d), . . . ,xi(t)] be
the trajectory formed by the last d states of node i at instant
t. We define the tensor X(t) = [xd

1(t), . . . ,x
d
n(t)] as the

n × s × d collection of trajectories at instant t. We assume
that these trajectories are available at each instant, and the
associated W is time-invariant. The aim of this work is to
develop an approach to identify W given X(t).

We assume that the evolution of the node states is such that
the graph state is smooth. Roughly speaking, the smoothness
assumption implies that the neighbors of node i have more
similar values of xi(t) compared to non-neighboring nodes.
Formally, the total variation of the graph state is

φ(x(t)) = x⊤(t)(L⊗ Is)x(t), (2)

where x(t) = [x⊤
1 (t), . . . ,x

⊤
n (t)]

⊤, ⊗ is the Kronecker
product, and Is is the identity matrix of dimension s. Then,
we define graph state smoothness as follows.

Definition 1. The state trajectories of graph G are smooth if
φ(x(t)) satisfies φ(x(t)) < σ, with 0 < σ ≪ ϱ and ϱ ∈ R>0

an upper bound on the total variation of the graph state.

We assume that the evolution of the node trajectories given
by Eq. (1) is such that graph state smoothness holds, which
is the case for many multi-agent and multi-robot problems
such as flocking, cooperative exploration, opinion dynamics,
and consensus [38]–[41]. The particular values for σ and ϱ
depend on the application. Under these assumptions, the goal
of the paper is formulated as follows.

Problem 1. Given smooth node state trajectories X(t)
obtained from a graph G with unknown dynamics fi(•) ∀i
and edges E , find the weighted adjacency matrix W of G.

III. LEARNING TO IDENTIFY GRAPHS

In this section, we propose an approach to solve Prob-
lem 1 that combines (i) a fast strongly convex optimization
algorithm with global convergence guarantees and (ii) a
self-attention encoder that transforms high-dimensional node
states to one-dimensional features and learns the regulariza-
tion parameters that match the graph sparsity pattern. We
describe the optimization algorithm in Section III-A and
develop the self-attention encoder in Section III-B. In Section
III-C, we describe our overall approach for graph topology
learning from node trajectories.

A. Accelerated graph learning from smooth signals

In a networked system, the behavior of one node is
influenced by the entire network by means of local interac-
tions with neighboring nodes via Eq. (1). Hence, to identify
the existence of interactions among two nodes we need to
consider, at least initially, the state information from all the
nodes. In this section, we describe an optimization method
[28] for scalar states (s = 1) that finds the underlying graph
that best describes the state trajectories of the nodes. When
state xi is scalar, the trajectory X(t) is an n× d matrix.

First, we define Y(t) ∈ Rn×n as the Euclidean
distance matrix among the node states such that
[Y(t)]ij = ||xd

i (t)− xd
j (t))||22 ∀i, j ∈ V(t). Then,

φ(x(t)) = trace(X⊤(t)LX(t)) =
1

2
||W ◦Y(t)||1, (3)

where ◦ denotes element-wise product and ∥ · ∥1 is the
L1 norm. We omit the time dependence going forward to
simplify the notation because all operations refer to the same
instant t. Based on Eq. (3), finding W translates into solving
a convex inverse problem [25]:

min
W

||W ◦Y||1 − α1⊤
n log(W1n) + β||W||2F (4a)

s.t. wii = 0, wij ≥ 0, ∀i, j ∈ V, (4b)

where α, β > 0 are tuning parameters such that α penalizes
the possibility of isolated nodes and β encourages graph
sparsity. To solve (4) efficiently and with global convergence
guarantees, Saboksayr and Mateos [28] proposed a dual
reformulation of (4). Since the graph is undirected, we
define w = vech(W) as the half-vectorization of W. Let
y = vec(Y) be the vectorization of Y and I be the indicator
function such that I{w ≥ 0} = 0 and ∞ otherwise,
where the operation ≥ is applied element-wise. Finally, S ∈
{0, 1}n×

n(n−1)
2 is the operator that satisfies W1n = Sw.

This leads to the unconstrained optimization problem

min
w

I{w ≥ 0}+ 2w⊤y + β||w||22 − α1⊤
n log(Sw). (5)

Eq. (5) can be solved by accelerated dual proximal gradi-
ent methods with guarantees of global convergence, proved
by Beck and Teboulle [29] in the general case, and by
Saboksayr and Mateos [28] in the specific case of Eq. (5).
In particular, we exploit the analytical expressions derived in
[28], summarized in Algorithm 1.



