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Abstract— This paper presents a method for learning logical
task specifications and cost functions from demonstrations.
Constructing specifications by hand is challenging for complex
objectives and constraints in autonomous systems. Instead, we
consider demonstrated task executions, whose logic structure
and transition costs need to be inferred by an autonomous
agent. We employ a spectral learning approach to extract a
weighted finite automaton (WFA), approximating the unknown
task logic. Thereafter, we define a product between the WFA
for high-level task guidance and a labeled Markov decision
process for low-level control. An inverse reinforcement learning
(IRL) problem is considered to learn a cost function by
backpropagating the loss between agent and expert behaviors
through the planning algorithm. Our proposed model, termed
WFA-IRL, is capable of generalizing the execution of the
inferred task specification in a suite of MiniGrid environments.

I. INTRODUCTION

Autonomous systems are expected to achieve reliable
performance in increasingly complex environments with
increasingly complex objectives. Yet, it is often challeng-
ing to design a mathematical formulation that captures all
safety and liveness requirements across various operational
conditions. Minimizing a misspecified cost function may
lead to undesirable performance, regardless of the quality
of the optimization algorithm. However, a domain expert is
often able to demonstrate desirable or undesirable behavior
that implicitly captures the task specifications. As a simple
illustration, consider the navigation task in Fig. 1, requiring
a door to be unlocked before reaching a goal state. Instead of
encoding the task requirements as a cost function, an expert
may provide several demonstrations of navigating to the goal,
some of which require picking up the key whenever the door
is locked. A reinforcement learning agent should infer the
underlying logic sequence of the demonstrated task in order
to learn the desired behavior.

Inverse reinforcement learning (IRL) [1]–[3] focuses on
inferring the latent costs of expert demonstrations. Early
works assume that the cost is linear in a set of state
features and minimize the feature expectation difference
between learned policy and demonstrations. [3] use dynamic
programming to find a maximum entropy (MaxEnt) policy
which maximizes the likelihood of the demonstrated actions.
Later works [4], [5] introduce Gaussian process or deep
neural networks to learn nonlinear cost functions. [6] builds
a connection between MaxEnt IRL and adversarial learning
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Fig. 1: (Left) An example trajectory in the MiniGrid environ-
ment [9], where an agent has to pick up a key, open the door, and
navigate to the goal. (Right) The trajectory can be decomposed into
three segments, identified by hidden states αt. Transitions between
the high-level states are triggered by events, such as picking up key
(σ0), or opening door (σ1).

and solves continuous control problems. Most IRL models,
however, consider general cost formulations that do not ex-
plicitly capture sequencing and compositional requirements
of the demonstrated task [7], [8]. Compared to a general
cost formulation, this paper shows the logical structure
of a complex task can be inferred from demonstrations.
Exploiting the underlying task logic in planning ensures that
the learned agent behavior mode matches the demonstrations.

Hierarchical reinforcement learning and options frame-
work [10]–[13] are formulations that learn task decom-
position and temporal abstraction. Options are high-level
macro-actions consisting of primitive actions. [14] introduces
a multi-level hierarchical model to discover options from
demonstrations where option boundaries are inferred for
trajectory segmentation. [15] uses an unsupervised encoder-
decoder model to predict subtask segmentation and cate-
gorical latent encoding. [16] uses graph recurrent neural
networks with relational features between objects for high-
level planning and low-level primitive dynamics prediction.

Formal methods have been applied in robotics to prove
and guarantee different behavioral properties such as safety
and correctness [17]–[20]. For example, linear temporal logic
(LTL) [21] is used to specify safety and liveness objectives
with temporal ordering constraints in control and reinforce-
ment learning problems [20], [22]–[26]. Specification mining
of LTL formulas can learn finite state automata from execu-
tion traces [27], [28]. LTL formulas can also be inferred
from Bayesian inference [29] or from graph connectivity of
directed acyclic graphs over atomic propositions [30]. In this
work, we consider weighted finite automata (WFA) in which
the transitions carry weights. Whereas classical automata
determine whether a word is accepted or rejected, WFA can



compute quantitative values as a function of the weighted
transitions from the execution of words [31]. WFA offer the
expressive power to model quantitative properties, such as
resources, time or cost, of the demonstrated behavior. Under
certain assumptions of the semiring on which the WFA is
defined, it can be shown that WFA is expressively equivalant
to weighted monadic second-order (MSO) logic [31], [32].

