
DARL1N: Distributed multi-Agent Reinforcement Learning with
One-hop Neighbors

Baoqian Wang1 Junfei Xie2 Nikolay Atanasov3

Abstract— Multi-agent reinforcement learning (MARL) meth-
ods face a curse of dimensionality in the policy and value
function representations as the number of agents increases. The
development of distributed or parallel training techniques is
also hindered by the global coupling among the agent dynamics,
requiring simultaneous state transitions. This paper introduces
Distributed multi-Agent Reinforcement Learning with One-hop
Neighbors (DARL1N). DARL1N is an off-policy actor-critic
MARL method that breaks the curse of dimensionality and
achieves distributed training by restricting the agent interac-
tions to one-hop neighborhoods. Each agent optimizes its value
and policy functions over a one-hop neighborhood, reducing
the representation complexity, yet maintaining expressiveness
by training with varying numbers and states of neighbors.
This structure enables the key contribution of DARL1N: a
distributed training procedure in which each compute node
simulates the state transitions of only a small subset of the
agents, greatly accelerating the training of large-scale MARL
policies. Comparisons with state-of-the-art MARL methods
show that DARL1N significantly reduces training time without
sacrificing policy quality as the number of agents increases.

SUPPLEMENTARY MATERIAL

Software and demos supplementing this paper: https:
//github.com/BaoqianWang/IROS22_DARL1N

I. INTRODUCTION

Recent years have witnessed tremendous success of re-
inforcement learning (RL) in challenging decision making
problems, such as robot control and video games. Research
efforts are currently focused on multi-agent settings, such as
cooperative robot navigation, multi-player games, and traffic
management. A direct application of RL techniques in a
multi-agent setting by simultaneously running a single-agent
algorithm at each agent exhibits poor performance [1]. This is
because, without considering interactions among the agents,
the environment becomes non-stationary from the perspective
of a single agent.

Multi-agent reinforcement learning (MARL) [2] addresses
the aforementioned challenge by considering all agent dynam-
ics collectively when learning the policy of an individual agent.
This is achieved by learning a centralized value or action-value

We gratefully acknowledge support from ARL DCIST CRA W911NF-17-
2-0181, NSF CAREER-2048266 and CRI-1953048.

1 Baoqian Wang is with the Department of Electrical and Computer
Engineering, University of California San Diego and San Diego State
University, La Jolla, CA, 92093 (e-mail: bawang@ucsd.edu).

2 Junfei Xie is with the Department of Electrical and Computer
Engineering, San Diego State University, San Diego, CA, 92182 (e-mail:
jxie4@sdsu.edu).

3 Nikolay Atanasov is with the Department of Electrical and Computer
Engineering, University of California San Diego, La Jolla, CA, 92093 (e-mail:
natanasov@ucsd.edu).

(Q) function that involves the states and actions of all agents.
Most effective MARL algorithms, such as multi-agent deep
deterministic policy gradient (MADDPG) [1], counterfactual
multi-agent (COMA) [3], and multi actor attention critic
(MAAC) [4], adopt this strategy. However, learning a joint
Q function is challenging due to the exponentially growing
size of the joint state and action space with the increasing
number of agents [5]. A policy obtained by parametrizing the
joint Q function directly has poor performance in large-scale
settings as shown in [6], [7].

Recently, MARL algorithms that reduce the representa-
tion complexity of the Q function have been shown to
significantly improve the quality of the learned policies for
large-scale multi-agent settings. Successful methods include
value factorization algorithms, such as mean-field MARL [6],
evolutionary population curriculum (EPC) [7] and scalable
actor critic (SAC) [5]. While these methods achieve excellent
performance, their training time can be exceedingly slow
as the number of agents increases because they require
simultaneous state transitions for all agents. This requirement
prevents fully distributed training over a computing cluster
because the compute nodes need to receive the state transitions
of all agents simultaneously.

Our contribution is a distributed MARL training method
called Distributed multi-Agent Reinforcement Learning with
One-hop Neighbors (DARL1N). Its main advantage over state-
of-the-art methods is a fully distributed training procedure, in
which each compute node only simulates a very small subset
of the agents locally. This is made possible by representing
the agent topology as a proximity graph and approximating
the Q function over one-hop neighborhoods. When agent
interactions are restricted to one-hop neighbors, training the
Q function of an agent requires simulation only of the agent
itself and its potential two-hop neighbors. This enables fully
distributed training and greatly accelerates the training of
large-scale MARL policies.

II. RELATED WORK

State-of-the-art MARL algorithms like MADDPG [1],
COMA [3], MAAC [4] and MAPPO [8] learn joint Q/value
functions over all agent states and actions. As the number
of agents increases, the exponential growth of the joint state
and action spaces increases the representation complexity
required to model the Q functions drastically. Moreover, the
need to perform simultaneous state transitions for all agents
prevents distributed or parallel training.

Two directions have been explored in the literature to scale
MARL up. The first direction aims to reduce the complexity

of the Q function representation by factorizing it using local
value functions that only depend on the states and actions of
some agents. The second direction considers distributed or
parallel computing architectures to speed MARL training up.