Algorithm 1 Accelerated dual proximal gradient method for
graph identification

1: Inputs: y, S
2: Initialization: ω0 = λ0 = λ−1 ∼ U(n(n−1)

2 ), τ0 = 1
3: Parameters: K > 0, α > 0, β > 0, L = n−1

β , ϵ > 0
4: for k ∈ {0, . . . ,K − 1} do

5: wk = max

(
0,

S⊤ωk − 2y

2β

)
6: uk = 1

2

(
Swk − Lωk +

√
(Swk − Lωk)2 + 4αL1n

)
7: λk = ωk − L−1(Swk − uk)

8: τk+1 =
1+

√
1+4τ2

k

2
9: ωk = λk + τk−1

τk+1
(λk − λk−1)

10: if ||λk − λk−1||/||λk−1|| < ϵ then break
11: end for
12: Output: wk

The algorithm iterates until convergence or a certain
number of iterations K ∈ N is reached. The current iteration
is denoted by k and λk denotes the Lagrange multipliers
of the dual optimization problem of Eq. (5). Algorithm 1
alternates between weighted adjacency matrix and Lagrange
multipliers’ updates. Once the algorithm terminates, the
graph adjacency matrix is recovered from wk. Interestingly,
the stability of the training process is not affected by the
max operator in line 5 of Algorithm 1. At the boundary
S⊤ωk−2y

2β = 0, the gradient can be smooth by, e.g., using an
approximated value like in Pytorch [42].

Besides the global convergence [28], which implies ro-
bustness against initializations, Algorithm 1 is efficient to
compute so, at each instant, sufficient iterations can be run
to ensure convergence to the weighted adjacency matrix that
best describes the node state trajectories defined over the
Euclidean space.

B. Self-attention encoder

To use Algorithm 1 for graph identification, the node state
trajectories must be encoded to a feature space of dimension
s = 1. On the other hand, the cost function in Eq. (5) is
taken with respect to the distance between state trajectories
in Euclidean space, so the solution might not reflect the
best topology given X(t) because the interactions may be
determined by state proximity in a different space. Therefore,
the encoding must be such that the Euclidean distance is the
one that best reflects the distances among node trajectories.
In addition, the encoding must handle a time-varying number
of nodes and adjust to changes in the graph connectivity. To
address all these points, in this section we develop a neural
network encoder using self-attention [30] to extract suitable
features from the node state trajectories.

The encoder architecture is illustrated in Fig. 1. First, a
fully connected network projects a node state to a feature
state of dimension s = 1. The input is xd

i (t), so the
network is applied to every node state and trajectory. The
result is a matrix X′(t) that is n × d as required by the
optimization problem in Eq. (5). After that, a self-attention

Fig. 1: The state trajectory encoder consists of four blocks: (i) a fully
connected layer that encodes each individual state to a feature state of
dimension s = 1; (ii) a self-attention layer that finds the relationships among
features; (iii) a fully connected series of layers that find Y(t); and (iv) two
separate fully connected layers to find the regularization parameters α(t)
and β(t) for the subsequent graph identification optimization.

layer processes X′(t) according to the relationships found
in the attention map X′(t)(X′)T (t)/

√
d, using the operation

softmax(X′(t)(X′)T (t)/
√
d)X′(t) with X′(t) the query, key

and value matrices. Finally, another fully connected network
processes every (xd

i )
′(t) to obtain a new matrix X′′(t) that

is n × d, composed by the individual trajectories (xd
i )

′′(t).
These feature trajectories are then used to compute the
distance matrix Y(t). The encoder has an additional module
that uses the mean of Y(t), Ȳ(t) = 1

n2

∑n
i=1

∑n
j=1[Y(t)]ij ,

to compute the parameters α(t) and β(t) of Algorithm 1. The
logarithm is considered because sparsity is determined by the
difference in the order of magnitude between α(t) and β(t).

The encoder network, thanks to the self-attention structure,
handles graphs of different configurations in the number of
nodes and the intensity of interactions. Furthermore, it not
only projects the state trajectories to a convenient feature
space, but also provides the parameters for Algorithm 1.
Thus, the encoder can be trained to adjust the connectivity
depending on the state trajectories. For instance, in a multi-
robot flocking task like the one used for evaluation in Sec-
tion IV, the robots can depart from a spread initial condition
and gather in a more compact formation. We remark that
the design of the self-attention encoder is not limited to the
proposed architecture. Depending on the complexity of the
task, the encoder can be increased in depth and number
of parameters to ensure that the dimensionality reduction
captures all the behaviors of the multi-robot team.