We introduce an IRL model that learns to infer high-
level task specifications and low-level control costs to imitate
demonstrated behavior. Given a set of demonstrations, we use
a spectral method to learn a WFA which encodes the task
logic structure. The agent’s interaction with the environment
is modeled as a product between the learned WFA and a
labeled Markov decision process (L-MDP). We propose a
planning algorithm to search over the product space for a
policy that satisfies task requirements encoded by the WFA.
Since the true transition cost is not directly observable, we
differentiate the error between the agent’s policy and the
demonstrated controls through the planning algorithm using
a subgradient method introduced in [2], [33]. We demonstrate
that our WFA-IRL method correctly classifies accepting and
rejecting sequences and learns a cost function that gener-
alizes the demonstrated behavior to new settings in several
MiniGrid environments [9]. In summary, our contribution is
to recognize that the logic structure of a demonstrated task
can be learned as a weighted finite automaton and, in turn,
can be integrated with differentiable task planning to learn
generalizable behavior from demonstrations.

II. PRELIMINARIES

A. Agent and environment models

The agent’s interaction with the environment is modeled
as an L-MDP [34].

Definition 1. A labeled Markov decision process is a tuple
{X ,U ,x0, f, c,AP, `}, where X , U are finite sets of states
and controls, x0 ∈ X is an initial state, f : X × U → X is
a deterministic transition function, and c : X × U → R≥0

assigns a non-negative cost when control u ∈ U is applied at
state x ∈ X . A finite set of atomic propositions AP provides
logic statements that must be true or false (e.g., “the agent
is 1 meter away from the closest obstacle” or “the agent
possesses a key”). A labeling function ` : X × U → 2AP

assigns a set of atomic propositions that evaluate true for a
given state transition.

We assume that the state x is fully observable and captures
both endogenous variables for the agent, such as position and
orientation, and exogenous variables, such as an environment
containing objects of interest as illustrated in Fig. 1. The
transition function f(x,u) specifies the change of state x
when control u is executed, and c(x,u) assigns a non-
negative cost to this transition. The alphabet of the L-MDP
is the set of labels Σ = 2AP that can be assigned to the
transitions. The labeling function σ = `(x,u) provides the
atomic propositions σ ∈ Σ which are satisfied during the
transition f(x,u). The set of words on Σ is denoted by Σ∗

and consists of all strings σ0:T = σ0 . . . σT for σt ∈ Σ and

T ∈ N. We assume that the transition f and labeling ` are
known. However, the cost function c is unknown and needs
to be inferred from expert demonstrations.

B. Expert model

The agent needs to execute a task, whose success is
evaluated based on the word σ0:T ∈ Σ∗ resulting from
the agent’s actions. We model the quality of the task exe-
cution by a function h : Σ∗ → R. An execution σ0:T is
deemed successful if h(σ0:T ) ≥ ξ for a known performance
threshold ξ, and unsuccessful otherwise. As argued in the
introduction, defining the function h explicitly is challenging
in many applications. Instead, we consider a training set
D =

{
(xn0:Tn

,un0:Tn
, sn)

}N
n=1

of N demonstrations of the
same task in different environment configurations provided
by an expert. Each demonstration n contains the controls
un0:Tn

= un0 . . .u
n
Tn

executed by the expert, the resulting
agent-environment states xn0:Tn

= xn0 . . .x
n
Tn

, and the suc-
cess level sn ∈ R of the execution, measured by h(σn0:Tn

),
where σnt = `(xnt ,u

n
t ) is the label encountered by the expert

at time t. We assume that the expert knows the true task h
and the true cost c and can solve a finite-horizon first-exit
deterministic optimal control problem [35] over the L-MDP:

Q∗(x,u) := min
T,u1:T

T∑
t=0

c(xt,ut)

s.t. xt+1 = f(xt,ut), x0 = x, u0 = u,

σt = `(xt,ut), h(σ0:T ) ≥ ξ,

(1)

where Q∗(x,u) is the optimal value function. Since (1) is a
deterministic optimal control problem, there exists an open-
loop control sequence which is optimal, i.e., achieves the
same cost as an optimal closed-loop policy function [35,
Chapter 6]. However, we consider experts that do not neces-
sarily choose strictly rational controls. Instead, we model the
expert behavior using a stochastic Boltzmann policy over the
optimal values π∗(u|x) ∝ exp

(
− 1
ηQ
∗(x,u)

)
, where η ∈

(0,∞) is a temperature parameter representing a continuous
spectrum of rationality. For example, η → 0 means that the
expert takes strictly optimal controls while η → ∞ means
random controls are selected. The Boltzmann expert model
was previously introduced and studied in [33], [36], [37].
It provides an exponential preference for controls that incur
low long-term costs. This expert model also allows efficient
policy search, as shown in Sec. IV-B, and computation of the
policy gradient with respect to the cost needed to optimize
the cost parameters, as shown in Sec. IV-C.