We first review factorization techniques for the Q and policy
functions in MARL. VDN [9] proposes a decomposition of
the joint Q function into a sum of local value functions.
QMIX [10] improves VDN by combining the local value
functions monotonically using a mixing neural network, which
provides a more expressive Q function. QTRAN [11] further
extends VDN and QMIX by factorizing an alternative Q
function having equivalent optimal actions with the original
Q function without requiring additivity and monotonicity
assumptions. The Q function can also be factorized according
to a coordination graph specifying the agent interactions. For
instance, [12]–[15] decomposed the global Q function into
a set of local value functions with dependencies specified
by agents that are connected in a static undirected graph.
Dynamic coordination graphs for cooperative MARL were
considered in [16]. To approximate the local value functions,
Böhmer et al. [17] used deep neural networks. Mean-Field
MARL techniques [6], including Mean-Field Actor Critic
(MFAC) and Mean-Field Q (MF-Q), factorize the Q function
into a weighted sum of local Q functions, each depending only
on one agent’s action and a mean value of the actions of its
neighboring agents. SAC [5] approximates the Q function of
each agent using the states and actions of its κ-hop neighbors.
The Q and policy factorization of SAC with κ = 1 is adopted
in DARL1N. The main difference with respect to SAC is that
DARL1N also uses the graph structure to devise a distributed
training approach. While training SAC requires simultaneous
state transitions, we show that the Q function of an agent can
be trained off-policy using state transitions only for the agent
itself and its potential two-hop neighbors. The relationship
between SAC and DARL1N will be discussed in more detail
in Sec.VI-A after introducing DARL1N.

While value factorization techniques reduce the represen-
tation complexity of the MARL policy and value functions,
simultaneous simulation and parameter updates for all agents
are required in a single compute node. To speed up training
for MARL, distributed/parallel computing is a promising
technique, which has been rarely studied for MARL. Only a
few distributed or parallel approaches have been proposed to
accelerate MARL training. Multi-agent A3C was explored in
[18], where each parallelly running compute node performs
independent simulation and training for all agents, and
asynchronously updates and fetches the parameters stored in
the central controller. EPC [7] applies curriculum learning
and adopts population invariant policy and Q functions to
support varying numbers of agents in different learning
stages. EPC was implemented in a parallel computing
architecture that consists of multiple compute nodes. Each
compute node simulates all agents in multiple independent
environments, and each environment and agent runs in an
independent and parallel process. Also of interest is the
distributed architecture presented in [19], which was designed
to reduce the communication overhead between compute

nodes and the central controller. Although these methods
can improve training efficiency by leveraging distributed or
parallel computing, their training costs are still high when
the number of agents is large, as they require each compute
node to simulate all agents.

III. BACKGROUND

We consider the MARL problem in which M agents
learn to optimize their behaviors by interacting with the
environment. Denote the state and action of agent i ∈
[M] := {1, . . . ,M} by si ∈ Si and ai ∈ Ai, respectively,
where Si and Ai are the corresponding state and action
spaces. Let s := (s1, . . . , sM) ∈ S :=

∏
i∈[M] Si and

a := (a1, . . . , aM) ∈ A :=
∏
i∈[M]Ai denote the joint state

and action of all agents. At time t, a joint action a(t) applied
at state s(t) triggers a transition to a new state s(t+ 1) ∈ S
according to a conditional probability density function (pdf)
p(s(t + 1)|s(t),a(t)). After each transition, each agent i
receives a reward ri(s(t),a(t)), determined by the joint state
and action according to the function ri : S × A 7→ R. The
objective of each agent i is to choose a deterministic policy
µi : S → Ai to maximize the expected cumulative discounted
reward:

V µ
i (s) := Ea(t)=µ(s(t))

s(t)∼p

[∞∑
t=0

γtri(s(t),a(t))
∣∣ s(0) = s

]
,

where µ := (µ1, . . . , µM) denotes the joint policy of all
agents and γ ∈ (0, 1) is a discount factor. The function
V µ
i (s) is known as the value function of agent i associated

with joint policy µ.
An optimal policy µ∗i for agent i can also be obtained by

maximizing the action-value (Q) function:

Qµ
i (s,a) :=

Ea(t)=µ(s(t))
s(t)∼p

[∞∑
t=0

γtri(s(t),a(t))
∣∣ s(0) = s,a(0) = a

]
and setting µ∗i (s) ∈ arg maxai maxa−i

Q∗i (s,a), where
Q∗i (s,a) := maxµQ

µ
i (s,a) and a−i denotes the actions of

all agents except i. In the rest of the paper, we omit the time
notation t for simplicity, when there is no risk of confusion.

IV. PROBLEM STATEMENT

To develop a distributed MARL algorithm, we impose
additional structure on the MARL problem. Assume that all
agents share a common state space, i.e., Si = Sj , ∀i, j ∈ [M].
Let dist : Si × Si → R be a distance metric on the
homogeneous state space. We introduce a proximity graph
[20] to model the topology of the agent team. A d-disk
proximity graph is defined as a mapping that associates
the joint state s ∈ S with an undirected graph (V, E) such
that V = {s1, s2, . . . , sM} and E = {(si, sj)|dist(si, sj) ≤
d, i 6= j}. Define the set of one-hop neighbors of agent i
as Ni := {j|(si, sj) ∈ E} ∪ {i}. We make the following
regularity assumption about the agents’ motion.

Assumption 1. The distance between two consecutive states,
si(t) and si(t+1), of agent i is bounded, i.e., dist(si(t), si(t+
1)) ≤ ε, for some ε > 0.

