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Abstract— This paper proposes a method for learning con-
tinuous control policies for exploration and active landmark
localization. We consider a mobile robot detecting landmarks
within a limited sensing range, and tackle the problem of
learning a control policy that maximizes the mutual information
between the landmark states and the sensor observations. We
employ a Kalman filter to convert the partially observable
problem in the landmark states to a Markov decision process
(MDP), a differentiable field of view to shape the reward func-
tion, and an attention-based neural network to represent the
control policy. The approach is combined with active volumetric
mapping to promote environment exploration in addition to
landmark localization. The performance is demonstrated in
several simulated landmark localization tasks in comparison
with benchmark methods.

I. INTRODUCTION

Recent advances in embedded sensing and computation
hardware and in simultaneous localization and mapping
(SLAM) software have enabled efficient, reliable, real-time
mapping of unknown and unstructured environments [1].
However, most robot mapping methods are passive in utiliz-
ing sensing information and do not consider optimizing the
robot’s motion to improve performance. Yet, planning the
robot’s sensing trajectory to improve the quality of acquired
information [2] may play a critical role in challenging
environments in applications such as search and rescue [3],
security and surveillance [4], and wildfire detection [5].

This paper proposes an approach to learn continuous
control policies for active perception. We consider a robot
equipped with an onboard sensor capable of detecting objects
of interest (landmarks) within a limited field of view (FoV).
The objective is to maximize the mutual information between
the landmark states and potential future sensor observations
given past sensory data and robot trajectory. With a sensor
model that is linear in the landmark states and subject to
Gaussian noise, the mutual information objective is related
to the information matrix of a Kalman filter (KF) estimating
the landmark states. To prevent a non-smooth reward func-
tion due to the limited FoV, we use a differentiable FoV
formulation for reward shaping. Then, an exploration policy
is learned using proximal policy optimization (PPO) [6] over
a continuous control space with a network architecture using
self-attention to handle multiple landmarks. The proposed
method is demonstrated in simulation in comparison to an
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Fig. 1: Active landmark localization in the Unity simulator [7]. The
left figure shows a third-person view of an agent (red box) with
limited field of view (orange triangle) tasked with exploring and
localizing landmarks (blue boxes) in the environment. The images
on the right from top to bottom are RGB, semantic segmentation,
and depth images obtained by the agent’s onboard sensor.

open-loop optimization method and a policy with a different
network architecture.

Frontier-based exploration [8] is one of the early tech-
niques for autonomous robot exploration. It drives the robot
to map frontiers, separating explored and unexplored space.
To accommodate sensing noise and uncertainty, information-
based planning has been explored in many recent works in-
cluding [9]–[13]. While many information-based exploration
techniques assume a discrete control space composed of a
finite number of action choices, [14] proposed a gradient as-
cent approach, named iterative Covariance Regulation (iCR),
which optimizes an information objective over continuous
control space. The authors employed a differentiable FoV
to obtain a differentiable objective. Because iCR provides
an open-loop control sequence for a given environment, the
solution cannot be applied to a new environment without
online re-planning.

Learning a control policy from data is a central problem
in reinforcement learning (RL) [15]. RL techniques coupled
with deep learning representations have had impressive suc-
cess in games [16], where the action space is often discrete.
More recently, deep RL algorithms have been developed for
continuous control [6], [17], which is necessary for various
robotics tasks, including visual navigation for mobile [18]
and humanoid [19] robots. In this paper, we consider learning
a control policy for active perception as an alternative to
view planning at execution time. Closely related to our work,
Jeong et al. [20] applied Q-learning to an active target track-
ing problem to maximize the mutual information between