III. PROBLEM STATEMENT

The agent needs to infer the unknown task model h and
unknown cost function c from the expert demonstrations D ={

(xn0:Tn
,un0:Tn

, sn)
}N
n=1

.

Problem 1. Given the demonstrations D and labeling σnt =
`(xnt ,u

n
t ), optimize the parameters ψ of an approximation

hψ of the unknown task function h to minimize the mean



Fig. 2: Inferring the hidden state progression αt from events σt can
be acheived by an RNN with initial hidden state α0, hidden state
transition αt+1 = g1(σt,αt,W) and output ŝ = hψ(σ0:T ) =
g2(αT+1,β), where g1, g2 are nonlinear functions. The weights
ψ = (α0,W,β) can be learned via the loss L(ŝ, s) in (2) between
RNN outputs ŝ and demonstration scores s.

squared error:

min
ψ
Lh(ψ) :=

1

N

N∑
n=1

(
hψ(σn0:Tn)− sn

)2
. (2)

Similarly, the agent needs to obtain an approximation cθ
with parameters θ of the unknown cost function c. This
allows the agent to obtain a control policy:

πθ(u|x) ∝ exp

(
−1

η
Qθ(x,u)

)
, (3)

approximating the expert model using a value function Qθ
computed according to (1) with c and h replaced by cθ and
hψ , respectively.

Problem 2. Given the demonstrations D, optimize the pa-
rameters θ of an approximation cθ of the unknown cost
function c such that the log-likelihood of the demonstrated
controls unt is maximized under the agent policy in (3):

min
θ
Lc(θ) := −

N∑
n=1

1{sn≥ξ}

Tn∑
t=0

log πθ(u
n
t |xnt ), (4)

where 1 is an indicator function and ξ is the known task
satisfaction threshold.

IV. TECHNICAL APPROACH

We first discuss how to learn a task model hψ from
demonstrations D in Sec. IV-A. Next, in Sec. IV-B, we learn
a cost model cθ by solving the optimal control problem in (1)
to obtain an agent policy πθ. Finally, in Sec. IV-C, we show
how to backpropagate the policy loss Lc(θ) in (4) through
the optimal control problem to update the cost parameters θ.

A. Spectral learning of task specifications

Fitting a single cost neural network cθ that is capable
of generalizing to various environment configurations and
tasks is difficult when state and control spaces are large and
the task horizon is long. An alternative is to consider the
cost function and its corresponding policy only for small
segments of the task, associated with different subtasks. This
idea is based on the observation that task specifications
often have a compositional logic structure. For example,
the demonstrated trajectory in the DoorKey environment in

Fig. 1 can be decomposed into three segments, each denoted
by a high-level state α. The transitions between the high-
level states are triggered by events like σ0: a key is picked
up, and σ1: a door is opened. Note that there is no direct
transition between α1 and α3 because the door cannot be
opened without possessing a key. Such high-level state ab-
straction and transitions are commonly learned via recurrent
neural network (RNN) or memory architectures [38], [39].
For example, to solve Problem 1, we can use an RNN hψ in
Fig. 2 with initial hidden state α0, hidden state transition
αt+1 = g1(σt,αt,W) and output function hψ(σ0:T ) =
g2(αT+1,β), where g1, g2 are nonlinear functions and ψ =
(α0,W,β) are learnable weights. Instead of an RNN model,
in this work, we propose to use a weighted finite automaton
(WFA) [40] to represent hψ . A WFA is less expressive
than an RNN [41] but can be trained more effectively from
small demonstration dataset. Moreover, a WFA generalizes
deterministic and nondeterministic finite automata, which
are commonly used to model logic task specifications for
autonomous agents [20], [22]–[24]. Hence, a WFA model is
sufficiently expressive to represent a complex task and allows
one to focus on a temporal abstraction without reliance on
the low-level system dynamics.