This assumption is justified in many problems of in-
terest where, e.g., due to physical limitations, the agent
states can only change by a bounded amount in a single
time step. Following this assumption, we define the set
of potential neighbors of agent i at time t as Pi(t) :=
{j|dist(sj(t), si(t)) ≤ 2ε + d}, which captures the set of
agents that may become one-hop neighbors of agent i at time
t+ 1.

Denote the joint state and action of the one-hop neigh-
bors of agent i by sNi

= (sj1 , . . . , sj|Ni|
) and aNi

=
(aj1 , . . . , aj|Ni|

), respectively, where j1, . . . , j|Ni| ∈ Ni. Our
key idea is to let agent i’s policy, ai = µi(sNi), only
depend on the one-hop neighbor states sNi . The intuition
is that agents that are far away from agent i at time t
have little impact on its current action ai(t). To support this
policy model, we make two additional assumptions on the
problem structure. To emphasize that the output of a function
f :
∏
i∈[M] Si 7→ R is affected only by a subset N ⊆ [M]

of the input dimensions, we use the notation f(s) = f(sN)
for s ∈ S and sN ∈

∏
i∈N Si.

Assumption 2. The reward of agent i can be fully specified
using its one-hop neighbor states sNi

and actions aNi
, i.e.,

ri(s,a) = ri(sNi
,aNi

) and its absolute value is upper
bounded by |ri(sNi

,aNi
)| ≤ r̄, for some r̄ > 0.

Assumption 2 is satisfied in many multi-agent problems
where the reward of one agent is determined only by the
states and actions of nearby agents. Examples are provided in
Sec. VI. Similar assumptions are adopted in [5], [21], [22].

Assumption 3. The transition model of agent i depends
only on its action ai and one-hop neighbor states sNi , i.e.,
pi (si(t+ 1) | s(t), ai(t)) = pi (si(t+ 1) | sNi

(t), ai(t)).

Assumption 3 is common for multi-agent networked
systems as in [5], [22]. As a result, the joint state transition
pdf decomposes as:

p(s(t+ 1) | s(t),a(t)) =

M∏
i=1

pi (si(t+ 1) | sNi(t), ai(t)) .

The objective of each agent i is to obtain an optimal policy
µ∗i by solving the following problem:

µ∗i (sNi) = arg max
ai

max
a−i

Q∗i (s,a),

where Q∗i (s,a) := maxµQ
µ
i (s,a) is the optimal action-value

(Q) function introduced in the previous section.

V. DISTRIBUTED MARL WITH ONE-HOP NEIGHBORS

In this section, we develop the DARL1N algorithm to solve
the MARL problem with proximity-graph structure. DARL1N
limits the interactions among agents within one-hop neighbors
to significantly reduce the learning complexity. To further
speed training up, DARL1N adopts a distributed training

framework that exploits local interactions to decompose and
distribute the computation load.

A. One-hop Neighborhood Value and Policy Factorization

The Q function of each agent associated with the MARL
problem over the proximity graph can be written as

Qµ
i (s,a) = Qµ

i (sNi
, sN−i

,aNi
,aN−i

)

where sN−i
,aN−i

denote joint states and actions of agents
except one-hop neighbors of agent i. Inspired by the SAC
algorithm [5], we approximate the Q function as Q̃µ

i that
depends only on one-hop neighbor states and actions:

Q̃µ
i (sNi

,aNi
)

=
∑

s
N−

i
,a
N−

i

wi(sNi , sN−i
,aNi ,aN−i

)Qµ
i (sNi , sN−i

,aNi ,aN−i
)

where the weights wi(sNi , sN−i
,aNi ,aN−i

) > 0 satisfy∑
s
N−

i
,a
N−

i

wi(sNi
, sN−i

,aNi
,aN−i

) = 1. The approxima-

tion error is given in the following lemma with proof provided
in Appendix A.

Lemma 1. Under Assumptions 2 and 3, the approximation
error between Q̃µ

i (sNi
,aNi

) and Qµ
i (s,a) is bounded by:

|Q̃µ
i (sNi

,aNi
)−Qµ

i (s,a)| ≤ 2r̄γ

1− γ
.

We then parameterize the approximated Q function
Q̃µ
i (sNi

,aNi
) and the policy µi(sNi

) by θi and φi, respec-
tively. To handle the varying sizes of sNi and aNi , in the
implementation, we let the input dimension of Q̃µ

i to be
the largest possible dimension of (sNi ,aNi), and apply zero-
padding for agents that are not in the one-hop neighborhood
of agent i. The same procedure is applied to represent µi(sNi

).
More implementation details are provided in Appendix C.b.