C. Learning to identify graphs

The combination of the fast convex optimization algorithm
described in Section III-A and the encoder detailed in Sec-



Fig. 2: A time-varying graph with unknown connectivity and node dynamics generates a dataset of trajectories (left). A self-attention encoder generates
node trajectories in a feature space and computes the regularization parameters. These outputs are the input for an adjacency matrix optimization problem
(middle). A fast strongly convex optimization algorithm identifies the weighted adjacency matrix that best describes the observed node trajectories (right).

tion III-B leads to a learning architecture for graph topology
identification from node state trajectories, presented in Fig. 2.
The self-attention encoder receives the state trajectories of
the multi-robot team. The outputs of the encoder are the one-
dimensional feature trajectories of the multi-robot team and
the α and β regularizers of Algorithm 1. Algorithm 1 is then
executed using the feature trajectories as input, providing the
discovered topology. To train the model, we use the following
loss function:

L(t) = |wk(t)−ŵ|1n(n−1)/2+|w∗
k(t)−ŵ∗|1n(n−1)/2. (6)

In the loss function, ŵ refers to the vectorized form of
the ground-truth weighted adjacency matrix W. Moreover,
(•)∗ denotes the adjoint of a graph. More precisely, W∗

is the weighted adjacency matrix such that [W∗]ij = 0 if
[W]ij ̸= 0, [W∗]ij > 0 if [W]ij = 0, and W∗1n = W1n.
We compute each [W∗]ij > 0 as [W1n]i/n

∗
i , where n∗

i is
the number of non-zero elements of the i−th row of W∗.
Thus, w∗

k and ŵ∗ refer to the adjoints of the identified and
ground-truth weighted adjacency matrices. The use of the
difference of adjoint graphs is to avoid degenerate solutions.
For instance, if the ground-truth graph is very sparse, the
training might tend to overfit to a graph with no edges unless
the adjoint difference is part of the loss. We consider that
each iteration of Algorithm 1 is a training step.

Finally, one consideration is in order. Algorithm 1 and
optimizations (4)-(5) all provide the optimal graph topology
in the state smoothness sense. However, there is one reason
for using Algorithm 1 instead of (4) and (5) beyond the fast
convergence. The training of the proposed neural network
requires to backpropagate the gradients of the loss function
with respect to the output through the complete neural
network. In our case, the gradients are propagated backward
through the steps of Algorithm 1 and the self-attention
encoder. Our proposed approach benefits from the fact that
these steps are analytical equations rather than an optimiza-
tion problem as (4) and (5). They are solved by gradient
based methods, so, to backpropagate through them, we would
need to the gradients of the optimization gradients, which
are computationally intractable and numerically unstable.
Besides, (4) has constraints and (5) as a non-differentiable
indicator function, leading to additional difficulties for the
training of the neural network.

IV. EVALUATION

We conduct two types of experiments1. The first experi-
ment (Section IV-A) considers a multi-robot formation task
to verify the ability to extrapolate to other formations and
number of robots. The second experiment (Section IV-B)
considers a flocking task to study how the learned neural
network extrapolates to other flocking initializations, graph-
densities and emergent topologies.

A. Graph identification in multi-robot formation tasks

Following the setup proposed in many graph identification
works [6], [7], [22], [24], [26]–[28], [43]–[45], we consider
a multi-robot formation problem where the position of the
robots is given by an Erdős-Rényi random graph [46]. For the
training of the neural network, a single graph is instantiated
with edge probability p = 0.2 and a number of robots n =
50, to study the performance of the proposed approach in a
sparse and large multi-robot network. We note that the edge
density of the graph ρ(G) = p. Different from other works,
instead of considering scalars, the robot state is determined
by their 2D position, i.e., s = 2. The states are generated
using the following Gaussian random process:

xx(t) ∼ N (0, L̂† + σIn) and xy(t) ∼ N (0, L̂† + σIn), (7)

where L̂† is the pseudoinverse of the ground-truth Laplacian,
σ = 0.1 is the noise level that simulates potential uncertainty
in the position of the robots, and xx(t) and xy(t) refer
to the x-position and y-position of the robots at instant
t. The covariance is chosen in this way to force that the
position of the robots at each instant is correlated to their
neighbors, following the state-of-the-art [7], [28] (see [7]
for further details). We generate d = 10000 samples for
training. The other training hyperparameters are detailed in
Appendix I. To assess the performance of our approach, we
randomly generate 18 test sets composed by 20 Erdős-Rényi
random graphs each, generated from the combination of
the following hyperparameters: n = {10, 20, 30, 40, 50, 60}
and p = {0.1, 0.2, 0.4}. All of them are formed by d =
10000 samples. We set K = 2000 to ensure convergence.
To assess performance, we use the Mean Absolute Error
(MAE) between the ground-truth and the identified weights