sensor data and the target states. Hsu et al. [21] developed
a multi-agent version of [20] by incorporating an attention-
block in the Q-network architecture. Chen et al. [22] focused
on learning exploration policies in a sample-efficient way
by applying imitation learning first and then employing
PPO for further improvement using a coverage reward.
Julian and Kochenderfer [5] used deep Q-learning for belief-
space planning in a distributed wildfire surveillance scenario,
modelled as a Partial Observable Markov Decision Process
(POMDP). Chen et al. [23] tackled active exploration for
landmark mapping using a graph neural network representing
the exploration policy trained with deep Q learning and
advantage actor critic methods. Chaplot et al. [24] propose
a modular and hierarchical approach to obtain a local policy
by imitation learning from analytical path planners with a
learned SLAM module and a global policy to maximize area
coverage. Our work differs from [24] since we consider an
information-theoretic objective with continuous control that
does not rely on learning from any prior geometric planner.
Lodel et al. [25] propose an information-theoretic objective
to maximize conditional mutual information between a map
estimate and new observations given past sensor data. The
authors apply PPO to acquire reference view points that
maximize the reward with local sensing of obstacles and
the robot position. Our work differs from [25] in that we
incorporate the posterior mean of the Kalman filter in the
state and we use neural network attention to handle multiple
landmarks.

The contribution of this paper is an approach for learn-
ing continuous control policies for active perception with
information-theoretic reward, employing a differentiable FoV
and an attention-based policy architecture. Our evaluation
demonstrates that our method outperforms control policies
with different neural network architectures and pre-computed
exploration trajectories in a landmark localization problem
and can also be utilized for simultaneous exploration of an
unknown environment.

II. PROBLEM STATEMENT

This section formalizes active exploration and mapping
as an optimal control problem. Consider a robot with state
xk ∈ Rnx and control input uk ∈ Rnu at discrete time
k ∈ Z≥0. The objective is to plan a trajectory to localize
several landmarks y = [y(1), . . . ,y(nl)], where y(j) ∈ R2

for j ∈ {1, . . . , nl} denotes the position of j-th landmark and
nl is the total number of landmarks. We model the motion
of the robot using deterministic nonlinear dynamics:

xk+1 = f(xk,uk), (1)

where f : Rnx × Rnu → Rnx is a given function.
Let F ⊂ R2 represent the FoV of the onboard sensors

within the robot’s body frame. The set of landmark indices
within the FoV is:

IF (x, {y(j)}) =
{
j ∈ {1, . . . , nl} | q

(
x,y(j)

)
∈ F

}
(2)

where q(x,y(j)) returns the robot-body-frame coordinates
of y(j). Then, a sensor measurement is denoted by zk =

[{z(j)k }j∈IF (xk,{y(j)})] ∈ Rnz|IF (xk,{y(j)})| where z
(j)
k ∈

Rnz is an observation of j-th landmark with model:

z
(j)
k = H(xk)y

(j) + vk, vk ∼ N (0, V (xk)), (3)

for all j ∈ IF (xk, {y(j)}), where the matrix H(x) ∈ Rnz×2

captures the dependence of the observation on the robot state
x and V (x) ∈ Rnz×nz is the sensing noise covariance.

We aim to maximize the conditional mutual information
between the landmark states y and a new observation zk+1

conditioned on the past observations and robot states, de-
noted as I(y; zk+1|z1:k,x1:k+1). Due to the Gaussian sensor
model (3), the conditional mutual information is given by:

I(y; zk+1|z1:k,x1:k+1) =
1

2
(log det(Yk+1)− log det(Yk))

(4)
where Yk ∈ S2nl×2nl

≻0 is a symmetric positive-definite in-
formation matrix obtained by Kalman filter updates. Since
the landmark measurements are independent, the information
matrix is block-diagonal Yk = diag(Y

(1)
k , . . . , Y

(nl)
k ) with

Y
(j)
k ∈ S2×2

≻0 . Due to the limited FoV sensor model, the
update of the information matrix is applied only to the
indices j within the set IF (x, {y(j)}):

Y
(j)
k+1 = Y

(j)
k +M(xk+1), (5)

M(x) := H(x)⊤V (x)−1H(x). (6)

Summarizing the formulation above, the active perception
problem we address in this paper is presented below.

Problem. Obtain a control policy π that solves the infinite-
horizon stochastic optimal control problem:

max
π

Eπ

( ∞∑
k=0

γk (log det (Yk+1)− log det(Yk))

)
, (7)

subject to (1)–(3) and (5)–(6), where the function π maps a
robot state xk and measurement sequence z0:k to a control
input uk and γ ∈ [0, 1) is a discount factor.