To learn the approximated Q function Q̃µ
i , instead of

incremental on-policy updates to the Q function as in SAC,
we adopt off-policy temporal-difference learning with a buffer
similar to MADDPG. The parameters θi of the approximated
Q function are updated by minimizing:

L (θi) = E(sNi
,aNi

,ri,{sN′
j
}∀j∈N′

i
)∼Di

[(
Q̃µ
i (sNi

,aNi
)− y

)2]
y = ri + γQ̂µ̂

i

(
sN ′i ,aN ′i

)
(1)

where Di is the replay buffer for agent i that contains
information only from Ni,N ′i , the one-hop neighbors of
agent i at the current and next time step, and the one-hop
neighbors N ′j for j ∈ N ′i . To stabilize the training, a target Q
function Q̂µ̂

i with parameters θ̂i and a target policy function
µ̂i with parameters φ̂i are used. The parameters θ̂i and φ̂i are
updated using Polyak averaging, θ̂i = τ θ̂i + (1 − τ)θi and
φ̂i = τ φ̂i+(1−τ)φi, where τ is a hyperparameter. In contrast
to MADDPG, the replay buffer Di for agent i only needs
to store its local interactions (sNi

,aNi
, ri, {sN ′j}∀j∈N ′i) with

nearby agents. Note that {sN ′j}∀j∈N ′i is used to calculate aN ′i .
Also, in contrast to SAC, each agent i only needs to collect
its own training data by simulating local two-hop interactions.

This allows an efficient and distributed training framework
as we explain in the next subsection.

Agent i’s policy parameters φi are updated using gradients
from the policy gradient theorem [23]:

G(φi) = EsNi
,aNi

∼Di

[
∇φi

µi (sNi
)∇aiQ̃

µ
i (sNi

,aNi
)

]
,

(2)

where again data Di only from local interactions is needed.

B. Distributed Training with Local Interactions

To implement the parameter updates proposed above, agent
i needs training data Di = (sNi

,aNi
, ri, {sN ′j}j∈N ′i) from

its one-hop neighbors at the current and next time steps,
whose dynamics obey the following proposition (see proof
in Appendix B.).

Proposition 1. Under Assumption 1, if an agent j is not a
potential neighbor of agent i at time t, i.e., j 6∈ Pi(t), it
will not be a one-hop neighbor of agent i at time t+ 1, i.e.,
j 6∈ Ni(t+ 1).

Proposition 1 allows us to decouple the global interactions
among agents and limit message exchanges or observations to
be among one-hop neighbors. It also allows parallel training
on a distributed computing architecture, where each compute
node only needs to simulate a small subset of the agents. This
leads to significant training efficiency gains as demonstrated
in Sec. VI.

To collect training data, at each time step, agent i first
interacts with its one-hop neighbors to obtain their states sNi

and actions aNi
and compute its reward ri(sNi

,aNi
). To

obtain sN ′j for all j ∈ N ′i , we first determine agent i’s one-
hop neighbors at the next time step, N ′i . Using Proposition 1,
we let each potential neighbor k ∈ Pi perform a transition
to a new state s′k ∼ pk(·|sNk

, ak), which is sufficient to
determine N ′i . Then, we let the potential neighbors Pj of
each new neighbor j ∈ N ′i perform transitions to determine
N ′j and obtain sN ′j . Fig. 1(a) illustrates the data collection
process. At time t, agent i obtains sNi

, aNi
, and ri(sNi

,aNi
)

for Ni = {i, 1}. Then, the potential neighbors of agent i,
Pi = {1, 2, i}, proceed to their next states at time t+ 1. This
is sufficient to determine that N ′i = {i, 2} and obtain sN ′i .
Finally, we let agent 3, which belongs to set P2 = {i, 1, 2, 3},
perform a transition to determine that N ′2 = {i, 2, 3} and
obtain sN ′2 .

We now describe a distributed learning framework that
exploits the local interactions among the agents to optimize
the policy and Q function parameters. Our training framework
consists of a central controller and M learners, each training
a different agent. The central controller stores a copy of all
policy and target policy parameters, φm, φ̂m, ∀m ∈ [M]. In
each training iteration, the central controller broadcasts the
parameters to all learners. Each learner i updates its own
policy parameters φi, φ̂i and returns the updated values to
the central controller.

Each learner i maintains the parameters θi and θ̂i of agent
i’s approximated Q and target Q function. In each training iter-

(a) (b)
Fig. 1: (a) One-hop neighbor transitions from one time step to
the next in a d-disk proximity graph; (b) Distributed MARL
with local interactions.

ation, learner i uses policies with parameters {φm, φ̂m}m∈[M]

received from the central controller. Transitions are simulated
only for agent i, its potential neighbors Pi, and the potential
neighbors Pj of each new neighbor j ∈ N ′i as described
above. DARL1N achieves significant computation savings
because (i) the Q function parameters θi and θ̂i are stored
locally at each learner i and do not need to be communicated,
and (ii) the agent transition simulation occurs only over small
groups of agents, distributed among the M learners instead
of centralized over all agents at the central controller. The
interaction data (sNi

,aNi
, ri, {sN ′j}j∈N ′i) are stored in the

replay buffer Di. Finally, learner i updates θi and φi using (1)
and (2), respectively, and the target network parameters θ̂i and
φ̂i via Polyak averaging. Fig. 1(b) illustrates the distributed
training procedure. The pseudocode of DARL1N is provided
in Alg. 1.

VI. EXPERIMENTS

In this section, we conduct experiments to evaluate the
performance of DARL1N.

