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Abstract— Most multi-agent reinforcement learning
(MARL) methods are limited in the scale of problems they
can handle. With increasing numbers of agents, the number
of training iterations required to find the optimal behaviors
increases exponentially due to the exponentially growing
joint state and action spaces. This paper tackles this
limitation by introducing a scalable MARL method called
Distributed multi-Agent Reinforcement Learning with One-
hop Neighbors (DARL1N). DARL1N is an off-policy actor-
critic method that addresses the curse of dimensionality by
restricting information exchanges among the agents to one-
hop neighbors when representing value and policy functions.
Each agent optimizes its value and policy functions over a
one-hop neighborhood, significantly reducing the learning
complexity, yet maintaining expressiveness by training with
varying neighbor numbers and states. This structure allows
us to formulate a distributed learning framework to further
speed up the training procedure. Distributed computing
systems, however, contain straggler compute nodes, which
are slow or unresponsive due to communication bottle-
necks, software or hardware problems. To mitigate the
detrimental straggler effect, we introduce a novel coded
distributed learning architecture, which leverages coding
theory to improve the resilience of the learning system to
stragglers. Comprehensive experiments show that DARL1N
significantly reduces training time without sacrificing policy
quality and is scalable as the number of agents increases.
Moreover, the coded distributed learning architecture im-
proves training efficiency in the presence of stragglers.

Index Terms— Multi-Agent Reinforcement Learning, Scal-
ability, Distributed Computing, Coded Computation.

I. INTRODUCTION

Recent years have witnessed tremendous success of re-
inforcement learning (RL) in challenging decision making
problems, such as robot control and video games. Research
efforts are currently focused on multi-agent settings, including
cooperative robot navigation [1], multi-player games [2], and
traffic management [3]. Direct application of RL techniques
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in multi-agent settings by running single-agent algorithms
simultaneously on each agent exhibits poor performance [4].
This is because, without considering interactions among the
agents, the environment becomes non-stationary from the
perspective of a single agent.

Multi-agent reinforcement learning (MARL) [5] addresses
this challenge by considering all agents and their dynamics
collectively when learning the value function and policy of an
individual agent. Most effective MARL algorithms, such as
multi-agent deep deterministic policy gradient (MADDPG) [4]
and counterfactual multi-agent (COMA) [6], adopt this strategy.
However, learning a joint-state value or action-value (Q) or
policy function is challenging due to the exponentially growing
joint state and action spaces with increasing number of agents
[7], [8]. Policies trained with joint state-action pairs have poor
performance in large-scale settings as demonstrated in recent
work [9], [10], because their accurate approximation requires
models with extremely large capacity.

MARL algorithms that improve the quality of learned
policies for large-scale multi-agent settings often employ value
function factorization that factorizes the global value/Q function
into individual value/Q functions depending on local states and
actions, e.g., as in Value Decomposition Network (VDN) [11],
QMIX [12], QTran [13], mean-field MARL (MFAC) [9] or
scalable actor critic (SAC) [8]. In addition to value factorization,
there are several other methods proposed to enable scalable
MARL. MAAC [14] uses an attention module to abstract
states of other agents when training an agent’s Q function,
which reduces the quadratically increasing input space to a
linear space. EPC [10] applies curriculum learning to gradually
scale MARL up. While these methods achieve great policy
performance, the training time can be significant when the
number of agents increases because these methods cannot be
easily trained in an efficient distributed or parallel manner over
multiple computers.

To address the challenge of training policies for large
numbers of agents over a distributed computing architecture,
we propose a MARL algorithm called Distributed multi-Agent
Reinforcement Learning with One-hop Neighbors (DARL1N).
DARL1N’s main advantage over state-of-the-art MARL meth-
ods is that it allows distributed training across compute nodes
(devices with networking, storage, and computing capabilities)
running in parallel, with each compute node simulating only
a very small subset of the agent transitions. This is made
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possible by modeling the agent team topology as a proximity
graph and representing the Q function and policy of each agent
as a function of its one-hop neighbors only. This structure
significantly reduces the representation complexity of the Q
and policy functions and yet maintains expressiveness when
training is done over varying states and numbers of neighbors.
Furthermore, when agent interactions are restricted to one-
hop neighborhoods, training an agent’s Q function and policy
requires transitions only of the agent itself and its potential
two-hop neighbors. This enables highly efficient distributed
training because each compute node needs to simulate only
the transitions of the agents assigned to it and their two-hop
neighbors.

RL or MARL policies can be trained over a distributed
computing architecture in either a centralized [15], [16] or
decentralized [17] manner. Decentralized architectures [17]
offer greater resilience to node failures and malicious attacks
but introduce significant communication overhead as frequent
information exchanges are required. Additionally, achieving
global coordination in such systems is inherently challenging:
global information must either be inferred under the assumption
of globally observable states, which limits its applicability,
or obtained through consensus, which is difficult to achieve
in large-scale systems. In contrast, centralized architectures
with a central controller are more communication-efficient
and facilitate easier global coordination, with communication
occurring either asynchronously [18] or synchronously [19].
Asynchronous training faces multiple challenges including slow
convergence, difficult debugging and analysis, and sometimes
subpar quality of learned policies as learners may return stale
gradients evaluated with old parameters [19]–[23]. Synchronous
training is superior in these aspects but is vulnerable to
computing stragglers [24] that are common in wireless and
mobile networks. These stragglers, which are slow or unrespon-
sive compute nodes caused by communication bottlenecks or
software and hardware issues, can result in delays or failures
in the training process. Coded computation [25] that employs
coding theory to introduce redundant computation can mitigate
computing stragglers. While extensively explored in various
distributed computation problems such as matrix multiplication
[25], linear inverse problems [26], convolution [27], and
map reduce [28], its application for MARL remains under-
studied. In our previous work [16], we explored the merits of
coded computation in enhancing resilience and accelerating the
training of MADDPG [16] in a distributed manner. Building
upon this, in this paper, we propose a coded distributed learning
architecture tailored for DARL1N. Unlike the one introduced in
[16], where the central controller simulates global environment
interactions among all agents and sends simulation data to each
learner to train an agent, in the new architecture, each learner
directly simulates local environment interactions among a small
set of neighboring agents during individual agent training and
thus improves distributed computing efficiency and reduces
communication overhead.

Contributions: The primary contribution of this paper is
a new MARL algorithm called DARL1N, which employs
one-hop neighborhood factorization of the value and policy
functions, allowing distributed training with each compute

node simulating a small number of agent transitions. DARL1N
supports highly-efficient distributed training and generates high-
quality multi-agent policies for large agent teams. The second
contribution is a novel coded distributed learning architecture
for DARL1N called Coded DARL1N, which allows individual
agents to be trained by multiple compute nodes simultaneously,
enabling resilience to stragglers. Our analysis shows that
introducing redundant computations via coding theory does not
introduce bias in the value and policy gradient estimates, and
the training converges similarly to stochastic gradient descent-
based methods. Four codes including Maximum Distance
Separable (MDS), Random Sparse, Repetition, and Low
Density Generator Matrix (LDGM) codes are investigated
to introduce redundant computation. Moreover, we conduct
comprehensive experiments comparing DARL1N with four
state-of-the-art MARL methods, including MADDPG, MFAC,
EPC and SAC, and evaluating their performance in different
RL environments, including Ising Model, Food Collection,
Grassland, Adversarial Battle, and Multi-Access Wireless
Communication. We also conduct experiments to evaluate the
resilience of Coded DARL1N to stragglers when trained under
different coding schemes.

