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Abstract— This paper develops a novel control synthesis
method for safe stabilization of control-affine systems as
a Differential Complementarity Problem (DCP). Our design
uses a control Lyapunov function (CLF) and a control bar-
rier function (CBF) to define complementarity constraints in
the DCP formulation to certify stability and safety, respec-
tively. The CLF-CBF-DCP controller imposes stability as a
soft constraint, which is automatically relaxed when the
safety constraint is active, without the need for parameter
tuning or optimization. We study the closed-loop system
behavior with the CLF-CBF-DCP controller and identify con-
ditions on the existence of local equilibria. Although in cer-
tain cases the controller yields undesirable local equilibria,
those can be confined to a small subset of the safe set
boundary by proper choice of the control parameters. Then,
our method can avoid undesirable equilibria that CLF-CBF
quadratic programming techniques encounter.

Index Terms— Constrained control, Stability of nonlinear
systems, Differential-algebraic systems

I. INTRODUCTION

STABILITY verification and stabilizing control design are
fundamental problems in control theory that have im-

pacted numerous industrial systems. One of the main tools
for constructing control laws that stabilize nonlinear systems
is a control Lyapunov function (CLF) [1], [2]. As control sys-
tems are increasingly deployed in less structured, yet safety-
critical settings, in addition to stability, control designs need
to guarantee safety. Inspired by the property of CLFs to yield
invariant level sets, control barrier functions (CBFs) [3] have
been developed to enforce that a desired safe subset of the state
space is invariant. While various techniques for guaranteeing
safety and stability exist, important challenges remain when
both requirements are considered simultaneously. They include
conditions under which it is possible to obtain a single
control policy that guarantees CLF stability and CBF safety
simultaneously (compatibility [4]), existence and uniqueness
of the closed-loop system trajectories (well-posedness), con-
vergence to points other than the origin (undesired equilibria),
identification of initial conditions that ensure joint stability and
safety (region of attraction).

The design of stabilizing control with guaranteed safety is
studied in [7]. The authors define a Control Lyapunov Barrier
Function (CLBF), whose existence enables joint stabilization
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Fig. 1: Comparison of the closed-loop trajectories resulting from our
CLF-CBF-DCP control approach (orange), two recent CLF-CBF-QP
techniques (blue [4] and red [5]) and Lyapunov shaping (brown [6])
with a concave obstacle (green) for three initial conditions (black
dots). Existing CLF-CBF-QP techniques converge to an undesired
equilibrium on the obstacle boundary (black cross). Lyapunov shap-
ing converges to a different undesired equilibrium on the obstacle
boundary near the black cross for different initial conditions. Our
approach stabilizes the system at the origin.

and safety. However, constructing a CLBF may be challenging
and may require modification of the safe set. A comprehensive
overview of CBF techniques and their use as safety constraints
in quadratic programs (QPs) for control synthesis is provided
in [3]. Garg and Panagou [8] propose a fixed-time CLF and
analyze conditions for finite-time stabilization to a region of
interest with safety guarantees. Local asymptotic stability for
a particular CLF-CBF QP was proven in [9]. Reis et al. [6]
show that a CLF-CBF-QP controller introduces equilibria
other than the origin. The authors develop a new formulation
by introducing a new parameter in the CLF constraint and
an additional CBF constraint, aimed at avoiding undesired
equilibria on the safe set boundary. In [5], it is shown that
minimizing the distance to a nominal controller satisfying the
CLF condition as the objective of a CLF-CBF QP ensures
local stability of the origin without any additional assumptions.
However, the region of attraction of this controller has not
be characterized yet. Compatibility between CLF and CBF
constraints is considered in [10]. The authors define a CBF-
stabilizable sublevel set of the CLF and characterize the con-
ditions under which the closed-loop system is asymptotically
stable with respect to the origin. Mestres and Cortés [4]
develop a penalty method to incorporate the CLF condition
as a soft constraint in a QP, identify conditions on the penalty
parameter that eliminate undesired equilibria, and provide an
inner approximation of the region of attraction, where joint
stability and safety is ensured. As illustrated in Fig. 1, however,
the regions of attraction guaranteed by recent CLF-CBF-QP
techniques remain conservative, and initial conditions inside



the safe set may still converge to undesired equilibria.
Our first contribution is a formulation of control synthesis

with CLF stability and CBF safety constraints as a Differential
Complementarity Problem (DCP). A DCP is composed of an
ODE subject to complementarity constraints:

ẏ = f̂(y, z)

s.t. 0 ≤ z ⊥ C(y, z) ≥ 0,
(1)

where a ⊥ b means that a and b are orthogonal vectors,
i.e., a>b = 0. Complementarity problems are used to model
combinatorial constraints in nonlinear optimization [11] or
hybrid dynamics in mechanical systems with contact [12].
We formulate a DCP in which the closed-loop dynamics are
subject to constraints that certain control terms are activated
only when the state may violate the CLF or CBF conditions.