1https://eduardosebastianrodriguez.github.io/LIGMRS/



Fig. 3: MAE as a function of the number of robots and edge probability.
Each configuration is run 20 times, computing the mean and standard
deviation. Diamond dashed lines are the state-of-the-art [28] (α = 0.2 and
β = 0.0001), whereas the circle solid lines are ours.

Ŵ W Ŵ −W threshold

Fig. 4: After the training, the learned neural network correctly identifies
the ground-truth graph. The intensity of the colors in the discovered
graphs is lower because there are a few outlier weights with a greater
value compared to the ground-truth. The right pannel shows the difference
between identified and ground-truth weighted adjacency matrices, but with
a threshold |[Ŵ]ij − [W]ij | < 10−5.

1
n2

∑n
i

∑n
j |[Ŵ]ij − [W]ij |. We compare our proposal with

the state-of-the-art algorithm in [28], which is the closest to
our problem assumptions, tuning the parameters according
to the procedures detailed in [25]–[27]. Since this algorithm
only allows scalar trajectories, we apply their algorithm once
per state dimension, computing the average graph.

Fig. 3 shows the MAE for the different number of robots
and edge probabilities. Our proposed approach surpasses
the state-of-the-art in one order of magnitude for all the
configurations. It is seen how the learned neural network
generalizes to different number of robots, achieving a similar
performance in terms of MAE. Therefore, the training has
been able to learn a good encoding of the state trajectories
and identifies a good α and β. We emphasize that the training
is conducted with just one graph. The learned neural network
does not generalize to ρ(G) = p = 0.4 since only a single
graph with ρ(G) = p = 0.2 has been used for training.

Figs. 4, 5 and 6 show some qualitative results. The weights
of the existing edges are accurately identified in graphs with
a similar number of robots than in training (Fig. 4), different
numbers of robots (Fig. 5) and edge densities (Fig. 6). The
intensity of the colors in the discovered graphs is lower than
in the ground-truth graphs because there are a few outlier
weights with a greater value compared to the ground-truth,
so the color scales of W and Ŵ are different. Since the Ŵ
from the Erdős-Rényi graphs are such that [Ŵ]ij = {0, 1}
and to verify that our approach is successful at capturing the
existence or absence of edges, the right panels of Figs. 4,
5 and 6 show the difference between identified and ground-
truth weighted adjacency matrices, but thresholding to zero
all the elements such that |[Ŵ]ij− [W]ij | < 10−5. Note that
this threshold is to remove edges whose order of magnitude
is far from the weights of an existing edge. With a correct
threshold, the existence or absence of edges is correctly

Ŵ W Ŵ −W threshold

Fig. 5: Qualitative results obtained by our approach for different number
of robots. Our approach is accurate in the identification of the weights
irrespective of the number of robots.

Ŵ W Ŵ −W threshold

Fig. 6: Our approach moderately generalizes to other edge densities during
evaluation because the training set only consists of a single graph with
p = 0.2. Top row shows a case with p = 0.1, and the bottom row shows
a case with p = 0.4.

identified for all configurations, except for the case of ρ(G) =
p = 0.4, where the number of edges is underestimated
because only a single graph with ρ(G) = p = 0.2 has been
used for the training of the neural network.

B. Graph identification in multi-robot flocking tasks

The next experiment evaluates our approach when it is
trained with a variety of graph edge densities. We study our
proposed approach in a multi-robot flocking problem, where
the state is defined by the 2D position the robots, so s = 2.
Robot trajectories are generated using the controller proposed
in [38], parameterized as detailed in Appendix I. The training
set is generated with a sparsity pattern determined by the
desired inter robot distance ρ = 0.7m and communication
radius rcomm = 1.2m, simulated through 6s with a sample
time of 0.04s, and where the robots are uniformly spawned
in a square of 5 × 5m. The trajectories are then split in
sub-trajectories of d = 10, each of them associated to a



Fig. 7: MAE as a function of the edge density and flocking configurations.
Each configuration is run 10 times, computing the mean and standard
deviation. Diamond dashed lines are the state-of-the-art [28] (α = 0.1 and
β = 10−5), whereas the circle solid lines are ours.