It is noted that DARL1N was first presented in a short
conference version [29]. Differing from this version, this
journal article further extends DARL1N by introducing a
new coded distributed learning architecture to enhance its
resilience to stragglers while also improving training efficiency.
Theoretical analysis is conducted to elucidate the convergence
of Coded DARL1N. Additionally, this journal undertakes a
more comprehensive experimental study, encompassing not
only the performance of DARL1N but also its new coded
variant. It includes additional benchmarks, environments, and
evaluation metrics for a more thorough assessment from various
aspects.

In the rest of the paper, Sec. II formulates the MARL
problem to be addressed and describes the occurrence of
stragglers within distributed learning systems. The proposed
DARL1N algorithm is then introduced in Sec. III, followed
by the coded distributed learning architecture and different
coding schemes, which are described in Sec. IV and Sec.
V, respectively. Experiment results are presented in Sec. VI.
Limitations and future work are discussed in Sec. VII. Finally,
Sec. VIII concludes the paper.

II. PROBLEM STATEMENT

In MARL, M agents learn to optimize their behavior by
interacting with the environment. Denote the state and action
of agent i ∈ [M ] := {1, . . . ,M} by si ∈ Si and ai ∈ Ai,
respectively, where Si and Ai are the corresponding state
and action spaces. Let s := (s1, . . . , sM ) ∈ S :=

∏
i∈[M ] Si

and a := (a1, . . . , aM ) ∈ A :=
∏

i∈[M ] Ai denote the joint
state and action of all agents. At time t, a joint action a(t)
applied at state s(t) triggers a transition to a new state s(t+
1) ∈ S according to a conditional probability density function
(pdf) p(s(t+ 1)|s(t),a(t)). After each transition, each agent i
receives a reward ri(s(t),a(t)), determined by the joint state
and action according to the function ri : S × A 7→ R. The
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objective of each agent i is to design a policy µi : S → Ai to
maximize the expected cumulative discounted reward (known
as the value function):

V µ
i (s) := Ea(t)=µ(s(t))

s(t)∼p

[ ∞∑
t=0

γtri(s(t),a(t))
∣∣ s(0) = s

]
,

where µ := (µ1, . . . , µM ) denotes the joint policy of all agents
and γ ∈ (0, 1) is a discount factor. Alternatively, an optimal
policy µ∗

i for agent i can be obtained by maximizing the
action-value (Q) function:

Qµ
i (s,a) :=

Ea(t)=µ(s(t))
s(t)∼p

[ ∞∑
t=0

γtri(s(t),a(t))
∣∣ s(0) = s,a(0) = a

]
and setting µ∗

i (s) ∈ argmaxai
maxa−i

Q∗
i (s,a), where

Q∗
i (s,a) := maxµ Qµ

i (s,a) and a−i denotes the actions of all
agents except i.

To develop a distributed MARL algorithm, we impose
additional structure on the MARL problem. Assume that all
agents share a common state space, i.e., Si = Sj , ∀i, j ∈ [M ]
and let dist : Si × Si → R be a distance metric on the state
space. Note that the distance metric can also be defined over
a common state subspace. However, for notation simplicity, a
common state space is assumed here. Consider a proximity
graph [30] that models the topology of the agent team. A
d-disk proximity graph is defined as a mapping that associates
the joint state s ∈ S with an undirected graph (V, E) such
that V = {s1, s2, . . . , sM} and E = {(si, sj)|dist(si, sj) ≤
d, i ̸= j}. Define the set of one-hop neighbors of agent i
as Ni := {j|(si, sj) ∈ E} ∪ {i}. We make the following
assumption about the agents’ motion.

Assumption 1: The distance between two consecutive states,
si(t) and si(t+1), of agent i is bounded, i.e., dist(si(t), si(t+
1)) ≤ ϵ, for some ϵ > 0.

This assumption is satisfied in many problems where, e.g.,
due to physical constraints, the agent states can only change
by a bounded amount in a single time step.

Define the potential neighbors of agent i at time t as Pi(t) :=
{j|dist(sj(t), si(t)) ≤ 2ϵ+d}, which captures the set of agents
that may become one-hop neighbors of agent i at time t+ 1.
Denote the joint state and action of the one-hop neighbors of
agent i by sNi

= (sj1 , . . . , sj|Ni|
) and aNi

= (aj1 , . . . , aj|Ni|
),

respectively, where j1, . . . , j|Ni| ∈ Ni. Our key idea is to let
agent i’s policy, ai = µi(sNi), only depend on the one-hop
neighbor states sNi instead of all agent states s, and we assume
that each agent can obtain its one-hop neighbor states through
observation or communication. The intuition is that agents that
are far away from agent i at time t have little impact on its
current action ai(t). To emphasize that the output of a function
f :

∏
i∈[M ] Si 7→ R is affected only by a subset N ⊆ [M ] of

the input dimensions, we use the notation f(s) = f(sN ) for
s ∈ S and sN ∈

∏
i∈N Si in the remainder of the paper. We

make two additional assumptions on the problem structure to
ensure the validity of our policy model.

Assumption 2: The reward of agent i can be fully specified
using its one-hop neighbor states sNi and actions aNi , i.e.,
ri(s,a) = ri(sNi

,aNi
).

This assumption can always be satisfied by setting d to the
full environment range. In this case, the one-hop neighbor
reward assumption becomes the standard reward definition,
which depends on states and actions of all agents and is
applicable to general MARL problems. For environments with
local reward models, a smaller distance value d can be chosen
based on the specific environment configuration. For example,
in collision avoidance problems, an agent’s reward may depend
only on the states and actions of nearby agents that maintain
a safe distance. In multi-agent networks or sensing problems,
the one-hop neighbors can be those within communication or
observation range. Next, we make a similar assumption for
agent i’s transition model.

Assumption 3: The transition model of agent i depends only
on aNi

and states sNi
, i.e., pi (si(t+ 1) | sNi

(t),aNi
(t)) .

The objective of each agent i is to obtain an optimal policy
µ∗
i by solving the following problem:

µ∗
i (sNi

) = argmax
ai

max
a−i

Q∗
i (s,a), (1)

where Q∗
i (s,a) := maxµ Qµ

i (s,a) is the optimal action-value
(Q) function introduced in the previous section.

The goal of this paper is to develop a MARL algorithm that
(i) utilizes policy and value representations that scale favorably
with the number of agents M and (ii) allows efficient training on
a distributed computing system containing compute stragglers.

III. DISTRIBUTED MULTI-AGENT REINFORCEMENT
LEARNING WITH ONE-HOP NEIGHBORS (DARL1N)

This section develops the DARL1N algorithm to solve the
MARL problem with proximity-graph structure introduced in
Sec. II. DARL1N considers the effect of the one-hop neighbors
of an agent in representing its Q and policy functions, which
allows updating the Q and policy function parameters using
only local one-hop neighborhood transitions.