Our second contribution is an analysis of the closed-loop
system equilibria, showing that our CLF-CBF-DCP controller
can eliminate undesired equilibria on the safe set boundary that
CLF-CBF-QP methods encounter (see Fig. 1). We prove that
our controller is Lipschitz continuous, ensuring existence and
uniqueness of solutions, and show that the set of undesired
equilibria can be restricted to a small subset of the safe
set boundary by choosing a sufficiently large control gain
parameter. A related work in the DCP literature is Camlibel
et al. [13], which derives conditions for Lyapunov stability of
linear DCP. While DCP formulations have potential to capture
switching behavior in dynamical systems, they have not yet
been used for safe control design. This paper introduces a new
idea to model the mode switch between stability and safety
satisfaction as a DCP.

II. PRELIMINARIES

Consider a nonlinear control-affine system:

ẋ = f(x) + G(x)u (2)

with state x ∈ Rn and control input u ∈ Rm, where f : Rn →
Rn and G : Rn → Rn×m are locally Lipschitz continuous.
Assume that f(0) = 0 so that the origin x = 0 is the desired
equilibrium of the unforced system. A typical objective is to
design a stabilizing controller for the system. Stability of the
closed-loop system is often verified by a Lyapunov function,
while a stabilizing controller can be obtained using a control
Lyapunov function.

Definition 1. Given an open and connected set D ⊆ Rn with
0 ∈ D, a continuously differentiable positive-definite function
V : Rn → R is a control Lyapunov function (CLF) on D for
system (2) if for each x ∈ D \ {0} it satisfies:

inf
u∈Rm

[LfV (x) + LGV (x)u] ≤ −αl(V (x)), (3)

where αl : R≥0 → R≥0 is a class K function [14].

The set of stabilizing control inputs at state x ∈ D \ {0},
corresponding to a valid CLF V on D, is:

Kclf(x) = {u ∈ Rm : LfV (x) + LGV (x)u ≤ −αl(V (x))},

in the sense that any Lipschitz continuous control law r :
D 7→ Rm such that r(x) ∈ Kclf(x) makes the origin of the
closed-loop system asymptotically stable [15].

Beyond stability, it is often necessary to ensure that the
system trajectories remain within a safe set C ⊂ D, in the
sense that C is forward invariant [16]. We consider a closed
set C := {x ∈ Rn|h(x) ≥ 0}, defined as the zero-superlevel
set of a continuously differentiable function h : Rn → R. One
way to guarantee that C is forward invariant is to require that
h is a control barrier function. Details can be found in the
comprehensive work by Ames at el. [16].

Definition 2. A continuously differentiable function h(x) :
Rn → R is a control barrier function (CBF) of C on D for
system (2) if it satisfies:

sup
u∈Rm

[Lfh(x) + LGh(x)u] ≥ −αh(h(x)), ∀x ∈ D, (4)

where αh : R→ R is an extended class K function.

The set of safe control inputs at state x, corresponding to
a valid CBF h on D, is:

Kcbf(x) = {u ∈ Rm : Lfh(x) + LGh(x)u ≥ −αh(h(x))},

in the sense that any Lipschitz control law r : D 7→ Rm such
that r(x) ∈ Kcbf(x) renders the set C forward invariant [17].

Finding a single control input u achieving both stability and
safety may be infeasible. In order to guarantee safety when
(3) and (4) are not compatible [18], a popular approach is to
modify a stabilizing controller minimally so as to guarantee
safety [16]. Given a locally Lipschitz stabilizing control law
r(x) ∈ Kclf(x), the following CBF QP obtains the minimum
control perturbation to guarantee safety:

min
u∈Rm

‖u− r(x)‖22
s.t. Lfh(x) + LGh(x)u ≥ −αh(h(x)).

(5)

III. PROBLEM STATEMENT

In agreement with the results in [4]–[6], [10], we note that
a control law synthesized by the CBF QP in (5) introduces
undesired local equilibria on the boundary of the safe set C
for the system in (2). Hence, our objective is to design a new
control synthesis method, which simultaneously guarantees
safety and prevents undesired local equilibria for the closed-
loop system.