A. Experiment Settings

a) Environments: We evaluate DARL1N in four envi-
ronments, Ising Model [6], Food Collection, Grassland, and
Adversarial Battle [7], which cover cooperative and mixed
cooperative competitive games.

b) Benchmarks: We compare DARL1N with three state-
of-the-art MARL algorithms: MADDPG [1], MFAC [6], and
EPC [7]. All benchmark methods need states of all agents
through observation or communication during training and
execution. In contrast, DARL1N only needs states of one-hop
neighbors during execution and two-hop potential neighbors
during training. While the most closely related method to
DARL1N is SAC [5], we do not compare to SAC because
DARL1N is a distributed training version of SAC with the
same Q function factorization. DARL1N utilizes off-policy
training and allows each compute node to simulate state
transitions only for one agent and its potential two-hop
neighbors. In contrast, SAC is an on-policy approach running

Algorithm 1: DARL1N: Distributed multi-Agent
Reinforcement Learning with One-hop Neighbors
// Central controller:

1 Initialize policy, target policy parameters φ = {φm, φ̂m}m∈[M].
2 Broadcast φ to the learners.
3 do
4 Listen to channel and collect updated φ from learners.
5 while updated φ is not received;
// Learner i:

6 Initialize parameters θi, θ̂i of Q̃µ
i , Q̂µ̂

i and replay buffer Di.
7 for iter = 1 : max_iteration do
8 Listen to channel.
9 if φ received from the central controller then

// Local interactions:
10 for step = 1 : max_transition_number do
11 Randomly initialize all agent states.
12 Simulate one-step transitions for the potential

neighbors Pi of agent i to determine N ′
i .

13 Simulate one-step transitions for the potential
neighbors Pj of each agent j ∈ N ′

i to get sN ′j .
14 Store the obtained local interactions

(sNi ,aNi , ri, {sN ′j}j∈N ′i
) in the buffer Di.

// One-hop neighbor-based learning:
15 Sample a mini-batch from Di and update φi, θi φ̂i, θ̂i.

16 Send updated φi, φ̂i to the central controller.

in a single compute node without parallel processing but with
the same Q function factorization.

c) Evaluation Metrics: We evaluate all methods using
two criteria: training efficiency and policy quality. To measure
the training efficiency, we use two metrics: 1) average training
time spent to run a specified number of training iterations
and 2) convergence time. The convergence time is defined
as the time when the variance of the average total training
reward over 90 consecutive iterations does not exceed 2% of
the absolute mean reward, where the average total training
reward is the total reward of all agents averaged over 10
episodes in three training runs with different random seeds.
To measure policy quality, we use convergence reward, which
is the average total training reward at the convergence time.

d) Experiment Configurations: We run our experiments
on Amazon EC2 computing clusters [24]. To understand
the scalability of each method, for each environment, we
consider four scenarios with increasing number of agents.
The number of agents in the Ising Model and Food Collection
environments are set to M = 9, 16, 25, 64 and M =
3, 6, 12, 24, respectively. In the Grassland and Adversarial
Battle environments, the number of agents are set to M =
6, 12, 24, 48. In the experiments, the number of adversary
agents, grass pellets and resource units are all set to M

2 , and
all adversary agents adopt policies trained by MADDPG.
More experiment settings including training parameters, Q
function and policy function representation, and neighborhood
configurations are described in Appendix C.

To evaluate the training efficiency, we configure the
computing resources used to train each method in a way so
that DARL1N utilizes roughly the same or fewer resources

TABLE I: Configurations of Amazon EC2 instances

Instances
CPU
cores

CPU
frequency Memory Network

Hourly
price

c5n.large 2 3.4 GHz 5.3 GB ≤ 25 Gb $ 0.108
z1d.3xlarge 12 4 GHz 96 GB ≤ 10 Gb $ 1.116
z1d.6xlarge 24 4 GHz 192 GB ≤ 10 Gb $ 2.232
c5.12xlarge 48 3.6 GHz 96 GB 12 Gb $ 2.04
c5.18xlarge 72 3.6 GHz 144 GB 25 Gb $ 3.06

TABLE II: Convergence time and convergence reward of
different methods in the Ising Model environment.

Method Convergence Time (s) Convergence Reward
M = 9 16 25 64 9 16 25 64

MADDPG 62 263 810 1996 460 819 1280 1831
MFAC 63 274 851 2003 468 814 1276 1751
EPC 101 26 51 62 468 831 1278 3321
EPC Scratch 101 412 993 2995 468 826 1275 2503
DARL1N 38 102 210 110 465 828 1279 2282

measured by the money spent per hour on Amazon EC2
computing cluster. In particular, to train DARL1N, Amazon
EC2 instance c5n.large is used in all scenarios for all
environments. To train MADDPG and MFAC, instance
z1d.3xlarge is used in the first scenario (M = 9) for Ising
Model and in the first two scenarios for Food Collection,
Grassland and Adversarial Battle. In the other scenarios,
instance z1d.6xlarge is used. To train EPC, we use instance
c5.12xlarge in all scenarios for Food Collection and in the
first three scenarios for Ising Model, Grassland and Adversar-
ial Battle. The other scenarios adopt instance c5.18xlarge. To
configure the parallel computing architecture in EPC, we set
the number of parallel computing instances and the number
of independent environments to 3 and 25, respectively. The
configurations of Amazon EC2 instances as the compute
nodes are summarized in Tab. I.