Specifically, the Q function of each agent i can be expressed
as a function of its one-hop neighbor states sNi and actions aNi

as well as the states sN−
i

and actions aN−
i

of the remaining
agents that are not immediate neighbors of i:

Qµ
i (s,a) = Qµ

i (sNi
, sN−

i
,aNi

,aN−
i
). (2)

Inspired by the SAC algorithm [8], we approximate the Q value
with a function Q̃µ

i that depends only on one-hop neighbor
states and actions:

Q̃µ
i (sNi

,aNi
)

=
∑

s
N−

i
,a

N−
i

wi(sNi
, sN−

i
,aNi

,aN−
i
)Qµ

i (sNi
, sN−

i
,aNi

,aN−
i
)

where the weights wi(sNi
, sN−

i
,aNi

,aN−
i
) > 0 satisfy∑

s
N−

i
,a

N−
i

wi(sNi
, sN−

i
,aNi

,aN−
i
) = 1. The approximation

error is given in the following lemma.
Lemma 1: If the absolute value of agent i’s reward is

upper bounded as |ri(sNi ,aNi)| ≤ r̄, for some r̄ > 0, the
approximation error between Q̃µ

i (sNi
,aNi

) and Qµ
i (s,a) is

bounded as:

|Q̃µ
i (sNi

,aNi
)−Qµ

i (s,a)| ≤
2r̄γ

1− γ
.
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Proof: See Appendix A.
We parameterize the approximated Q function Q̃µ

i (sNi ,aNi)
and the policy µi(sNi

) by θi and ϕi, respectively. To handle
the varying sizes of sNi

and aNi
, in the implementation, we

set the input dimension of Q̃µ
i to the largest possible dimension

of (sNi
,aNi

), and apply zero-padding for agents that are
not within the one-hop neighborhood of agent i. The same
procedure is applied to represent µi(sNi).

To learn the approximated Q function Q̃µ
i , instead of

incremental on-policy updates to the Q function as in SAC
[8], we apply off-policy temporal-difference learning with a
buffer similar to MADDPG [4]. The parameters θi of the
approximated Q function are updated by minimizing the
following temporal difference error:

L (θi) = E(sNi
,aNi

,ri,{sN′
l
}∀l∈N′

i
)∼Di

[(
Q̃µ

i (sNi ,aNi)− y
)2

]
y = ri + γQ̂µ̂

i

(
sN ′

i
,aN ′

i

)
(3)

where Di is a replay buffer for agent i that contains information
only from Ni and N ′

i , the one-hop neighbors of agent i at the
current and next time steps, and the one-hop neighbors N ′

l

for l ∈ N ′
i . Data from the one-hop neighbors of the next-step

one-hop neighbors N ′
i are needed to compute the next-step

one-hop neighbors actions aN ′
i
. To stabilize the training, a

target Q function Q̂µ̂
i with parameters θ̂i and a target policy

function µ̂i with parameters ϕ̂i are used. The parameters θ̂i
and ϕ̂i are updated using Polyak averaging: θ̂i = τ θ̂i + (1−
τ)θi, ϕ̂i = τ ϕ̂i + (1 − τ)ϕi where τ is a hyperparameter. In
contrast to MADDPG [4], the replay buffer Di for agent i only
needs to store its local interactions (sNi

,aNi
, ri, {sN ′

l
}∀l∈N ′

i
)

with nearby agents, where {sN ′
l
}∀l∈N ′

i
is required to calculate

aN ′
i
. Also, in contrast to SAC [8], each agent i only needs

to collect its own training data by simulating local two-hop
interactions, which reduces agents’ experience correlations and
allows efficient distributed training as explained in Sec. IV.

Agent i’s policy parameters ϕi are updated using a gradient

g(ϕi) = EsNi
,aNi

∼Di [∇ϕi
µi (sNi

)∇ai
Q̃µ

i (sNi
,aNi

)],
(4)

where again data Di only from local interactions is needed.
To implement the parameter updates proposed above, agent

i needs training data Di = (sNi
,aNi

, ri, {sN ′
l
}l∈N ′

i
) from its

one-hop neighbors at the current and next time steps. The
relation between one-hop neighbors at the current and next
time steps is captured by the following proposition.

Proposition 1: Under Assumption 1, if an agent j is not
a potential neighbor of agent i at time t, i.e., j ̸∈ Pi(t), it
will not be a one-hop neighbor of agent i at time t+ 1, i.e.,
j ̸∈ Ni(t+ 1).

Proof: See Appendix B.
Proposition 1 allows us to decouple the global interactions

among agents and limit the necessary observations to be
among one-hop neighbors. To collect training data, at each
time step, agent i first interacts with its one-hop neighbors
to obtain their states sNi and actions aNi , and compute its
reward ri(sNi ,aNi). To obtain sN ′

l
for all l ∈ N ′

i , we first
determine agent i’s one-hop neighbors at the next time step,

(a) (b)

Fig. 1: (a) One-hop neighbor transitions from one time step
to the next in a d-disk proximity graph; (b) Coded distributed
learning architecture.

N ′
i . Using Proposition 1, we let each potential neighbor k ∈ Pi

perform a transition to a new state s′k ∼ pk(·|sNk
,aNk

),
which is sufficient to determine N ′

i . Then, we let the potential
neighbors Pl of each new neighbor l ∈ N ′

i perform transitions
to determine N ′

l and obtain sN ′
l
.

Fig. 1(a) illustrates the data collection process. At time t,
agent i obtains sNi

, aNi
, and ri(sNi

,aNi
) for Ni = {i, 1}.

Then, the potential neighbors of agent i, Pi = {1, 2, i}, proceed
to their next states at time t+1. This is sufficient to determine
that N ′

i = {i, 2} and obtain sN ′
i
. Finally, we let agent 3,

which belongs to set P2 = {i, 1, 2, 3}, perform a transition to
determine that N ′

2 = {i, 2, 3} and obtain sN ′
2
.

As each agent only needs to interact with one-hop neighbors
to update its parameters, the agents can be trained in parallel
on a distributed computing architecture, where each compute
node only needs to simulate the two-hop neighbor transitions
for agents assigned to it for training.

IV. CODED DISTRIBUTED LEARNING ARCHITECTURE

In this section, we introduce an efficient and resilient
distributed learning architecture for training DARL1N. A coded
distributed learning architecture, illustrated in Fig. 1(b), consists
of a central controller and N compute nodes, called learners.
The central controller stores a copy of all parameters of the
policy ϕi, target policy ϕ̂i, Q function θi, and target Q function
θ̂i, for all i ∈ [M ]. In each training iteration, the central
controller broadcasts all agents’ parameters to all learners, who
then calculate and return the gradients required for updating
the parameters. In a traditional uncoded distributed learning
architecture, each agent is only trained (with its policy and value
gradients computed) by a single learner. If any learner becomes
slow or unresponsive, i.e., a straggler, the whole training
procedure is delayed or may fail. Our coded distributed learning
architecture addresses the possible presence of stragglers in
the computing system by introducing redundant computations.
We let more than one learner train each agent, which not only
improves the system resilience to stragglers but also accelerates
the training speed, as we show in Sec. VI-B. To describe which
learners are assigned to train each agent, we introduce an
assignment matrix C ∈ RN×M with non-zero entries cj,i ̸= 0
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indicating that learner j ∈ [N ] is assigned to train agent
i ∈ [M ]. The complete set of learners assigned to train an
agent i can then be determined by {j|cj,i ̸= 0,∀j ∈ [N ]}. To
construct the assignment matrix C, we apply coding theory as
explained in Sec.V.