Suppose the assumption below holds throughout the paper.

Assumption 1. The safety requirements for system (2) are
specified by a set C = {x ∈ Rn|h(x) ≥ 0} ⊂ D such that h
is a CBF of C with h(0) > 0 and LGh(x) 6= 0, ∀x ∈ D.

Assumption 1 requires that the safe set C is defined by a
CBF with relative degree 1 and the origin is in the interior of
C. Under this assumption, the CBF-QP control law in (5) can
be obtained in closed-form using the KKT conditions.

Proposition 1 ([10, Thm. 1]). Consider system (2) with CLF
V on D and CBF h that satisfies Assumption 1. Then, the
CBF QP in (5) has a unique closed-form solution:

u∗(x) =

{
r(x), ∇h(x)>e(x) + αh(h(x)) ≥ 0,

ū(x), ∇h(x)>e(x) + αh(h(x)) < 0,
(6)



where e(x) := f(x) + G(x)r(x) and

ū(x) = r(x)− ∇h(x)>e(x) + αh(h(x))

‖LGh(x)‖22
LGh(x)>. (7)

While the control law u∗(x) in (6) guarantees safety by
design, it might not asymptotically stabilize the system in (2)
to the origin. There exist other local equilibria for the closed-
loop system, characterized by the following proposition.

Proposition 2. Consider the system in (2) with control law
u∗(x) in (6). The equilibria of the closed-loop system are 0
or points x∗ ∈ ∂C such that ∇h(x∗)>e(x∗) < 0 and

e(x∗) =
∇h(x∗)>e(x∗)

‖LGh(x∗)‖22
G(x∗)LGh(x∗)>. (8)

Proof. The result follows by replacing 1
εLgV (x) in [4, Pro-

postion 5.1] with −r(x).

We focus on designing an alternative control law to (6),
which guarantees safety and eliminates the undesired local
equilibria noted in Proposition 2.

Problem. Consider the system in (2) with given CLF V on
D and safe set C = {x ∈ Rn|h(x) ≥ 0} ⊂ D, defined by a
CBF h. Design a control law that asymptotically stabilizes (2)
to the origin while guaranteeing that C is forward invariant.

IV. DIFFERENTIAL COMPLEMENTARITY PROBLEM

Our key idea is to introduce the CLF and CBF conditions as
complementarity constraints in a DCP. We first review results
in DCP theory, which will serve as the foundation of our CLF-
CBF-DCP method.

We say that the DCP in (1) has index 0 if it is equivalent to
a system of ODEs. Recall that C(y, z) is strongly monotone
in z, if there exists c > 0, such that:

||C(y, z1)−C(y, z2)|| ≥ c ||z1 − z2|| , ∀z1, z2. (9)

If C(y, z) is Lispchitz in y and strongly monotone in z, the
DCP in (1) has index 0, z can be obtained as a Lipschitz
continuous function of y, and the DCP problem can be
converted to an ODE with Lipschitz right-hand function [19].

Consider the case when C(y, z) is an affine function of z.
The corresponding initial-value DCP takes the form:

ẏ = f̂(y, z)

s.t. 0 ≤ z ⊥ A(y)z + q(y) ≥ 0,

y(0) = y0,

(10)

where the inequalities are applied element-wise. Denote the
complementarity constraints of (10) by LCP(q(y),A(y)),
where LCP stands for linear complementarity problem.
We are interested in assumptions on A(y) under which
LCP(q(y),A(y)) has a unique solution z(y) for any choice
of q(y). The class of matrices for which this holds are P
matrices [20, Thm. 3.3.7]. A matrix is said to be a P matrix
when all of its principle minors are positive.

The next result considers a particular form for the matrix
A(y), which we will use to specify safety and stability
constraints, and gives sufficient conditions for the DCP (10)
to be equivalent to a Lipschitz ODE.

Proposition 3. Consider the DCP in (10). Assume that the
functions A(y), q(y) and f(y, z) are locally Lipschitz con-
tinuous at y0 and that A(y) has the form:

A(y) =

[
a(y) 0
c(y) d(y)

]
∈ R2×2, (11)

with elements satisfying either:

i) a(y0) > 0 and d(y0) > 0, or
ii) a(y0) = 0, d(y0) > 0, and q1(y0) > 0.