B. Experiment Results

a) Ising Model: Tab. II shows the convergence reward
and convergence time of different methods. When the number
of agents is small (M = 9), all methods achieve roughly
the same reward. DARL1N takes the least amount of time
to converge while EPC takes the longest time. When the
number of agents increases, it can be observed that the EPC
converges immediately and the convergence reward it achieves
when M = 64 is much higher than the other methods. The
reason is that, in the Ising Model, each agent only needs
information of its four fixed neighbors, and hence in EPC
the policy obtained from the previous stage can be applied
to the current stage. The other methods train the agents from
scratch without curriculum learning. For illustration, we also
show the convergence reward and convergence time achieved
by training EPC from scratch without curriculum learning
(denoted as EPC Scratch in Tab. II). The results show that
EPC Scratch converges much slower than EPC as the number
of agents increases. Note that when the number of agents is
9, EPC and EPC Scratch are the same. Moreover, DARL1N
achieves a reward comparable with that of EPC Scratch but
converges much faster. Fig. 2(a) shows the average time taken
to train each method for 10 iterations in different scenarios.

(a) (b) (c) (d)

Fig. 2: Average training time of different methods to run (a) 10 iterations in the Ising Model, (b) 30 iterations in the Food
Collection, (c) 30 iterations in the Grassland, and (d) 30 iterations in the Adversarial Battle environments.

TABLE III: Convergence time and convergence reward of
different methods in the Food Collection environment.

Method Convergence Time (s) Convergence Reward
M = 3 6 12 24 3 6 12 24

MADDPG 501 1102 4883 2005 24 24 -112 -364
MFAC 512 832 4924 2013 20 23 -115 -362
EPC 1314 723 2900 8104 31 34 -16 -87
DARL1N 502 382 310 1830 14 25 13 -61

(a) (b)

Fig. 3: Average total training reward of different methods in
the Food Collection environment when there are (a) M = 12,
(b) M = 24 agents.

DARL1N requires much less time to perform a training
iteration than the benchmark methods.

b) Food Collection: The convergence rewards and
convergence times in this environment are shown in Tab. III.
The results show that, when the problem scale is small,
DARL1N, MADDPG and MFAC achieve similar performance
in terms of policy quality. As the problem scale increases, the
performance of MADDPG and MFAC degrades significantly
and becomes much worse than DARL1N or EPC when
M = 12 and M = 24, which is also shown in Figs. 3(a)-3(b).
The convergence reward achieved by DARL1N is comparable
or sometimes higher than that achieved by EPC. Moreover,
the convergence speed of DARL1N is the highest among all
methods in all scenarios.

Fig. 2(b) shows the average training time for running 30
iterations. Similar as the results obtained in the Ising Model,
DARL1N achieves the highest training efficiency and its
training time grows linearly as the number of agents increases.
When M = 24, EPC takes the longest training time. This
is because of the complex policy and Q neural network
architectures in EPC, the input dimensions of which grow
linearly and quadratically, respectively, with more agents.

c) Grassland: Similar as the results in the Food Col-
lection environment, the policy generated by DARL1N is
equally good or even better than those generated by the
benchmark methods, as shown in Tab. IV and Fig. 2(c),
especially when the problem scale is large. DARL1N also
has the fastest convergence speed and takes the shortest time
to run a training iteration.

TABLE IV: Convergence time and convergence reward of
different methods in the Grassland environment.

Method Convergence Time (s) Convergence Reward
M = 6 12 24 48 6 12 24 48

MADDPG 423 6271 2827 1121 21 11 -302 -612
MFAC 431 7124 3156 1025 23 9 -311 -608
EPC 4883 2006 3324 15221 12 38 105 205
DARL1N 103 402 1752 5221 18 46 113 210

Fig. 4: States of a subset of agents during an episode in
Adversarial Battle with agents trained by different methods
when there are M = 48 agents.

Fig. 5: Mean and standard deviation of normalized total
reward of competing agents trained by different methods in
the Adversarial Battle environment with M = 48.

d) Adversarial Battle: In this environment, DARL1N
again achieves good performance in terms of policy quality
and training efficiency compared to the baseline methods, as
shown in Tab. V and Fig. 2(d). For illustration, the states
of a subset of agents trained by different methods during an
episode are shown in Fig. 4. It can be observed that both
DARL1N and EPC agents can successfully collect resource

TABLE V: Convergence time and convergence reward of
different methods in the Adversarial Battle environment.

Method Convergence Time (s) Convergence Reward
M = 6 12 24 48 6 12 24 48

MADDPG 452 1331 1521 7600 -72 -211 -725 -1321
MFAC 463 1721 1624 6234 -73 -221 -694 -1201
EPC 1512 1432 2041 9210 -75 -215 -405 -642
DARL1N 121 756 1123 3110 -71 -212 -410 -682

units and kill agents from the other team, but MADDPG and
MFAC fail to do so. To further evaluate the performance, we
reconsider the last scenario (M = 48) and train the good
agents and adversary agents using two different methods. The
trained good agents and adversarial agents are then compete
with each other in the environment. We then apply the Min-
Max normalization to measure the normalized total reward
of agents at each side achieved in an episode. To reduce
uncertainty, we generate 10 episodes and record the mean
values and standard deviations. As shown in Fig. 5, DARL1N
achieves the best performance, and both DARL1N and EPC
significantly outperform MADDPG and MFAC.

VII. CONCLUSION

This paper introduces DARL1N, a scalable MARL al-
gorithm. DARL1N features a novel training scheme that
breaks the curse of dimensionality for action value function
approximation by restricting the interactions among agents
within one-hop neighborhoods. This reduces the learning
complexity and enables fully distributed and parallel training,
in which individual compute nodes only simulate interactions
among a small subset of agents. To demonstrate the scal-
ability and training efficiency of DARL1N, we conducted
comprehensive evaluation in comparison with three state-of-
the-art MARL algorithms, MADDPG, MFAC, and EPC. The
results show that DARL1N generates equally good or even
better policies in almost all scenarios with significantly higher
training efficiency than benchmark methods, especially in
large-scale problem settings.