To calculate the gradients for an agent i, each learner j
with cj,i ̸= 0 simulates transitions to get the interaction data
(sNi

,aNi
, ri, {sN ′

l
}l∈N ′

i
) as described in Sec. III, which are

stored in a replay buffer Dj,i. After that, learner j calculates the
gradients of the temporal difference error needed for updating
the Q function parameters θi of agent i using (3) and updating
the policy parameters ϕi using (4).

As the replay buffer Dj,i can have a large size, to improve
efficiency, we use a mini-batch Bj,i uniformly sampled from
Dj,i to estimate the expectations in (3)-(4). In particular, the
temporal difference error in (3) is estimated with:

L̂j (θi) =
1

|Bj,i|
∑

(sNi
,aNi

,ri,{sN′
l
}∀l∈N′

i
)

∈Bj,i

(
Q̃µ

i (sNi ,aNi)− y
)2

y = ri + γQ̂µ̂
i

(
sN ′

i
,aN ′

i

)
. (5)

Similarly, the gradients used to update policy parameters are
estimated with:

ĝj(ϕi) =
1

|Bj,i|
∑

(sNi
,aNi

)∈Bj,i

∇ϕiµi (sNi)∇aiQ̃
µ
i (sNi ,aNi) . (6)

Let êj,i = [∇L̂j(θi), ĝj(ϕi)] denote the concatenation of
estimated gradients. Instead of directly returning the estimated
gradients for all agents trained by learner j, i.e., {êj,i|∀i ∈
[M ], cj,i ̸= 0}, learner j calculates a linear combination of
the gradients: yj =

∑M
i=1 cj,iêj,i with weights provided by

the assignment matrix C and returns yj back to the central
controller.

At the central controller, let yJ denote the results that have
arrived by a certain time from learners J = {j|yj is received}.
Moreover, let CJ ∈ R|J |×M be a submatrix of C formed by
the j-th row of C,∀j ∈ J . The received gradients yJ satisfy:

yJ = Dq

q = [ê1,1; ê1,2; . . . ; êN,M−1; êN,M ] (7)

where D ∈ R|J |×MN is constructed as follows: for i-th row
of D, fill the (1 + (Ji − 1)M)-th to (JiM)-th entries with
i-th row of CJ and set all other entries to 0, Ji denotes
i-th element of J . The vector q is a concatenation of all
the gradients estimated by all learners. The central controller
updates the agents’ parameters once it receives enough results
to decode all estimated gradients, denoted as ẽ. This happens
when rank(CJ ) = M , and the decoding equation is given as
follows:

ẽ = (CT
JCJ )−1CT

JyJ . (8)

Alg. 1 summarizes the coded training procedure of DARL1N
over a distributed computing architecture, referred to as the
Coded DARL1N.

In Coded DARL1N, the gradients ẽ used by the central
controller for parameter updates are stochastic gradients
computed by mini-batch samples, which are estimates of the

Algorithm 1: Coded DARL1N
// Central controller:

1 Initialize policy, target policy, Q, and target Q parameters
ϕ = {ϕi, ϕ̂i}i∈[M ], θ = {θi, θ̂i}i∈[M ];

2 Broadcast ϕ,θ to the learners;
3 yJ ← [ ];
4 do
5 Listen to channel and collect yj from the learners:

yJ ← [yJ , yj ], j ∈ [N ];
6 while ẽ is not recoverable;
7 Send acknowledgements to learners;
8 Update ϕ,θ with ẽ;
// Learner j:

9 Initialize replay buffer Dj,i;
10 for iter = 1 : max_iteration do
11 Listen to channel;
12 if ϕ,θ received from the central controller then
13 yj ← 0; i← 1;
14 while i ≤M and no acknowledgement received do
15 if cj,i ̸= 0 then

// Local interactions:
16 Perform local interactions to collect training

data for agent i and store the data into Dj,i;
17 Sample a mini-batch from Dj,i and calculate

êj,i using (5)-(6);

18 yj ← yj + cj,iêj,i;
19 i← i+ 1;
20 Send updated yj to the central controller;

true gradients e = [e1, . . . , eM ], where ei = [∇L(θi),g(ϕi)]
with L(θi) and g(ϕi) defined in (4) and (3), respectively. The
estimation performance is illustrated in the following theorem.

Theorem 1: The mini-batch stochastic gradients ẽ computed
by Coded DARL1N are unbiased estimates of the true gradients
e, with variance determined by the assignment matrix C.

Proof: See Appendix C.
Based on Theorem 1, we can infer that Coded DARL1N

converges asymptotically similarly to other stochastic gradient
descent-based methods [31].

V. ASSIGNMENT MATRIX CONSTRUCTION AND
ASSESSMENT

The assignment matrix C affects both the policy variance and
computational efficiency of Coded DARL1N. In this section,
we explore different schemes, both uncoded and coded, for
constructing the assignment matrix, and conduct theoretical
analyses on their performance.

A. Assignment Matrix Construction
1) Uncoded Assignment Scheme: In an uncoded distributed

training architecture, different learner nodes train different
agents exclusively. The assignment matrix can then be con-
structed as: CUncoded = [IM |0]T , where IM ∈ RM×M is an
identity matrix.

2) Coded Assignment Schemes: Coded distributed training
assigns each agent to multiple learners. Here, we investigate
five codes, where the encoding matrices can be directly utilized
as the assignment matrix.



6

• MDS Code: An MDS code [32] is an erasure code with
the property that any square submatrix of its encoding
matrix CMDS has full rank. A Vandermonde matrix [16],
[33] is commonly used for encoding, with the (j, i)-th
entry given by Cj,i = αj−1

i , where αi ̸= 0, i ∈ [M ], can
be any non-zero distinct real numbers.

• Random Sparse Code: Compared to an MDS code, a
Random Sparse code [34] results in a sparser assignment
matrix with the (j, i)-th entry given by:

CRandom
j,i =

{
0, with probability 1− ξ,

ζ, with probability ξ.
(9)

where ζ ∼ N (0, 1), ξ ∈ [0, 1].
• Repetition Code: A Repetition code [34] assigns agents

to the learners repetitively in a round-robin fashion. The
(j, i)-th entry of the assignment matrix is given by:

CRepetition
j,i =

{
1, if i = (j mod M),

0, else,
(10)

where mod is the modulo operator.
• LDGM Code: An LDGM code [35] is a special type of

a Low Density Parity Check code [36] that constructs
a sparser assignment matrix. By applying a systematic
biased random code ensemble [35], the LDGM assignment
matrix takes the form: CLDGM = [IM |P̂]T , where each
entry of P̂ is generated independently according to a
Bernoulli distribution with success probability Pr(P̂i,j =
1) = ρ. Note that when ρ ≤ 1

2 , the assignment matrix of
LDGM code has a low density.

B. Analysis and Comparison of Assignment Schemes

We provide a theoretical analysis and comparison of different
assignment schemes from the following aspects: 1) computation
overhead and 2) resilience to stragglers.

1) Computation Overhead: The coded schemes mitigate the
impact of stragglers by assigning each agent to multiple learners.
The training performed by the extra learners is redundant.
To quantify the computation overhead introduced by this
redundancy, we use the following metric:

oc =
1

M

N∑
j=1

M∑
i=1

1Cj,i ̸=0 − 1,

where the first term on the right hand side calculates the average
number of learners used for training each agent, and oc ≥ 0.
Using the above metric, the computation overhead of each
assignment scheme can be derived as follows:

• Uncoded: oUncoded
c = 0, as each agent is assigned to only

one learner in the uncoded scheme.
• MDS Code: oMDS

c = N − 1. All entries of the MDS
assignment matrix are non-zero, indicating that each agent
is assigned to all learners.