III. CONTINUOUS CONTROL FOR ACTIVE PERCEPTION

This section presents our method for learning a continuous
control policy to reduce the uncertainty in the landmark
states. An overview of the method is shown in Fig. 2.

A. MDP Formulation with Kalman Filter

The problem stated in the previous section is a POMDP
[26] since the landmark states are unobservable and the
control policy should take the history of sensory data z1:k
into account. To avoid the POMDP complexity, we convert
the problem into an equivalent MDP, by using a Kalman
filter to compute a sufficient statistic of the state yk given
the observation history z0:k, namely the posterior distribution
yk|z1:k ∼ N

(
µk, Y

−1
k

)
. The posterior mean µk ∈ R2nl

and covariance (inverse of the information matrix) Y −1
k are

updated every time a new measurement is obtained. This
setting is formalized as an MDP (S,A, P, r, γ), with con-
tinuous state space S, continuous action space A, transition
probability distribution P : S×A×S → [0, 1], stage reward



Fig. 2: Estimation and control architecture used for active per-
ception. A Kalman filter (right) updates the mean vector µk and
vectorized information matrix λk of several landmarks of interest
using a sensor observation zk+1 obtained from agent position xk+1.
A reward function based on the log det of the information matrix
obtained with a differentiable field of view and the proximal policy
optimization algorithm [6] are used to optimize the parameters
of a control policy, whose representation (left) uses an attention
mechanism to capture the relationship between the agent’s position
and the landmark states.

function r : S × A → R, and discount factor γ ∈ [0, 1). To
define the MDP state variable, let λk := vech(Yk) ∈ Rnλ

be the half-vectorization of the symmetric information matrix
Yk, which stacks the columns of the lower-triangular part of
Yk into a vector with dimension nλ := nl(2nl + 1). Then,
denote the Kalman filter update from time k to k + 1 for
j ∈ IF (x, {y(j)}) as:

[µ
(j)
k+1,λ

(j)
k+1] = KF (µ

(j)
k ,λ

(j)
k , zk+1,xk+1). (8)

We describe the design of the stage reward function r next.

B. Reward Shaping by Differentiable FoV

Typical RL methods for continuous control employ policy
gradient methods [17]. However, due to the limited sensor
FoV in (2), the information update in (5) may cause a sudden
jump in the stage reward in (7) with respect to the robot
state and action. Such non-smooth behavior in the reward
may prevent a policy gradient method from converging to
a desired solution. To design a smooth reward function, we
apply a differentiable FoV formulation [14], which serves
as a reward shaping. Namely, the information update (5) is
performed for all j ∈ {1, . . . , nl}, where the matrix M(x)
in (6) is replaced as follows:

M(x,µ(j)) =
(
1− Φ(d(q(x,µ(j)),F))

)
M(x), (9)

where Φ is a probit function [27], defined by the Gaussian
CDF Φ : R → [0, 1], Φ(x) = 1

2

[
1 + erf

(
x√
2κ

− 2
)]

, where

erf(y) := 2√
π

∫ y

0
e−t2dt, and d is a signed distance function

associated with the FoV F defined below.

Definition 1. The signed distance function d : R2 → R
associated with a set F ⊂ R2 is:

d(q,F) =

{
−minq∗∈∂F ||q− q∗||, if q ∈ F ,

minq∗∈∂F ||q− q∗||, if q /∈ F ,
(10)

where ∂F is the boundary of F .

With the proposed differentiable FoV, the information
vector λk in the Kalman Filter is replaced with the new
variable λ̄k in the observation space. Overall, the MDP state
vector sk ∈ Rnx+2nl+nλ is defined as:

sk =
[
x⊤
k λ̄

⊤
k µ⊤

k

]⊤
(11)

and the action is ak = uk. The robot motion model in (1)
and the KF update in (8) together with the differentiable FoV
in (9) define the MDP transition model.