Definition 2. A weighted finite automaton (WFA) with m
states is a tuple ψ =

{
α0,β, {Wσ}σ∈Σ

}
where α0,β ∈ Rm

are initial and final weight vectors and Wσ ∈ Rm×m are
transition matrices associated with each symbol σ ∈ Σ. A
WFA ψ represents a function hψ : Σ∗ → R by hψ(σ0:T ) =
α>0 Wσ0

Wσ1
. . .WσTβ.

A WFA represents the task progress for a given word σ0:t

via hψ(σ0:t) = α>0 Wσ0
Wσ1

. . .Wσtβ, where the high-
level state at time t+1 is αt+1 =

(
α>0 Wσ0

Wσ1
. . .Wσt

)>
.

When the WFA is learned correctly, its prediction for an
expert word should approximate the expert score s, i.e.,
hψ(σ0:T ) ≈ s. This can be used to guide a task planning
algorithm by providing a task satisfaction criterion. A trajec-
tory with corresponding word σ0:T is identified as successful
if the WFA prediction passes the known performance thresh-
old introduced in Sec. II-B, i.e., hψ(σ0:T ) = α>T+1β ≥ ξ.

Our approach to learn a minimal WFA is based on the
spectral learning method developed by [40]. The spectral
method makes use of a Hankel matrix Hh ∈ RΣ∗×Σ∗ as-
sociated with the function h : Σ∗ → R, which is a bi-infinite
matrix with entries Hh(u, v) = h(uv) for u, v ∈ Σ∗. We
assume the class of functions h that can be represented by a
WFA are rational power series functions and their associated
Hankel matrix Hh has finite rank [42], [43]. It can be
showns that under certain assumptions WFA are expressively
equivalent to monadic second-order logic. The quantitative
property of WFA allows us to model the performance score
s of the demonstrated trajectories.

Assumption 1. The Hankel matrix Hh associated with the
true task specification h has finite rank.

In practice, only finite sub-blocks of the Hankel matrix,
constructed from the expert demonstrations D, can be con-



sidered. Given a basis B = (P,S) where P,S ⊂ Σ∗ are
finite sets of prefixes and suffixes respectively, define HB
and {Hσ}σ∈Σ as the finite sub-blocks of Hh such that
HB(u, v) = h(uv), Hσ(u, v) = h(uσv), ∀u ∈ P, v ∈ S .
The foundation of the spectral learning method is summa-
rized in the following theorem.

Theorem 1 ([40]). Given a basis B = (P,S) such that the
empty string λ ∈ P ∩ S and rank(Hh) = rank(HB), for
any rank m factorization HB = PS where P ∈ R|P|×m
and S ∈ Rm×|S|, the WFA {α0,β, {Wσ}} is a minimal
WFA representing h, where α>0 = P(λ, :) is the row vector
of P corresponding to prefix λ, β = S(:, λ) is the column
vector of S corresponding to suffix λ, and Wσ = P†HσS†,
∀σ ∈ Σ.

A basis can be chosen empirically from demonstrations
D. For example, we can choose a basis that includes all
prefixes and suffixes that appear in the words

{
σn0:Tn

}
or

one with desired cardinality for the most frequent prefixes
and suffixes. Given a basis, the Hankel blocks HB, {Hσ} are
constructed from D. For example, given a word and its score
(σ0:T , s), we set the entries HB(λ, σ0:T ), HB(σ0, σ1:T ), . . . ,
HB(σ0:T , λ), and Hσ(σ0:t−1, σt+1:T ), where σ = σt with
value s. To find a low rank factorization of HB, we use
truncated singular value decomposition, HB = UmΛmV>m
where Λm is a diagonal matrix of the m largest singular
values and Um,Vm are the corresponding column vectors,
and set P = Um and S = ΛmV>m. Finally, the vectors and
matrices ψ = {α0,β, {Wσ}} of the WFA can be obtained
from P, S, {Hσ} using Theorem 1.

B. Planning in a product WFA-MDP system

Given a learned WFA representation hψ and an initial cost
estimate cθ, we propose a planning algorithm to solve the
deterministic optimal control problem in (1) and obtain a
control policy πθ(u|x) as in (3). To determine the termina-
tion condition for the problem in (1), we define the product
of the WFA, modeling the task, and the L-MDP, modeling
the agent-environment interactions.