• Random Sparse Code: oRandom
c depends on the parameter

ξ, but its expectation is derived as E(oRandom
c ) = ξN − 1.

• Repetition Code: oRepetition
c = N

M − 1.
• LDGM Code: E(oLDGM

c ) = (N −M)ρ.

Among these schemes, the MDS code incurs the highest
computation overhead, while the uncoded scheme results in
the lowest. The overhead introduced by the Random Sparse
and LDGM codes depend on their parameters, ξ and ρ.

2) Resilience to Stragglers: According to (8), the central
controller can update the agents’ gradients only after receiving
results from enough learners, specifically when rank(CJ ) =
M . To evaluate the resilience of assignment schemes to
stragglers, we analyze the probability of each scheme being
influenced by stragglers under the following assumption.

Assumption 4: In each training iteration, each compute node
in a distributed computing system has a probability of η ∈ [0, 1]
to become a straggler.

The Random Sparse and LDGM codes have randomly
generated entries that depend on parameters ξ and ρ, making
them hard to analyze theoretically. We focus our analysis on
the Uncoded, MDS, and Repetition codes as follows.

Proposition 2: The probability that the Uncoded scheme
will be influenced by stragglers is 1− (1− η)M .

Proposition 3: The probability that the MDS code will be
influenced by stragglers is

∑N
j=N−M+1

(
N
j

)
(1− η)N−jηj .

Proposition 4: The probability that the Repetition code will
be influenced by stragglers is 1− (1− η

N
M )M given that N

M
is positive integer.

The proof of Proposition 2 is direct since the Uncoded
scheme is affected by any straggler. The proofs of Propositions
3 and 4 are provided in Appendices D and E, respectively.

VI. EXPERIMENTS

In this section, we evaluate the DARL1N algorithm and our
coding schemes for mitigating compute stragglers.

A. Performance of DARL1N

We conduct a series of comparisons between DARL1N and
four state-of-the-art MARL algorithms. For fair comparison,
we train DARL1N using a distributed learning architecture
with uncoded assignments, and run our experiments on the
Amazon EC2 computing clusters [37], which are considered
reliable and free of stragglers.

1) Experiment Settings:
a) Environment Configurations: We evaluate DARL1N in

five environments, including the Ising Model [9], Food Col-
lection, Grassland, Adversarial Battle [10], and Multi-Access
Wireless Communication [8], which cover cooperative and
mixed cooperative competitive games. Please refer to [8]–[10]
for the description of each environment.

To understand the scalability of our method, we vary the
number of agents M and the size of the local state spaces.
The specific configurations for the first four environments can
be referenced in the conference version [29]. In the Multi-
Access Wireless Communication environment, which was not
considered in [29], we adopt the setting in [8] and consider
a grid of 3 × 3 agents, with each having a state space of
Si = {0, 1}z to indicate whether there is a packet to send by
time step z, where z is set to either z = 2 or z = 10.
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TABLE I: Convergence time and convergence reward of
different methods in the Ising Model environment.

Method Convergence Time (s) Convergence Reward
M = 9M = 16M = 25M = 64M = 9M = 16M = 25M = 64

MADDPG 62 263 810 1996 460 819 1280 1831
MFAC 63 274 851 2003 468 814 1276 1751
EPC 101 26 51 62 468 831 1278 3321

EPC Scratch 101 412 993 2995 468 826 1275 2503
DARL1N 38 102 210 110 465 828 1279 2282

b) Neighborhood Configuration: In both the Ising Model
and Multi-Access Wireless Communication environments, the
agents are arranged in a two dimensional lattice graph, with
rewards depending solely on their proximal agents. Conse-
quently, an agent’s one-hop neighbors are naturally defined
as those directly connected to it, including itself. In the
other three environments, the agents are trained to avoid
one another. Therefore, the one-hop neighbor distances d are
naturally set as the Euclidean safety distances. Specifically,
the safety distances (or d) are set to 0.15, 0.2, 0.25, 0.3, 0.35
when M = 3, 6, 12, 24, 48, respectively. Each agent observes
its one-hop neighbors to obtain one-hop neighbor states. Other
distance metrics that account for velocity can be employed,
which is left for future work.

c) Benchmarks: We compare our method with four state-
of-the-art MARL algorithms: MADDPG [4], MFAC [9], EPC
[10], and SAC [8]. The SAC algorithm only works in the
Multi-Access Wireless Communication environment due to the
reward assumption.

d) Evaluation Metrics: We measure the performance using
two criteria: training efficiency and policy quality. To measure
the training efficiency, we use two metrics: 1) average training
time spent to run a specified number of training iterations and
2) convergence time. The convergence time is defined as the
time when the variance of the average total training reward over
90 consecutive iterations does not exceed 2% of the absolute
mean reward, where the average total training reward is the
total reward of all agents averaged over 10 episodes in three
training runs with different random seeds. To measure policy
quality, we use convergence reward, which is the average total
training reward at the convergence time.

e) Computing Configurations: The computing resources are
configured in a way so that DARL1N utilizes roughly the same
or fewer resources than the baseline methods, as described
in [29]. For the Multi-Access Wireless Communication envi-
ronment, we employ the Amazon EC2 c5n.large instance for
DARL1N training, the z1d.3xlarge instance for MADDPG
and MFAC, and the c5.12xlarge instance for EPC training.
The configurations for the training parameters, as well as the
representations of policy and Q functions can be found in [29].

2) Comparative Studies:
a) Ising Model: As shown in Tab. I, when the number

of agents is small (M = 9), all methods achieve roughly
the same reward. DARL1N takes the least amount of time
to converge while EPC takes the longest time. When the
number of agents increases, it can be observed that the EPC
converges immediately and the convergence reward it achieves
when M = 64 is much higher than the other methods. The
reason is that, in the Ising Model, each agent only needs
information of its four fixed neighbors, and hence in EPC the

TABLE II: Convergence time and convergence reward of
different methods in the Food Collection environment.

Method Convergence Time (s) Convergence Reward
M = 3 M = 6 M = 12 M = 24 M = 3 M = 6 M = 12 M = 24

MADDPG 501 1102 4883 2005 24 24 -112 -364
MFAC 512 832 4924 2013 20 23 -115 -362
EPC 1314 723 2900 8104 31 34 -16 -87

DARL1N 502 382 310 1830 14 25 13 -61

policy obtained from the previous stage can be applied to the
current stage. The other methods train the agents from scratch
without curriculum learning. For illustration, we also show the
performance achieved by training EPC from scratch without
curriculum learning (labeled as EPC Scratch in Tab. I). The
results show that EPC Scratch converges much slower than
EPC as the number of agents increases. Note that when the
number of agents is 9, EPC and EPC Scratch are the same.
Moreover, DARL1N achieves a reward comparable with that
of EPC Scratch but converges much faster. From Fig. 2(a), we
can observe that DARL1N requires much less time to perform
a training iteration than the benchmark methods.

b) Food Collection: Tab. II shows that, in Food Collection,
when the problem scale is small, DARL1N, MADDPG and
MFAC achieve similar performance in terms of policy quality.
As the problem scale increases, the performance of MADDPG
and MFAC degrades significantly and becomes much worse
than DARL1N or EPC when M = 12 and M = 24, which is
also illustrated in Fig. 3. The convergence reward achieved by
DARL1N is comparable or sometimes higher than that achieved
by EPC. Moreover, the convergence speed of DARL1N is
the highest among all methods in all scenarios. Notably, the
convergence time of DALR1N and EPC increases, while that
of MADDPG and MFAC decreases as M increases to 24.
This occurs because MADDPG and MFAC fail to handle such
large-scale networks, causing them to stop learning earlier.