REFERENCES

[1] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Advances in Neural Information Processing Systems, CA,
USA, December 2017.

[2] L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforcement
learning: An overview,” Innovations in Multi-agent Systems and
Applications, pp. 183–221, 2010.

[3] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in AAAI Conference on
Artificial Intelligence, Louisiana, USA, February 2018.

[4] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” in International Conference on Machine Learning, CA, USA,
June 2019.

[5] G. Qu, A. Wierman, and N. Li, “Scalable reinforcement learning of
localized policies for multi-agent networked systems,” in Learning for
Dynamics and Control, Online, June 2020.

[6] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean
field multi-agent reinforcement learning,” in International Conference
on Machine Learning, June 2018.

[7] Q. Long, Z. Zhou, A. Gupta, F. Fang, Y. Wu, and X. Wang, “Evolu-
tionary population curriculum for scaling multi-agent reinforcement
learning,” in International Conference on Learning Representations
(ICLR), Online, April 2020.

[8] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “The
surprising effectiveness of ppo in cooperative, multi-agent games,”
arXiv preprint arXiv:2103.01955, 2021.

[9] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, “Value-decomposition networks for cooperative multi-
agent learning based on team reward,” in International Conference
on Autonomous Agents and Multi-Agent Systems, Stockholm, Sweden,
July 2018.

[10] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in International Conference on
Machine Learning, Stockholm, Sweden, July 2018.

[11] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “Qtran:
Learning to factorize with transformation for cooperative multi-agent
reinforcement learning,” in Proceedings of 36th the International
Conference on Machine Learning, CA, USA, June 2019.

[12] L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis, “Multiagent
reinforcement learning for urban traffic control using coordination
graphs,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, Antwerp, Belgium, September
2008.

[13] C. Guestrin, M. Lagoudakis, and R. Parr, “Coordinated reinforcement
learning,” in International Conference on Machine Learning, Sydney,
Australia, July 2002.

[14] J. R. Kok and N. Vlassis, “Collaborative multiagent reinforcement
learning by payoff propagation,” Journal of Machine Learning Research,
vol. 7, pp. 1789–1828, 2006.

[15] C. Zhang and V. Lesser, “Coordinating multi-agent reinforcement
learning with limited communication,” in International Conference on
Autonomous Agents and Multi-Agent Systems, MN, USA, May 2013.

[16] T. Wang, L. Zeng, W. Dong, Q. Yang, Y. Yu, and C. Zhang,
“Context-aware sparse deep coordination graphs,” arXiv preprint
arXiv:2106.02886, 2021.

[17] W. Böhmer, V. Kurin, and S. Whiteson, “Deep coordination graphs,”
in International Conference on Machine Learning, Online, April 2020.

[18] D. Simões, N. Lau, and L. P. Reis, “Multi-agent actor centralized-critic
with communication,” Neurocomputing, 2020.

[19] T. Chen, K. Zhang, G. B. Giannakis, and T. Başar, “Communication-
efficient policy gradient methods for distributed reinforcement learning,”
IEEE Transactions on Control of Network Systems, 2021.

[20] F. Bullo, J. Cortés, and S. Martinez, Distributed control of robotic
networks: a mathematical approach to motion coordination algorithms.
Princeton University Press, 2009.

[21] T. Chu, J. Wang, L. Codecà, and Z. Li, “Multi-agent deep reinforcement
learning for large-scale traffic signal control,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 3, pp. 1086–1095, 2019.

[22] Y. Lin, G. Qu, L. Huang, and A. Wierman, “Distributed reinforce-
ment learning in multi-agent networked systems,” arXiv preprint
arXiv:2006.06555, 2020.

[23] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 2018.

[24] AWS, “Amazon ec2,” https://aws.amazon.com/ec2/, 2022, accessed:
2022-01-13.

APPENDIX

A. Proof of Lemma 1

We first prove the following inequality

|Qµ
i (sNi

, sN−i
, aNi

, aN−i
)−Qµ

i (sNi
, ŝN−i

, aNi
, âN−i

)|

≤ 2r̄γ

1− γ
(3)

where ŝN−i
6= sN−i

and âN−i
6= aN−i

. Particularly, let-
ting (s,a) and (ŝ, â) denote (sNi , sN−i

,aNi ,aN−i
) and

(sNi
, ŝN−i

,aNi
, âN−i

), respectively, we have:

|Qµ
i (s,a)−Qµ

i (ŝ, â)|

= |E[

∞∑
t=0

γtri (sNi
(t),aNi

(t)) | (s(0),a(0)) = (s,a)]

− E[

∞∑
t=0

γtri (sNi(t),aNi(t)) | (s(0),a(0)) = (ŝ, â)]|

≤
∞∑
t=0

|E
[
γtri (sNi

(t),aNi
(t)) | (s(0),a(0)) = (s,a)

]
− E

[
γtri (sNi

(t),aNi
(t)) | (s(0),a(0)) = (ŝ, â)