Definition 3. Given an L-MDP {X ,U ,x0, f, c,AP, `} and
a WFA {α0,β, {Wσ}}, a product WFA-MDP model is a
tuple {S,U , s0, T,SF , c,AP, `} where S = X × Rm is
the product state space, s0 = (x0,α0) is the initial state,
and SF =

{
(x,α) ∈ S | α>β ≥ ξ

}
are the final states.

The function T : S × U → S is a deterministic transition
function such that T ((xt,αt),ut) = (xt+1,αt+1) where
xt+1 = f(xt,ut), emitting symbol σt = `(xt,ut) and
causing transition αt+1 = W>

σtαt.

To obtain the agent policy in (3) for any state xt ∈ X and
control ut ∈ U , our goal is to compute the optimal cost-to-go
values for the WFA-MDP model:

Qθ(st,ut) = cθ(xt,ut) + Vθ(T (st,ut))

= cθ(xt,ut) + min
T,ut+1:T

T∑
k=t+1

cθ(xk,uk) (5)

where st+1 = T (st,ut) and α>T+1β ≥ ξ. We have rewritten
the terminal state condition as α>T+1β ≥ ξ, where we keep
track of the task hidden state αt using the WFA-MDP
transition function T . Our key observation is that (5) is a
deterministic shortest path problem and Vθ(T (st,ut)) can
be obtained via any shortest path algorithm, such as Dijkstra
[44], A* [45] or RRT* [46]. When we use a shortest path
algorithm to update the cost-to-go values of successor states
st+1 = T (st,ut), we concurrently compute the correspond-
ing WFA state αt+1 = W>

σtαt where σt = `(xt,ut). A
goal state sT+1 is reached when its WFA state αT+1 satisfies
α>T+1β ≥ ξ. The agent policy πθ in (3) with respect to the
current cost estimate cθ can be obtained from the cost-to-go
values Qθ in (5) computed by the shortest path algorithm.

C. Optimizing cost parameters

We discuss how to differentiate the loss function Lc(θ)
in (4) with respect to θ through the deterministic shortest
path problem defined by the product WFA-MDP model. [33]
introduce a sub-gradient descent approach to differentiate the
log likelihood of expert demonstrations from the Bolzman
policy in (3) through the optimal cost-to-go values in (5). The
cost parameters can be updated by (stochastic) subgradient
descent at each iteration k with learning rate γ(k), θ(k+1) =
θ(k) − γ(k)∇Lc(θ(k)). Intuitively, the subgradient descent
makes the trajectory starting with a demonstrated control
more likely, while those with other controls less likely. The
analytic subgradient computation is presented below.

Proposition 1. [33, Proposition 1] Consider an expert tran-
sition (xt,ut). Define τ (xt,u) as the optimal path starting
from state xt and any control u ∈ U that achieves Qθ(xt,u)
in (5) under cost estimate cθ. A subgradient of the agent
policy (3) evaluated at expert transition (xt,ut) with respect
to cost parameters θ can be obtained via the chain rule as:

∂ log πθ(ut | xt)
∂θ

=
∑
u′∈U

d log πθ(ut | xt)
dQθ(xt,u′)

∂Qθ(xt,u
′)

∂θ

=
∑
u′∈U

1

η

(
1{u′=ut} − πθ(ut | xt)

)
×

∑
(x,u)∈τ (xt,u′)

∂Qθ(xt,u
′)

∂cθ(x,u)

∂cθ(x,u)

∂θ
(6)

Substituting (6) in the gradient of Lc(θ) in (4), Proposi-
tion 1 provides an explicit subgradient computation to allow
backpropagation with respect to θ through the value function
Qθ of the deterministic shortest path problem in (5). The sub-
gradient only affects the cost parameters through the optimal
trajectories τ (xt,u

′), ∀u′ ∈ U for expert transitions (xt,ut)
which can be retrieved from any optimal planning algorithm
applied in Sec IV-B. Thereafter, the cost parameters can be
optimized depending on the specific form of ∂cθ(x,u)

∂θ .
Our complete approach WFA-IRL is summarized in Fig. 3.