To evaluate the impact of the proposed one-hop neighbor
reward formulation on the learning performance, we also
present in Fig. 3 the training rewards of DARL1N with a
standard reward definition, labeled as DARL1N (Full Range),
whose neighbor distance d is set to cover the entire environ-
ment, thereby including all agents as one-hop neighbors. The
results show that DARL1N (Full Range) achieves performance
comparable to EPC but performs worse than DARL1N with
a small number of agents considered as one-hop neighbors.
This suggests that in the Food Collection environment, agent
behavior primarily depends on interactions with a nearby,
smaller group of agents. Fig. 2(b) illustrates the training time of
DARL1N (Full Range), which increases compared to DARL1N
due to the inclusion of more agents in the reward calculations.

Fig. 2(b) also presents the training times of the four
benchmarks. Among all methods compared, DARL1N achieves
the highest training efficiency and its training time grows
linearly as the number of agents increases. When M = 24,
EPC takes the longest time to train. This is because of the
complex policy and Q neural network architectures in EPC,
the input dimensions of which grow linearly and quadratically,
respectively, with more agents.

To demonstrate DARL1N’s applicability to general MARL
problems with global reward and transition models, we conduct
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(a) (b) (c) (d)

Fig. 2: Average training time of different methods to run (a) 10 iterations in the Ising Model, (b) 30 iterations in the Food
Collection, (c) 30 iterations in the Grassland, and (d) 30 iterations in the Adversarial Battle environments.

(a) (b)

Fig. 3: Average total training reward of different methods in
the Food Collection environment when there are (a) M = 12,
and (b) M = 24 agents.

(a) (b)

Fig. 4: (a) Average total training reward of different methods
in the Food Collection environment with global reward and
transition models when there are M = 8 agents and (b) Mean
and standard deviation of normalized total reward of competing
agents trained by different methods in the Adversarial Battle
environment with M = 48.

a comparison study using a variant of the Food Collection
environment where agents must coordinate to exclusively
collect all the food. As shown in Fig. 4(a), DARL1N achieves
the highest reward level with the fastest training speed. This
is due to its distributed learning architecture, which reduces
training experience correlation and accelerates training through
parallel computing, even without decomposition. In contrast,
EPC performs significantly worse, likely because curriculum
learning struggles with global agent coordination.

c) Grassland: Similar as the results in the Food Collection
environment, the policy generated by DARL1N is equally good
or even better than those generated by the benchmark methods,
as shown in Tab. III and Fig. 2(c), especially when the problem
scale is large. DARL1N also has the fastest convergence speed
and takes the shortest time to run a training iteration.

d) Adversarial Battle: In this environment, DARL1N again
achieves good performance in terms of policy quality and
training efficiency compared to the benchmark methods, as
shown in Tab. IV and Fig. 2(d). To further evaluate the
performance, we reconsider the last scenario (M = 48)
and train the good agents and adversary agents using two
different methods. The trained good agents and adversarial
agents then compete with each other. We apply the Min-Max
normalization to measure the normalized total reward of agents

TABLE III: Convergence time and convergence reward of
different methods in the Grassland environment.

Method Convergence Time (s) Convergence Reward
M = 6M = 12M = 24M = 48M = 6M = 12M = 24M = 48

MADDPG 423 6271 2827 1121 21 11 -302 -612
MFAC 431 7124 3156 1025 23 9 -311 -608
EPC 4883 2006 3324 15221 12 38 105 205

DARL1N 103 402 1752 5221 18 46 113 210

TABLE IV: Convergence time and convergence reward of
different methods in the Adversarial Battle environment.

Method Convergence Time (s) Convergence Reward
M = 6M = 12M = 24M = 48M = 6M = 12M = 24M = 48

MADDPG 452 1331 1521 7600 -72 -211 -725 -1321
MFAC 463 1721 1624 6234 -73 -221 -694 -1201
EPC 1512 1432 2041 9210 -75 -215 -405 -642

DARL1N 121 756 1123 3110 -71 -212 -410 -682

at each side achieved in an episode. To reduce uncertainty, we
generate 10 episodes and record the mean values and standard
deviations. As shown in Fig. 4(b), DARL1N achieves the
best performance, and both DARL1N and EPC significantly
outperform MADDPG and MFAC.

e) Multi-Access Wireless Communication: Fig. 5 shows that
SAC achieves a higher reward than DARL1N when z takes
a small value. However, when z increases, which causes an
exponential growth of the state space, DARL1N achieves a
much higher reward and converges much faster than SAC. This
demonstrates that DARL1N scales better than SAC with the
size of the state space.

3) Impact of Neighbor Distance: The parameter of neighbor
distance d in DARL1N determines the number of one-hop
neighbors of an agent, thereby influencing both training
efficiency and policy quality. To evaluate its impact, we conduct
experiments using the Grassland environment, considering three
good and three adversary agents. The rewards are set to 10 for
good agents collecting a grass pellet and −100 for colliding
with adversary agents.

The results shown in Fig. 6 indicate that, as the neighbor
distance d increases, the training reward increases while the
training time arises. This stems from the increased number of
one-hop neighbors each agent must consider, thereby requiring
each learner to collect and process more data. This phenomenon
reveals a trade-off between training efficiency and policy quality
controlled by the neighbor distance, which can be properly
chosen to achieve a good balance.

B. Performance of Coded Distributed Learning
Architecture

In this section, we first conduct numerical studies to evaluate
the performance of different assignment schemes described in
Sec. V. We then train DARL1N over the proposed coded
distributed learning architecture and conduct experimental
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(a) (b)

Fig. 5: Average total training reward of DARL1N and SAC in
the Multi-Access Wireless Communication environment when
(a) z = 2 (b) z = 10.

(a) (b)

Fig. 6: (a) Average training time of 30 iterations and (b) average
total training reward of DARL1N in the Grassland environment
when d increases with M = 6.

studies to evaluate its performance in mitigating the effect
of computing stragglers.

1) Numerical Evaluation: We conduct numerical studies to
evaluate the performance of different assignment schemes in
the following three aspects.

• Computation overhead: Metric (11) is applied, with the
mean overhead averaged over 10 experiment runs used
for the Random Sparse and LDGM schemes.

• Resilience to stragglers: The success rate computed
as follows is used. We randomly turn some learners
into stragglers that fail to return any results according
to Assumption 4. Monte Carlo simulations are then
conducted to measure the success rate, which is the ratio of
training iterations in which gradients can be successfully
estimated with results returned from non-stragglers.

• Impact on policy quality: According to Theorem 1, the
gradients estimated by Coded DARL1N are unbiased
but their variance depends on the assignment matrix.
Therefore, we use the variance of the estimated gradients,
denoted by V[ê], to assess the impact of assignment
schemes on policy quality. Specifically, we vary the
number of learners whose results are used by the central
controller to estimate the gradients and calculate the
average value of V := log(det(V[ẽ])) over 100 Monte
Carlo simulation runs.