C. PPO with Attention-Based Network Architecture
The return from a state is defined as the sum of discounted

future rewards, Rk =
∑∞

j=k γ
j−kr(sj ,aj). The value func-

tion V π : S → R, the action-value function Qπ : S×A → R,
and the advantage function Aπ : S×A → R under a control
policy π are defined by V π(s) = Eπ [R0|s0 = s], Qπ(s,a) =
Eπ [R0|s0 = s,a0 = a], Aπ(s,a) = Qπ(s,a) − V π(s). We
apply PPO [6], an actor-critic method for learning the neural
network models of both the value function and the control
policy. PPO has shown superior performance for continuous
control tasks with smooth policy updates. The policy πθ is
updated to minimize a clipped surrogate objective:

LCLIP(θ) = E
[
min

{
πθ

πθk

Âk, clip
(

πθ

πθk

, 1− ϵ, 1 + ϵ

)
Âk

}]
,

(12)

where Âk is an estimate of the advantage function, set as
Âk =

∑T−k+1
i=0 (γλ′)

i
δk+i where δk = rk + γVϕ(sk+1) −

Vϕ(sk), and λ′ represents the parameter controlling the
balance between value estimations’ bias and variance.
The value function is subsequently updated to minimize∑T

k=0(Vϕ(sk)−Rk)
2.

To take a reasonable trajectory that maximizes information
gain, the agent should plan based on its previous observa-
tions. Some related works directly incorporate historical ob-
servations and agent states or use recurrent neural networks
[23], [25]. In contrast, our model uses the landmark means
and information matrices as part of the state, and because
they form a sufficient statistic it is not necessary to have
historical information.

Another important aspect of our design is that the agent
should be aware of the relationship between its current posi-
tion and the landmark states in order to prioritize observing
uncertain landmarks. To capture the position relationship
we employ an attention mechanism [28] in the design of
the policy architecture. We encode the agent position xk ∈
Rnx into Emb(x) with two 32-unit fully connected layers
(FC), and the landmark states olm

k ∈ Rnl×4 (reshaped from
[λ⊤

k µ⊤
k ]

⊤ ∈ R4nl ) into Emb(olm
k ) with a 64-unit FC fol-

lowed by a 32-unit FC. Then, we obtain the agent-landmark
relationship embedding denoted as EmbRELP by calculating
the attention of Emb(x) over all Emb(olm

k ). Finally, we
concatenate Emb(x) and EmbRELP and pass through two 64-
unit fully connected layers to compute the action or value.
An illustration of our model is shown in Fig. 2.

D. Joint Exploration and Landmark Localization

In addition to landmark localization, we consider simulta-
neous exploration of an unknown environment. A map state



m ∈ Rnm is defined by discretizing the space Ω ⊂ R2

into hm × wm = nm ∈ N tiles, and associating each tile
j ∈ 1, . . . , n with a position p(j) ∈ R2 and an occupancy
value m(j) ∈ R (m(j) = 1 if occupied, and m(j) = −1
if free ). While Gaussian density estimate obtained from
the KF provides a continuous real value, by applying a
threshold function which returns 1 for positive input and
−1 for negative input, the map state can be estimated as
a binary value. Using the index set notation of (2), the
set of map tile indices within the field of view can be
described as IF (x, {p(j)}). Using the image sensor from
the flying robot, the occupancy within the FoV can be
measured directly. The sensor state is given by zmap

k =
[{zmap(m(j))}j∈IF (xk,{p(j)})], and the sensor model is set as
zmap(m(j)) = m(j)+v, where v ∼ N (0, σ). Similarly to the
landmark localization problem above, we consider a unified
exploration and landmark localization problem by computing
a control policy π, mapping a state xk and observations
z0:k = [zland⊤