]
|

(a)
=

∞∑
t=1

|E
[
γtri (sNi(t),aNi(t)) | (s(0),a(0)) = (s,a)

]
− E

[
γtri (sNi

(t),aNi
(t)) | (s(0),a(0)) = (ŝ, â)

]
|

≤
∞∑
t=1

γt(|E [ri (sNi(t),aNi(t)) | (s(0),a(0)) = (s,a)] |

+ |E [ri (sNi(t),aNi(t)) | (s(0),a(0)) = (ŝ, â)] |)

≤
∞∑
t=1

2γtr̄ =
2r̄γ

1− γ
(4)

where (a) derives from the fact that (sNi
,aNi

) are part
of both (s,a) and (ŝ, â). In the above equations, we have
removed the subscription of the expectation function E() for
simplicity, which should be a(t) = µ(s(t)), s(t) ∼ p. Then,
we have∣∣∣Q̃µ

i (sNi
,aNi

)−Qµ
i (s,a)

∣∣∣
= |

∑
s
N−

i
,a
N−

i

ωi(sNi ,aNi , sN−i
,aN−i

)Qµ
i (sNi ,aNi , sN−i

,aN−i
)

−Qµ
i (sNi

,aNi
, ŝN−i

, âN−i
)|

≤
∑

s
N−

i
,a
N−

i

ωi(sNi
,aNi

, sN−i
,aN−i

)|Qµ
i (sNi

,aNi
, sN−i

,aN−i
)

−Qµ
i (sNi

,aNi
, ŝN−i

, âN−i
)| ≤ 2r̄γ

1− γ
B. Proof of Proposition 1

If agent j 6∈ Pi(t), then based on the definition of potential
neighbors, we have dist(si(t), sj(t)) > d + 2ε. According
to the triangle inequality, dist(si(t), sj(t+ 1)) + dist(sj(t+
1), sj(t)) ≥ dist(si(t), sj(t)), and according to Assumption
1, dist(sj(t + 1), sj(t)) ≤ ε. Therefore, dist(si(t), sj(t +
1)) > d+ ε. Furthermore, using triangle inequality, we can
obtain dist(si(t + 1), sj(t + 1)) + dist(si(t + 1), si(t)) ≥
dist(si(t), sj(t+ 1)). As dist(si(t+ 1), si(t)) ≤ ε, we have
dist(si(t+ 1), sj(t+ 1)) > d. Therefore, agent j will not be
a one-hop neighbor of agent i at time t+ 1.

C. Experiment Settings

a) Training Parameters: All environments adopt the
same training parameters. In particular, Adam optimizer is
used to update the policy and Q function parameters with
a learning rate of 0.01. The parameter τ in the Polyak
averaging algorithm for updating target policy and target

Q functions is set to τ = 0.01. The discount factor γ is set
to γ = 0.95. The sizes of the buffer are set to 104 and 106

for Food Collection and other environments, respectively.
The parameters are updated after every 4 episodes. The
max_transition_number in Alg. 1 of DARL1N is set to 4
times of the length of one episode. In the Ising Model and
Food Collection environments, the length of each episode is
set to 25 in all scenarios. In the Grassland and Adversarial
Battle environments, the length of an episode is set to
25, 30, 35 and 40 for the scenarios of M = 6, 12, 24 and
48, respectively. The size of a mini batch is set to 32 in the
Ising Model and 1024 in other environments.

b) Q Function and Policy Function Representation: In
the implementations of DARL1N, MADDPG and MFAC, we
use neural networks with fully connected layers to represent
the approximated Q function and policy function. The neural
networks have three hidden layers with each layer having 64
units and adopting ReLU as the activation function. To handle
the varying sizes of sNi

and aNi
in approximated Q function

in DARL1N, we let the input dimension of the approximated
Q function to be the size of the joint state and action space
of the maximum number of agents that can be in Ni and
apply zero padding for agents that are not in the one-hop
neighborhood of agent i. In particular, in the Ising Model,
the maximum number of one-hop neighbors of an agent is
5, which is fixed. The input dimension of the approximated
Q function for agent i is then 5 × (|Si| + |Ai|). For other
environments, the maximum number of one-hop neighbors
of an agent is the total number of agents. The EPC adopts a
population-invariant neural network architecture with attention
modules to support arbitrary number of agents in different
stages for training the Q function and policy function.

c) Environment and Neighborhood Configurations:
The one-hop neighbors of an agent are defined over the
agent’s state space using a distance metric, which is the
prior knowledge of environment. In the Ising Model, the
topology of the agents is fixed, and the one-hop neighbors
of an agent are its vertically and horizontally adjacent
agents and itself. In the other environments, the Euclidean
distance between two agents in the 2-D space is used as
the distance metric, and the neighbor distance d is set
to 0.15, 0.2, 0.25, 0.3, 0.35 when M = 3, 6, 12, 24, 48,
respectively. The bound ε is determined according to the
maximum velocity and time interval between two consecutive
time steps, and is set to 0.05, 0.10, 0.15, 0.20, 0.25 when
M = 3, 6, 12, 24, 48, respectively. The size of agents’ activity
space is set to [−1, 1] × [−1, 1], [−1.5, 1.5] × [−1.5, 1.5],
[−2, 2]× [−2, 2], [−2.5, 2.5]× [−2.5, 2.5], [−3, 3]× [−3, 3]
when M = 3, 6, 12, 24, 48, respectively.