Tab. V presents results when M = 12 and N = 24. The
performance of the Random Sparse and LDGM schemes,
characterized by parameters ξ and ρ respectively, is evaluated
across different parameter values. The results show that the
Uncoded scheme has the lowest computation overhead, the
smallest variance in most scenarios, but the poorest resilience
to stragglers. In contrast, the MDS scheme exhibits the best
resilience to stragglers but the largest computation overhead
and variance. The Repetition scheme has the smallest variance

TABLE V: Comparison of different assignment schemes in
terms of computation overhead, success rate, and average V .

Computation
overhead

Success rate Average V
η = 0 η = 0.2 η = 0.5 |J | = 12 |J | = 18 |J | = 24

Uncoded 0 1 0 0 0 0 0
MDS 23 1 1 1 124.82 79.75 73.64

Random Sparse
ξ = 0.2 4.5 1 0.78 0.17 11.48 1.62 -0.68
ξ = 0.4 8.0 1 1 0.98 16.82 2.93 -1.28
ξ = 0.8 18.3 1 1 1 13.15 1.40 -3.31

Repetition 1 1 0.603 0 0 0 -8.32

LDGM
ρ = 0.1 0.91 1 0.253 0 2.08 -1.46 -4.59
ρ = 0.3 4.41 1 0.79 0.11 8.93 1.05 -3.21
ρ = 0.5 5.5 1 0.99 0.41 13.13 5.13 -0.31

among all schemes and the lowest computation overhead among
coded schemes, though it is relatively less resilient. For the
Random Sparse and LDGM schemes, increasing ξ or ρ leads
to higher computation overhead and improved resilience to
stragglers. However, the Random Sparse scheme generally
exhibits larger variance compared to LDGM. In the following
experiments, we set ξ = 0.8 and ρ = 0.3.

2) Experiments: To understand the performance of the coded
distributed learning architecture, we train DARL1N using
different assignment schemes and evaluate its performance
in different straggler scenarios simulated on Amazon EC2.

a) Experiment Settings: We select the Food Collection
environment and set the number of agents and learners in all
experiments to M = 12 and N = 24, respectively. To evaluate
the impact of stragglers, we vary the straggler probability η
in Assumption 4. As Amazon EC2 computing instances are
generally stable, we simulate stragglers by having selected
compute nodes delay returning results by ∆ > 0 amount of
time. Evaluations on other computing systems where stragglers
are more common, such as wireless and mobile computing
systems, are deferred to future work.

b) Experiment Results: We first evaluate the average training
time of DARL1N with different assignment schemes. We vary
the straggler probability η and the straggler effect ∆. The
results are shown in Fig. 7(a) when ∆ = 1 and Fig. 7(b) when
∆ = 4, where the training time is measured by averaging the
time for running 30 training iterations. We can observe that
when no stragglers exist (η = 0), the Uncoded scheme is the
most efficient as it has zero computation overhead. The MDS
and Random Sparse schemes require a much longer training
time than other schemes due to the substantial computation
overhead introduced by these schemes. When stragglers exist
(η > 0), the performance of the Uncoded scheme degrades
significantly, especially when the straggler effect is significant
as shown in Fig. 7(b). Compared to the Uncoded scheme, the
LDGM and Repetition schemes are more resilient to stragglers,
as indicated by the slower increase in training time. They are
also more efficient than the MDS and Random Sparse schemes
in most cases. On the contrary, the training time of MDS and
Random Sparse does not grow much as ∆ increases from 1
to 4, evidencing their high resilience to stragglers. Although
they require more training time than other schemes when the
straggler effect ∆ or the straggler probability η is small, they
achieve higher training efficiency when ∆ and/or η are large.

To evaluate the impact of different assignment schemes
on the quality of trained policies, we measure the training
reward achieved by each DARL1N implementation with ∆ = 1.
Tab. VI summarizes the convergence time, convergence reward,
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Fig. 7: Average training time of different DARL1N implemen-
tations with straggler effect ∆ = 1 and ∆ = 4, respectively.
TABLE VI: Convergence time, convergence reward and average
V of different DARL1N implementations.

Schemes Convergence Time (s) Convergence Reward Average V
η = 0 η = 0.2 η = 0.5 η = 0 η = 0.2 η = 0.5 η = 0 η = 0.2 η = 0.5

Uncoded 323 510 521 8 5 10 0 0 0
MDS 502 748 625 -231 -253 -212 82.08 100.10 104.06

Random Sparse 512 820 670 -252 -231 -227 15.28 13.47 12.88
Repetition 331 372 564 11 6 8 -3.16 -4.49 -4.15

LDGM 324 320 450 9 12 14 -0.51 0.14 0.35

and variance V , averaged over 600 training iterations, for
different implementations as straggler probability η increases.
We can see that the Uncoded scheme converges fast when no
stragglers exist (η = 0) but its convergence speed decreases
significantly when stragglers exist (η > 0). The MDS and
Random Sparse schemes achieve the lowest reward and slowest
convergence rate, while the LDGM scheme achieves the highest
reward and convergence rate in most cases, especially when the
straggler probability η is large. The Repetition scheme generally
achieves good training reward performance and converges fast
when the straggler probability is small. Moreover, we can also
see that a larger average V generally leads to a lower reward.

3) Discussion: The experiment results above suggest guide-
lines for selecting an appropriate assignment scheme of
agents to learners. The Uncoded scheme has zero computation
overhead and low variance but is the least resilient to stragglers.
This makes it suited best for stable distributed systems, such
as server-based setups with wired communication. The MDS
scheme, while offering the highest resilience, incurs the highest
computation overhead and variance, leading to poor policy
quality, and making it unsuitable for distributed training using
DARL1N. In unstable distributed systems, where stragglers are
present, a trade-off between policy quality and resilience must
be considered. If policy quality is the priority, the Repetition
scheme is an excellent choice. Conversely, if resilience is
more critical, the Random Sparse scheme is preferable. For
a balanced approach that addresses both aspects, the LDGM
scheme is a good option.

VII. LIMITATIONS AND FUTURE WORK

In environments with local reward and transition models,
DARL1N needs a suitably chosen distance metric to establish
the agent neighborhoods that achieve the right balance between
policy quality and ability to distribute the training efficiently. In
future work, we will explore learning a neighbor distance metric
that adapts to the environment, e.g., based on past episodes
or contextual information, to achieve an effective balance
between policy reward and training speed. Moreover, the coded
distributed learning architecture for DARL1N is designed for a

distributed computing system with a stable central controller in
place. In future work, we will design a new coded architecture
to improve resilience of central controllers such as introducing
redundant central controllers using coding theory. Other issues
to consider for further improvements include integration of
curriculum learning similar as EPC, partially observable states,
and software infrastructure to support distributed learning with
low-latency communication.