0:k , zmap⊤
0:k ]⊤ to an input uk, that solves:

max
π

Eπ

( ∞∑
k=0

γk
(
ραlandrland

k + (1− ρ)αmaprmap
k

))
, (13)

with rmap
k = log det(Ȳk+1) − log det(Ȳk), Ȳ

(j)
k+1 = Ȳ

(j)
k +

1
σ2 ξ

(j)
k , ξ(j)k = 1− Φ(d(q(xk,p

(j)),F)), where Ȳ
(j)
k ∈ R+

is a j-th diagonal element in the information matrix Ȳk

of the volumetric map, subject to the models in (1)–(3).
The hyper parameter ρ ∈ [0, 1] controls the weight of
each reward, and αland, αmap are normalization factors. One
notable difference from the landmark scenario is that, the set
of indices IF (x, {p(j)}) is independent from the map state
m, thereby the posterior mean of the Kalman Filter is not
needed in the observation space.

The state vector sk ∈ Rnx+2nl+nλ+2nm consists of
sland
k ∈ Rnx+2nl+nλ of the landmark localization task

(11) and smap
k ∈ R2nm of the map exploration. The

state smap
k includes the agent’s differentiable FoV ξ

(j)
k and

the current information of each pixel in the map Ȳ
(j)
k :

sk =
[
sland⊤
k ; smap⊤

k

]⊤
, smap

k =
[
{ξ(j)k }nm⊤

j=1 {Ȳ (j)
k }nm⊤

j=1

]⊤
.

The two states for landmark localization and volumetric
exploration are processed independently to extract their
corresponding feature vectors: sland

k goes through the same
attention-based network without the last fully-connected
layer, while smap

k is reshaped as a 2-channel image Smap
k ∈

R2×hm×wm and compressed by two convolutional layers
followed by a flatten operation. The two feature vectors
are concatenated and fed to two fully-connected layers to
compute the action or value.

IV. EVALUATION

We consider aerial surveillance of a 3-D environment
using a flying robot with downward-facing RGB-D sensor.
For simplicity, we assume that the orientation and height of
the robot are not controlled, and the x − y position of the
robot can be controlled directly by linear velocities, while
the landmarks are located in a 2-D plane with the same

height. Hence, the robot state is the position xk ∈ R2

and the control input is the linear velocity u ∈ R2 so
that xk+1 = xk + uk. The robot’s FoV is a circle with
a fixed radius on the ground. For sensing of landmarks,
we suppose both range and bearing sensors are available,
thereby the sensor model is described by the robot-body-
frame coordinates, i.e, H = I2 and V = σ2I2 with a sensor
noise magnitude σ ∈ R≥0. Under this setting, it is easily
shown that the information matrix Yk by Kalman Filter (5)
and differentiable FoV (9) becomes a diagonal matrix, and
thus λk = diag(Yk) ∈ R2nl is sufficient for the information
vector in observation space. At each episode, the initial
estimations of landmark positions µ0 are sampled from a
Gaussian distribution, while its mean value corresponds to
landmarks’ true positions, and the variance is determined by
the sensor noise.

We demonstrate the performance of our approach in sev-
eral simulations. First, we show qualitative and quantitative
results for landmark localization. With non-uniform initial in-
formation values among the landmarks, the agent prioritizes
landmarks with low information. Then, promising results for
the joint exploration and landmark localization method are
presented. Finally, we apply our method in a high-fidelity
Unity simulation showing its potential for transfer in a real-
world setting.

A. Evaluation Settings

We first conduct landmark localization experiments with
3, 5, and 8 randomly scattered landmarks in the environment.
Respectively, the agents takes 8, 15, and 18 time steps
per episode in each scenario during the training, so that
the agent requires an efficient exploration by the terminal
time. At the beginning of each episode, the agent’s position
is chosen randomly using a uniform distribution, x0 ∼
Uniform([−2, 2]× [−2, 2]), while the landmark positions are
specified using a uniform distribution within [−8, 8]×[−8, 8],
[−10, 10]× [−10, 10] and [−12, 12]× [−12, 12], respectively.
The control scaling factors are set as 3, namely, the neural
network stochastic control policy uk ∼ πθ(·|sk) is updated
within the range uk ∈ [−3, 3] × [−3, 3]. Regarding the
hyper-parameters in Sec. III-B, we chose a smoothing factor
κ, sensing radius, and sensor noise σ as 0.5, 2 and 0.5,
respectively. The models are trained for a million time steps
using a 24G NVIDIA GeForce RTX 3090 GPU. Specifically,
the training process for each model was completed within 30
minutes in our experiment.