We first solve Problem 1 to find a WFA hψ which models the
demonstrated task. The learned WFA provides termination
conditions for a deterministic shortest path problem in the



Fig. 3: WFA-IRL architecture for joint learning of a task speci-
fication hψ and cost function cθ . Given demonstrations D and a
labeling function `, we learn the unknown task specification with
a weighted finite automaton. We construct a product WFA-MDP
space from the learned WFA ψ =

{
α0,β, {Wσ}σ∈Σ

}
to solve

a deterministic shortest path problem with cost estimate cθ . The
agent policy πθ is compared with the demonstrated controls to
backpropagate the loss Lc(θ) with respect to θ.

Fig. 4: MiniGrid environments [9] of our experiments. In T1
(MiniGrid-MultiRoom-N4-S5-v0) the agent must pick up Key to
unlock Door and reach Goal in the other room. In T2 (MiniGrid-
MultiRoom-N4-S5-v0) it has to open a series of Doors to reach
Goal in the last room. In T3 (MiniGrid-BlockedUnlockPickup-
v0) it has to move away a blocking Ball, unlock Door with
Key and pick up Box. The state xt includes the grid im-
age mt ∈ {Wall,Key,Door,Box,Ball, Empty}H×W , the
agent position pt ∈ {1, . . . , H} × {1, . . . ,W}, direction
dt ∈ {Up,Left,Down,Right}, and the object carried ot ∈
{Key,Ball, Box,Empty}. The control space U is defined as turn
left/right, move forward, pick up/drop/toggle an object.

product WFA-MDP. Cost parameters are optimized by back-
propagating the loss in (4) through the planning algorithm.

V. EVALUATION

We consider three MiniGrid tasks shown in Fig. 4 whose
atomic propositions are shown in Table I. The task specifi-
cations can be expressed in terms of these propositions, e.g.,
one possible trajectory that fulfills task T1 is to evaluate the
propositions p1, p2, p3 as true sequentially.

TABLE I: Atomic propositions used in each task.

T1 T2 T3

p1 Key is picked up Door 1 is open Ball is 2 steps
away from Door

p2 Door is open Door 2 is open Key is picked up

p3 Agent reaches Goal Door 3 is open Door is open

p4 —— Agent reaches Goal Box is picked up

A. Demonstrations

An expert trajectory is collected by iteratively rolling out
the controls sampled from the expert policy π∗ at each state
x, where Q∗(x,u) in (1) is computed via the Dijkstra’s algo-
rithm with cost of 1 for any feasible transition. For each task,
we consider two sets of expert demonstrations D1 and D2,
each with 32 trajectories collected from expert policies with
temperatures η ∈ {0, 0.5}. The expert trajectories in D1 and
D2 are strictly optimal and suboptimal, respectively, and are
labeled with score s = 1. In each set we also add 128 failed
trajectories with score s = 0 from a random exploration

TABLE II: Results on MiniGrid environment tasks. In each entry,
Green / Orange are results trained from demonstrations D1 with
expert policy temperature η = 0 and D2 with η = 0.5, respectively.
Top: Best Scikit-SpLearn hyperparameters that solve Problem 1 for
each task. Bottom: Mean episode returns (or negative cumulative
true cost, higher is better) are reported across 64 randomly gener-
ated test environments.

T1 T2 T3
rank 5/9 6/9 7/11
rows 4/5 5/5 6/6
cols 4/5 5/6 6/7

T1 T2 T3
BC 0.364/0.253 0.338/0.307 0.284/0.192

GAIL 0.483/0.429 0.274/0.185 0.342/0.257
WFA-IRL(ours) 0.797/0.708 0.776/0.642 0.733/0.602

WFA-IRL
w/o WFA 0.683/0.514 0.652/0.488 0.566/0.390

Expert 0.798/0.718 0.776/0.668 0.734/0.639
Optimal 0.798 0.776 0.734
Random 0.000 0.000 0.000

policy (effectively setting expert policy temperature η →∞).
The full demonstration set is used in each case to learn a
WFA representation hψ of the task via the spectral method
in Sec. IV-A while only the successful trajectories are used
to learn the cost function cθ, as in Sec. IV-B and IV-C.