VIII. CONCLUSION

This paper introduced DARL1N, a scalable MARL algorithm
that can be trained over a distribute computing architecture.
DARL1N reduces the representation complexity of the value
and policy functions of each agent in a MARL problem by
disregarding the influence of other agents that are not within one
hop of a proximity graph. This model enables highly efficient
distributed training, in which a compute node only needs data
from an agent it is training and its potential one-hop neighbors.
We conducted comprehensive experiments using five MARL
environments and compared DARL1N with four state-of-the-art
MARL algorithms. DARL1N generates equally good or even
better policies in almost all scenarios with significantly higher
training efficiency than benchmark methods, especially in large-
scale problem settings. To improve the resilience of DARL1N
to stragglers common in distributed computing systems, we
developed coding schemes that assign each agent to multiple
learners. We evaluate properties of MDS, Random Sparse,
Repetition, LDGM codes and provide guidelines on selecting
suitable assignment schemes under different situations.
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APPENDIX

A. Proof of Lemma 1
Consider the Q-value function Qµ

i of agent i. For two
different sets of non-neighbor states ŝN−

i
̸= sN−

i
and actions

âN−
i

̸= aN−
i

, we first show that:

|Qµ
i (sNi

, sN−
i
,aNi

,aN−
i
)−Qµ

i (sNi
, ŝN−

i
,aNi

, âN−
i
)|

≤ 2r̄γ

1− γ
. (11)

Letting (s,a) and (ŝ, â) denote (sNi , sN−
i
,aNi ,aN−

i
) and

(sNi
, ŝN−

i
,aNi

, âN−
i
), respectively, we have:

|Qµ
i (s,a)−Qµ

i (ŝ, â)|

=

∣∣∣∣E[ ∞∑
t=0

γtri (sNi
(t),aNi

(t)) | (s(0),a(0)) = (s,a)]

− E[
∞∑
t=0

γtri (sNi
(t),aNi

(t)) | (s(0),a(0)) = (ŝ, â)]

∣∣∣∣
≤

∞∑
t=0

∣∣E [
γtri (sNi

(t),aNi
(t)) | (s(0),a(0)) = (s,a)

]
− E

[
γtri (sNi(t),aNi(t)) | (s(0),a(0)) = (ŝ, â)

]∣∣
(a)
=

∞∑
t=1

∣∣E [
γtri (sNi

(t),aNi
(t)) | (s(0),a(0)) = (s,a)

]
− E

[
γtri (sNi(t),aNi(t)) | (s(0),a(0)) = (ŝ, â)

]∣∣
≤

∞∑
t=1

γt(
∣∣E [ri (sNi

(t),aNi
(t)) | (s(0),a(0)) = (s,a)]

∣∣
+

∣∣E [ri (sNi
(t),aNi

(t)) | (s(0),a(0)) = (ŝ, â)]
∣∣)

≤
∞∑
t=1

2γtr̄ =
2r̄γ

1− γ
(12)

where (a) derives from the fact that (sNi ,aNi) are part of
both (s,a) and (ŝ, â). In the above equations, the expectation
E is over state-action trajectories generated by the policy µ
and the transition model p. Then, we have:∣∣∣Q̃µ

i (sNi
,aNi

)−Qµ
i (s,a)

∣∣∣
=

∣∣∣∣ ∑
s
N−

i
,a

N−
i

ωi(sNi
,aNi

, sN−
i
,aN−

i
)Qµ

i (sNi
,aNi

, sN−
i
,aN−

i
)

−Qµ
i (sNi

,aNi
, ŝN−

i
, âN−

i
)

∣∣∣∣
≤

∑
s
N−

i
,a

N−
i

ωi(sNi ,aNi , sN−
i
,aN−

i
)

∣∣∣∣Qµ
i (sNi ,aNi , sN−

i
,aN−

i
)

−Qµ
i (sNi

,aNi
, ŝN−

i
, âN−

i
)

∣∣∣∣ ≤ 2r̄γ

1− γ
. (13)
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B. Proof of Proposition 1
If agent j ̸∈ Pi(t), then based on the definition of potential

neighbors, we have dist(si(t), sj(t)) > d + 2ϵ. According
to the triangle inequality, dist(si(t), sj(t + 1)) + dist(sj(t +
1), sj(t)) ≥ dist(si(t), sj(t)), and according to Assumption 1,
dist(sj(t+ 1), sj(t)) ≤ ϵ. Therefore, dist(si(t), sj(t+ 1)) >
d+ϵ. Using the triangle inequality again, we obtain dist(si(t+
1), sj(t+1))+dist(si(t+1), si(t)) ≥ dist(si(t), sj(t+1)). As
dist(si(t+1), si(t)) ≤ ϵ, we have dist(si(t+1), sj(t+1)) > d.
Therefore, agent j will not be a one-hop neighbor of agent i
at time t+ 1.

C. Proof of Theorem 1
The bias of the gradient estimator ẽ can be calculated using

(7) and (8) as follows:

E[ẽ]− e = (CT
JCJ )−1CT

JE[yJ ]− e

= (CT
JCJ )−1CT

JDE[q]− e. (14)

Since each learner uses the same set of parameters broadcast
by the central controller for agent-environment interaction in
each training iteration, the replay buffers Dj,i, ∀j ∈ [N ], all
follow the same distribution as that of Di. Therefore, we have
E[êj,i] = ei and DE[q] = CJ e leading to:

E[ẽ]− e = (CT
JCJ )−1CT

JCJ e− e = 0, (15)

which shows that ẽ is an unbiased estimator.
Next, we compute the variance of the gradient estimator ẽ:

V[ẽ] = V[(CT
JCJ )−1CT

JyJ ] (16)

= (CT
JCJ )−1CT

JDV(q)DT ((CT
JCJ )−1CT

J )T ,

where V[q] = diag(V(ê1,1), . . . ,V(êN,M )) and diag() creates
a diagonal matrix with the V(êj,i) as diagonal element. Since
êj,i,∀i ∈ [M ] are independent from each other for each j ∈
[N ]. According to (16), we can see that the variance of the
gradient estimator ẽ is impacted by CJ , which is determined
by the assignment matrix C as well as the learners who return
their computations promptly.

D. Proof of Proposition 3
The performance of the MDS code scheme will be affected

only if the number of stragglers exceeds N−M because CMDS

has rank M . If there are W > N −M stragglers, the results
from non-straggler nodes will be insufficient for the central
controller to decode the parameter gradients and it needs to
wait for results from the stragglers. Under Assumption 4, W
follows a binomial distribution with probability mass function
p(W = w) =

(
N
w

)
(1 − η)N−wηw. Therefore, the probability

that the performance will be affected by the stragglers is∑N
j=N−M+1 p(W = j) =

∑N
j=N−M+1

(
N
j

)
(1− η)N−jηj .

E. Proof of Proposition 4
The assignment matrix CRepetition defined in (10) has M

linearly independent rows, with each row containing N
M

duplicate copies. For j-th copy of i-th linearly independent
row, ∀i ∈ [M ],∀j ∈ [NM ], we have a learner with index

i + (j − 1)M needs to send yi+(j−1)M back to the central
controller. The estimated gradients can be decoded when
learners with index i+(j− 1)M,∀i ∈ [M ], with any j ∈ [NM ]
send results back to satisfy rank(CJ ) = M . Under Assumption
4, for a i ∈ [M ], the probability that the learners with index
i + (j − 1)M, ∀j ∈ [NM ] are all stragglers that fail to send
results back is η

N
M . Furthermore, the probability that there is at

least one non-straggler learner for each i ∈ [M ] is (1−η
N
M )M .

Therefore, the probability that the performance will be affected
by stragglers is then represented with 1− (1− η

N
M )M .
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