B. Landmark Localization Quantitative Comparisons

One demonstration of the trajectories generated from our
learning policy in three different maps is depicted in Fig. 3,
which illustrates that the agent traverse through all the
landmarks. We compare our method, named PPO-att, to
two baselines: (1) PPO-mlp: a policy network replacing the
attention block with a multi-layer perceptron and (2) iCR-
landmark: the open-loop optimal control method iCR [14],
which performs finite-horizon trajectory optimization. We



3 Landmarks 5 Landmarks 8 Landmarks

Trajectories

Fig. 3: Landmark localization trajectories. At test time, the agent is randomly initialized near the origin and has to explore the map to
reduce uncertainty in the landmark positions with a limited sensing radius of 2. The blue dots indicate the real positions of the landmarks.
The small red triangle and square show the agent’s initial and current positions, respectively.

use the same hyper-parameters, protocols, and landmark and
agent initial positions for all methods.

Each method is tested for 30 episodes per environment.
Note that PPO-att and PPO-mlp are both trained with three
random seeds to get three models in each environment. Each
model runs 10 episodes in each map. We utilize two metrics
for quantitative comparisons: (1) Reward: mean and standard
deviation values of the cumulative reward, and (2) MAE: the
mean absolute error of the landmark localization at the end of
each episode. Both metrics are computed over 30 episodes.
We also tested the methods in environments with and without
additive Gaussian noise in the robot dynamics (1). The results
are shown in Table I.

iCR-landmark is capable of finding an optimal control
sequence after sufficient number of iterations. However, it
is not able to generalize the control input to different ground
truth of the landmark positions, and its performance is highly
dependent on a precomputed initial control sequence. The
iCR-landmark trajectory can be recomputed at run-time, but
such approach is out of our scope aiming to generalize a pre-
computed policy to new environments. Secondly, according
to the acquired data, PPO-mlp performs relatively well when
there are only three landmarks but obtains the worst results
when there are more landmarks. Intuitively, although PPO-
mlp is able to handle landmark randomization, it cannot
extract relationship features between landmarks and the
agent. Thus, when the amount of the landmarks increases,
exploration fails and leads to a significant performance drop.
In contrast, our method always performs the best among
other compared methods and is able to localize randomized
landmarks with a small mean absolute error at the end of
each episode. It is noteworthy that PPO-mlp also exhibits an
advantage over other methods in scenarios with agent motion
noise. They demonstrated the robustness of the proposed
method in noisy dynamical environments.

C. Landmark Localization with Non-uniform Information

We conduct a supplementary experiment to further demon-
strate the features and advantages of our method by set-
ting non-uniform initial information, where one landmark
has much higher information (named high-info landmark
hereafter) than others. Fig. 4 shows different trajectories
generated by the learned control policy for different landmark
configurations. We can clearly see that the agent always
prioritizes its exploration to landmarks with lower initial

TABLE I: Quantitative Comparison Results. The table shows the
average and standard deviation for the cumulative episode rewards
(higher is better) and the average estimation error after mapping
(lower is better). Tests are performed in three kinds of maps with
or without motion noise.

Method 3 Landmarks 5 Landmarks 8 Landmarks
Reward MAE Reward MAE Reward MAE

iCR-landmark w/o noise 11.93 ± 6.71 0.37 20.57 ± 7.58 0.34 29.18 ± 10.0 0.36
w/ noise 13.3 ± 5.32 0.37 18.43 ± 6.48 0.39 25.31 ± 7.69 0.34

PPO-mlp w/o noise 16.39 ± 4.82 0.34 18.97 ± 6.23 0.36 16.36 ± 10.39 0.37
w/ noise 16.27 ± 4.9 0.32 15.26 ± 6.39 0.36 16.78 ± 9.64 0.37

PPO-att w/o noise 18.54 ± 2.9 0.29 30.27 ± 3.0 0.31 38.25 ± 8.0 0.35
w/ noise 18.13 ± 3.3 0.32 26.53 ± 6.17 0.33 30.15 ± 11.03 0.36

information values, and even ignores the high-info landmark
due to the limited number of time steps. With these experi-
ments, we verify that our approach is capable of prioritizing
less certain landmarks.

