
Learning Navigation Costs from Demonstration via
Differentiable Planning

Tianyu Wang
Department of Electrical and Computer Engineering

University of California, San Diego
La Jolla, U.S.A.

tiw161@eng.ucsd.edu

Nikolay Atanasov
Department of Electrical and Computer Engineering

University of California, San Diego
La Jolla, U.S.A.

natanasov@eng.ucsd.edu

Abstract—This paper focuses on learning cost functions that
capture desirable behavior in tasks demonstrated by an expert. In
a task such as autonomous navigation in unknown environments,
it is possible to obtain sequences of observations (e.g., images),
states (e.g., poses), and control inputs but not direct queries of
the underlying task-specific cost function. Hence, it is necessary
to design a planning algorithm that, depending on the current
cost representation, computes a control policy and propagates
its error with respect to the demonstrations back to the cost
representation. Our contribution is a probabilistic environment
representation for local observation updates and cost function
design, and a differentiable planning algorithm that performs
state expansions only on a subset of promising states. Our
complete model can be trained end-to-end and improves upon
Value Iteration Networks and the Dyna-Q algorithm.

Index Terms—Inverse Reinforcement Learning, Differentiable
Planning, Cost Learning

I. INTRODUCTION

Autonomous robot systems increasingly require operation in
unstructured, partially known, and dynamically changing en-
vironments. One core challenge for safe and robust navigation
is that the true cost function of a navigation task, requiring
safe, dynamically feasible, and efficient behavior, is generally
not known while expert demonstrations can be utilized to
uncover the underlying cost function [1], [2]. In addition,
humans and animals can navigate successfully with partial
knowledge of the environment and adapt when facing new
obstacle configuration based on prior experience. Motivated
by this observation, we focus on learning a cost function from
demonstration that is not universally accurate over the state
and control space but rather captures task-relevant information
and leads to desirable behavior.

Our main contribution is an end-to-end differentiable model
that combines a cost function representation and an efficient
planning algorithm (see Fig. 1). The novelty of our approach
is that the proposed model is fully differentiable, which allows
using gradient-based optimization to improve the parameter-
ized cost function. Our experiments show that the end-to-end
differentiable model learns task-specific cost functions and im-
proves upon Value Iteration Networks (VIN) [3] and the Dyna-
Q algorithm [4] by handling partial and noisy observations. In
summary, we offer the following contributions:

We gratefully acknowledge support from NSF CRII RI IIS-1755568.

Fig. 1: Architecture for learning cost function representations
from demonstrations via differentiable planning. During train-
ing, the goal is to learn a cost function parameterization θ
based on demonstrations, consisting of states x1:t, controls
u∗1:t, and partial observations z1:t, so that a control policy
generated based on the learned cost incurs minimum loss
L(θ). Both the cost function representation ĉθt and the control
policy πθt need to be differentiable with respect to θ for error
backpropagation. During testing in a new environment, online
observations z1:t and the trained parameters θ∗ provide the
cost function necessary to generate a control policy.

• A cost function representation that incorporates a log-
odds occupancy representation of the environment, up-
datable using a parameterized observation model.

• An efficient planning algorithm, which performs local
convolutional operations encoding Bellman backups only
on a subset of promising states. We guarantee that the
output policy is differentiable with respect to the input
cost function.

• An end-to-end differentiable model that learns task-
specific cost functions from expert demonstrations by
backpropagating policy performance loss through the
planning algorithm and the cost representation.

II. PROBLEM FORMULATION

Consider a robot navigating in an unknown environment
with the task of reaching a goal state xg ∈ X . Let xt ∈ X
be the discrete time robot state. For a given control input
ut ∈ U , the robot state evolves according to known deter-
ministic dynamics: xt+1 = f(xt, ut). Let m∗ be a function



Algorithm 1 Differentiable A* Planning

1: Input: Current state xt, goal state xg , cost function ĉθt , heuristic function
h, transition function f

2: g(xg) = 0, g(x) =∞ ∀x ∈ X
3: OPEN ← {xg}, CLOSED ← {}
4: while xt 6∈ CLOSED do
5: Remove x with smallest g(x) + h(x) value from OPEN and insert

x in CLOSED
6: for u ∈ U do
7: g(y)← CONV(g(s), δ(f(s, u)− x))
8: c(y, u)← CONV(ĉθt (s, u), δ(f(s, u)− x))
9: g(y)← min{g(y), c(y, u) + g(x)}