B. Our method and baselines

Our method WFA-IRL uses a neural network architecture
to represent the cost function. For a detailed description,
please refer to the extended version of our paper [47]. We use
the spectral learning algorithm in the Scikit-SpLearn toolbox
[48] to learn the parameters ψ of the WFA from the expert
demonstrations D. In the implementation, we first compress
the demonstration words σn0:Tn

where consecutive identical
symbols are removed. This greatly reduces the complexity
of learning the WFA while keeping the symbol sequences
unchanged. The hyperparameters for the spectral learning
method are the rank of the automaton (m in Theorem 1)
and the sizes (rows and cols) of the prefix and suffix basis
(B = (P,S) in Theorem 1), which determine the size of the
Hankel matrix estimated empirically from demonstrations.
The complexity is O(n × rank × rows × cols) since
we iterate through the ranks to find a minimal WFA and
count the prefix and suffix frequencies for a given word. The
spectral method can learn almost perfectly with near zero loss
in (2) for all tasks and the best hyperparameter configurations
are shown in Table II. We observe that larger WFA capacity
is required to learn from suboptimal trajectories and thus
more diverse words from D2.

As baselines, we first ablate the WFA component in our
method to understand its effects. Instead of planning in the
product WFA-MDP space and checking the WFA termination
condition in (5), the agent without WFA component simply
plans in the original MDP and checks whether a goal state
is achieved. Additionally, we compare our method with
standard imitation learning and inverse reinforcement learn-
ing algorithms, including behavioral cloning (BC) [49] and
GAIL [50]1. The value/policy functions in these baselines

1The implementations are adapted from the imitation learning library [51]



Fig. 5: Agent trajectory (left column) trained with D1 and expert
trajectory (right column) in task T3 during testing. The agent WFA
only learns words that appear in demonstration D1, which always
moves Ball away from Door first before picking up Key. In
testing it fails to recognize a lower cost trajectory of a different
word sequence, where Key is carried closer to Door before moving
away Ball.

follow our cost neural network architecture to fit the state-
control input format and to compare fairly in representation
power across methods. This includes the policy network
in BC, the discriminator in GAIL, the policy and value
networks in PPO [52], used as generator in GAIL. Only the
size of the last fully-connected layer is modified depending
on whether it is action or value prediction. GAIL is known
to achieve stable performance in fixed horizon environments
while the MiniGrid environments terminate as soon as the
agent fulfills the tasks. We fix this issue by adding a virtual
absorbing state as suggested in [53] when training GAIL.

C. Results

We report the average performance of each method in
Table II by testing on 64 new environment configurations
generated randomly for each task. First, we observe that our
method can achieve almost perfect performance when trained

Fig. 6: Visualization of policy probabilities of each method trained
on D2 at a critical state in T2. Our method shows a stronger
preference towards controls (toggle door) that can make task
progress.

on D1. This is expected since the learned WFA strictly
chooses planned trajectories whose words would match the
optimal behavior. Interestingly, the learned WFA could make
the agent suboptimal if the optimal word in testing is not
seen in training, as shown in Fig. 5. Next, our method
matches the expert performance well using either D1 or D2

and outperforms BC and GAIL (even without WFA). This
demonstrates that using planning to solve tasks that encode
logical structures performs better than a reactive policy
employed by BC. Moreover, the performance gap between
our method and ours without WFA shows that learning logic
specifications explicitly with a WFA can further improve the
policy. On the other hand, we find the performance of GAIL
is limited as PPO cannot easily generate successful samples
similar to the demonstrations (notice that the random policy
never succeeds) to improve the cost discriminator and, in
turn, the generator itself. We visualize the agent policy in
Fig. 6 and observe that our method has a stronger bias on
controls that follow the learned logical sequences.

VI. CONCLUSION

We present WFA-IRL which solves tasks with high-level
reasoning and outperforms prior imitation learning and IRL
methods that do not exploit logical structures from demon-
strations. We show that cost functions learned via solving
deterministic shortest path problems in the product WFA-
MDP can generalize well in unseen environments and across
demonstations of different optimality levels.
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with scikit-learn,” in Conférence francophone sur l’Apprentissage
Aurtomatique, 2017.

[49] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,”
in International Conference on Artificial Intelligence and Statistics,
2010, pp. 661–668.

[50] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
Advances in Neural Information Processing Systems, 2016.

[51] S. Wang, S. Toyer, A. Gleave, and S. Emmons, “The imitation
library for imitation learning and inverse reinforcement learning,”
https://github.com/HumanCompatibleAI/imitation, 2020.

[52] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[53] I. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tompson,
“Discriminator-actor-critic: Addressing sample inefficiency and reward
bias in adversarial imitation learning,” International Conference on
Learning Representations, 2019.