D. Joint Exploration and Landmark Localization

We also evaluate the joint exploration and landmark lo-
calization method described in Sec. III-D. The environment
size is set as 30×30. During training, the agent is randomly
initialized with a uniform distribution on [13, 17] for both the
x and y axes. The initial positions of the 5 landmarks are
also uniformly randomized in a larger x, y range of [5, 25].
The time horizon is fixed at 15 steps per episode. The rest
of the environment and training parameters are the same in
Sec. IV-A.

We compare two policies trained with different reward
weights ρ in (13). The weight of the exploration-exploitation
policy is set to ρ = 0.2, i.e., the agent is pursuing both
map exploration and landmark localization exploitation. The
weight in the exploitation policy is set to ρ = 1.0, i.e., the
agent is only exploiting the landmark localization since only
rland
k is kept in the reward.

To demonstrate the agent’s ability of localizing the land-
marks and exploring the map simultaneously, the 5 land-
marks are randomly initialized in a more concentrated area
(e.g. [20, 25] for x and y in Fig. 5). Exploration-exploitation
policy is expected to visit the landmarks first to obtain high
information initially, and then explore the rest of the map
to continue gaining information. In contrast, the exploitation
policy is expected to remain around the landmarks leaving
the majority of the map unexplored.

Fig. 5 shows the test results for the exploitation policy
(top) and the exploration-exploitation Policy (bottom). It is
obvious that the agent employing the exploration-exploitation



Fig. 4: Trajectories under non-uniform initial information values.
When there is one landmark with higher initial information, the
agent prioritizes the sensing of other landmarks with lower infor-
mation. The green dots illustrate landmarks with higher information.

Fig. 5: Landmark localization and exploration using an exploitation
policy (top) and an exploration-exploitation policy (bottom). The left
column shows the final trajectory on the ground-truth map. The two
columns on the right show the estimated landmark positions and
occupancy map at the beginning and the end of the episode.

Agent

Fig. 6: Snapshots at time steps 0, 5, 10 and 15 in an active landmark localization episode in the Unity simulator.

policy continues to explore the map after detecting the
landmarks, while with the exploitation policy the agent
stays only around the landmarks. Qualitatively, the landmark
positions are better estimated by the exploitation policy at the
last step because it focuses on maximizing the information
gain of only the landmarks.

E. Unity Simulation
To examine the applicability of the method in real-world

environments, we designed a Unity simulation [7] which
provides realistic training and testing settings. We used 5
landmarks represented by different objects in Unity and
positioned randomly in a bounded area in each episode. An
aerial agent explores the environment to localize the scattered
landmarks, as illustrated in Fig. 1. The agent is equipped with
a downward-facing aligned semantic and depth sensor with
Gaussian noise on the depth values. When a landmark object
is inside the sensor FoV, the agent uses the semantic map to
extract the pixels of interest. Then, based on the depth values
of the extracted pixels and the intrinsic and extrinsic camera
matrices, we obtain a 3-D point cloud observation of object
and estimate its center position in the plane. To guarantee
the same shape of the sensor model, we also apply a squared
signed distance function for the calculation. Fig. 6 illustrates
the agent exploring the environment. PPO-att trained in a 2-
D environment achieved a desired trajectory visiting all the
landmarks.

V. CONCLUSION

This paper proposed a learning method for active landmark
localization and exploration with an information-theoretic
cost over continuous control space. Key aspects of our
method include (i) reward shaping using a differentiable
FoV, (ii) attention-based neural network architecture for
landmark prioritization, and (iii) joint landmark localization
and environment exploration. Future work will focus on
deterministic computation of reward gradients, collision and
occlusion modeling, and deployment on a real robot system.
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