10: end for
11: end while
12: Q(xt, ut)← ĉθt (xt, ut) + g(f(xt, ut)) ∀ut ∈ U
13: return policy πθt (ut|xt) =

exp(−Q(xt,ut))∑
u′∈U exp(−Q(xt,u′))

specifying the true occupancy of the environment and let c∗

be a cost function specifying desirable robot behavior in a
given environment. We assume that the robot does not have
access to either m∗ or c∗ but is able to make noisy observations
zt ∈ Z of the environment in its vicinity. Given a training set
D :=

{
(xt,n, u

∗
t,n, zt,n)

}Tn,N

t=1,n=1
of N expert trajectories with

length Tn, the robot’s goal is to learn a cost function estimate
ĉθt : X × U × Zt → R≥0 parameterized by θ and execute a
new navigation task by computing a stochastic control policy
πθt (·|xt) based on ĉθt , mapping from a state xt to a control
distribution.

The problem setup is illustrated in Fig. 1. The challenge is
to make the optimization of the policy πθt differentiable with
respect to the cost function parameterization θ so that the loss
can be backpropagated through the planning algorithm.

III. TECHNICAL APPROACH

A. Occupancy-based Cost Function Representation

We propose an cost function representation based on oc-
cupancy grid maps. The state space X is discretized into N
cells and the robot observes binary measurements of the K
cells around it, i.e., zt ∈ {−1, 1}K . We model the field of
view of the robot using a binary matrix H(xt) ∈ {0, 1}K×N

so that yt := H(xt)m
∗ are the true occupancy states of the

observable cells around the robot state xt. We can explicitly
design a parameterized observation model p(zt | xt,m; θ) =∏K
i=1 p(zt[i] | yt[i]; θ1,t[i]) using a neural network or simply

a sigmoid function. The estimated probability mass function
of the map occupancy pθt (m) := p(m | z1:t) can be updated
as new observations arrive and and a cost function ĉθt can be
induced based on the occupancy probability of each cell.

B. Differentiable A* Planning

Next, we develop a differentiable A* algorithm (see Alg. 1),
which performs efficient convolutions only over a subset
of promising states instead of over the entire state space.
Specifically, we can initialize the A* algorithm from xg , search
for an optimal path backwards to the current state xt, and,
at termination, the g-values will provide an upper bound to
the optimal cost-to-go for each state [5] (the upper bound is

Models Succ. rate Traj. diff.
VIN 95.12 % 0.264

Ours-A* 100 % 0.183

Fig. 2: Test set performance
of VIN and our models.

Fig. 3: Average performance of
Dyna-Q and Ours-A*

tight for those in the CLOSED list). We can make the A* al-
gorithm differentiable by using convolutional and minpooling
operations when updating the g-values. The differentiability
is guaranteed in line 7 and 8, obtaining the values g(y) and
c(y, u) at a predecessor state y as convolution with a delta
kernel δ(f(s, u) − x), representing a deterministic transition
from y to f(y, u), and in line 7, updating g(y) by min-pooling
between the quantities g(y) and ĉθt (y, u) + g(x).

IV. EVALUATION

A. 2-D Grid Navigation

The first experiment evaluates whether the models can
make successful navigation in a 2D gridworld environment
with randomly generated obstacles. We consider the fully
observable environment where the observation is the map and
the expert controls are calculated by Dijkstra’s algorithm. We
compare Ours-A* with VIN [3]. Fig. 2 shows the navigation
performance in terms of successfully reaching the goal and
discrepancy between robot planning trajectory and the optimal
one.

B. Online Learning in Changing Environments

In this experiment, we compare Ours-A* with the Dyna-
Q [4] algorithm in a changing environment where the optimal
path is switched from one to another in the middle of an
episodic task. The robot can only receive partial observation
at the next state that it plans to arrive at. Fig. 3 shows
the performance of the Dyna-Q and Ours-A* averaged over
10 trials. The higher the slope of the curve, the better the
model is in finding a shortest path to goal. Ours-A* plateaus
when the environment changes but quickly adapts to the new
configuration and consistently finds the new path afterwards.

REFERENCES

[1] B. D. Ziebart, A. Maas, J. Bagnell, and A. K. Dey, “Maximum entropy
inverse reinforcement learning,” in Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, 2008, pp. 1433–1438.

[2] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement learning,”
in Proceedings of the Seventeenth International Conference on Machine
Learning, 2000, pp. 663–670.

[3] A. Tamar, Y. WU, G. Thomas, S. Levine, and P. Abbeel, “Value iteration
networks,” in Advances in Neural Information Processing Systems 29,
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds.,
2016, pp. 2154–2162.

[4] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[5] D. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 1995.