Ŵ W Ŵ −W

Fig. 8: Qualitative results of our approach for different flocking configura-
tions and edge densities, extracted from the three flocking examples. The
relative value among edges of the discovered weights is accurately identified,
according to the color scales.

graph resulting from the average of the d samples. This
leads to a training set of graphs with edge densities from
5% to 95%. The test cases are generated with the following
configurations, one trajectory each: (1) ρ = 0.7m and
rcomm = 1.2m; (2) ρ = 1.0m and rcomm = 1.2m; and
(3) ρ = 0.7m, rcomm = 1.2m and a compact initialization in
a square 2× 2m. The desired position of the flock is always
x∗ = y∗ = 0.0m. The training of the neural network takes
150000 steps. Every 500 steps, one graph with its associated
sub-trajectories is uniformly randomly picked, initializing the
optimization module each time.

The results in Fig. 7 show how the MAE evolves as a
function of the edge density and flocking configuration. For
all the cases, our approach outperforms the state-of-the-art
by more than one order of magnitude. Compared to the
formation problem, the difference now is greater because
the dynamics of the robots under the flocking controller are
nonlinear. Moreover, in the state-of-the-art algorithms, α and
β are static, so the output is not able to adjust to changes in
edge density. In contrast, our approach adjusts the optimiza-
tion regularizers and provides the latent feature trajectories
that best fit the flocking task, concluding that our approach
has learned to adapt the parameters of the optimization

method to the observed edge probability/density. Compared
to the formation task, the learned neural network achieves
a good performance for the different edge densities because
the training set is diverse in this aspect. The MAE in Fig. 7
is specially good in very sparse networks (ρ(G) < 0.25). As
observed in Fig. 8, the relative value among the discovered
weights is correctly identified, whereas the value of these
weights with respect to the ground-truth Ŵ vary depending
on the edge density of the graph. Looking at Fig. 8, for
sparse, medium and dense graphs the identified weights
tend to be lower, similar and greater than in the ground-
truth graph. This also explains why the MAE in Fig. 7
grows with the edge density. Besides, the neural network
predicts a greater number of cliques, as in the middle row
of Fig. 8. These behaviors require further investigation. As
future work, We also plan to conduct ablation studies to
analyze the impact of the dataset edge density variety in
the generalization capabilities of our approach.

V. CONCLUSION

This work proposed a novel approach for graph topology
identification combining a self-attention encoder with a fast
analytical convex optimization algorithm. Our method pro-
vides a neural network model that learns to identify general
graph topologies using only state trajectories of the nodes.
Our approach is accurate and flexible, surpassing the state-
of-the-art in multi-robot graph identification with different
node configurations, node number, and edge densities. The
applications to multi-robot systems problems are diverse. For
instance, it can be used to identify the topology in multi-
agent demonstrations to constrain the learning of multi-robot
control policies or to detect failures in the communications
among warehouse robots. In addition, by considering agents
instead of robots, the proposed approach can be directly
applied to general networked systems like brain imaging,
genetics or social interactions.

APPENDIX I
HYPERPARAMETERS

The training of the neural networks evaluated in Section IV
is parameterized by a learning rate µ = 0.001 and uses Adam
[47]. Algorithm 1 is parameterized by ϵ = 10−5. The encoder
of the neural network in Section IV-A is given by a first
fully-connected network of layer dimensions [2, 5, 10, 5, 1]
with tanh activation functions and a second fully connected
network of layer dimensions [1, 2, 1] with tanh activation
functions except the last one, which is linear. The layers
for α and β are of dimensions [1, 2, 1] with tanh activation
functions except the last layer, which is a sigmoid. The
encoder of the neural network in Section IV-B is given by a
first fully-connected network of layer dimensions [2, 4, 4, 1]
with tanh activation functions. The layers for α and β are
of dimensions [1, 2, 1] with tanh activation functions except
the last layer, and the output is multiplied by a scalar b = 3.
The flocking follows the dynamics proposed in [38], with
parameters: ϵ = 0.1, a = 5.0, b = 5.0, h = 0.2, c1 = 0.4,
c2 = 0.8.
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