If either i) or ii) holds, then in a neighborhood of y0 the
solution z(y) of LCP(q(y),A(y)) is unique, locally Lipschitz
continuous, and has a closed-form expression:

z1(y) =

{
(−q1(y))+

a(y) , a(y) > 0,

0, a(y) = 0,

z2(y) =
(−c(y)z1(y)− q2(y))+

d(y)
,

(12)

where (·)+ denotes max(·, 0). Hence, DCP (10) is equivalent
to an ODE with a locally Lipschitz right-hand side.

Proof. We prove the result under assumption i) first. From
(11) and the continuity assumptions on the problem data, it
follows that A(y) is a P matrix in a neighborhood V of y0.
This implies that the solution z(y) of LCP(q(y),A(y)) is
unique for all y ∈ V . To derive the closed-form solution,
consider the scalar LCP(̃b, ã): 0 ≤ t ⊥ ãt + b̃ ≥ 0 with
ã > 0. The scalar LCP has a unique solution: t = (−b̃)+

ã .
Due to the triangular form of the matrix A(y), we can
determine z1(y) first by solving LCP(q1(y), a(y)). This gives
z1(y) = (−q1(y))+

a(y) for y ∈ V . Substituting z1(y) in the
second complementarity constraint leads to another scalar
LCP(c(y)z1(y)+q2(y), d(y)) with d(y) > 0 for y ∈ C. Thus,
z2(y) = (−c(y)z1(y)−q2(y))+

d(y) . To prove that z(y) is locally
Lipshitz, we note that since A(y) is a P matrix in V , we must
have a(y), d(y) > 0 for all y ∈ V which implies that 1/a(y),
1/d(y) are locally Lipschitz. The function (r)+ with r ∈ R
is locally Lipschitz and the composition (f2(x))+ satisfies the
same property, whenever f2(x) is locally Lipschitz. Since the
sum or product of two locally Lipschitz continuous functions
are each locally Lipschitz, we can conclude that z(y) is locally
Lipschitz. This completes the proof under assumption i).

Now, we consider assumption ii). Due to the continuity
assumptions, we have q1(y) > 0, for all y in a neighborhood
Ṽ of y0. To satisfy the complementarity constraint, we need
z1(y)q1(y) = 0. Since q1(y) > 0 for all y ∈ Ṽ it follows that
z1(y) = 0, y ∈ Ṽ and therefore z1(y) is locally Lipschitz.
The other component of z(y), z2(y), is the solution to the
scalar LCP(q2(y), d(y)) with d(y) > 0 and we can use the
result under assumption i) to conclude that z2(y) is Lipschitz
in a neighborhood of y0.

V. CLF-CBF-DCP CONTROL DESIGN

This section presents our DCP formulation for control
synthesis with CLF stability and CBF safety constraints.



A. DCP Formulation and Uniqueness of Solutions

Consider the system in (2) and parameterize its input as:

u = wlūl + whūh. (13)

We will use the vectors wl,wh ∈ Rm to determine the
directions of stability and safety satisfaction and the scalars
ūl, ūh ∈ R to determine the control input magnitude. Con-
sider the following DCP with CLF stability and CBF safety
complementarity constraints:

ẋ = f(x) + G(x)[wlūl + whūh] (14a)
s.t. 0 ≤ ūl ⊥ −Fl(x)− LGV (x)wlūl ≥ 0, (14b)

0 ≤ ūh ⊥ Fh(x) + LGh(x)[wlūl + whūh] ≥ 0, (14c)

where Fl(x) := LfV (x) + αl(V ) and Fh(x) := Lfh(x) +
αh(h). The constraint (14b) requires that the magnitude term
ūl responsible for ensuring stability is zero unless the CLF
condition in Def. 1 is endangered. The safety constraint (14c)
needs to prevent safety violation caused by the stabilizing input
wlūl. To achieve this, we add an overriding term whūh in
(14c), which is zero unless the CBF condition in Def. 2 is
endangered with control input wlūl. The system will switch
from stabilizing mode to safe mode if whūh is not zero. We
show that under additional regularity assumptions, the control
law resulting from the DCP in (14) is unique and locally
Lipschitz continuous and, hence, ensures the existence and
uniqueness of closed-loop system trajectories.

Assumption 2. ∇V (x) and ∇h(x) are locally Lipschitz
continuous for all x ∈ D \ {0}. The functions αl in Def. 1
and αh in Def. 2 are locally Lipschitz continuous.

Theorem 1. Assume LGV (x) 6= 0, ∀x ∈ E := {x ∈ D\{0} |
Fl(x) = 0}. Assume wl satisfies −LGV (x)wl > 0 for all
x ∈ D \ {0} such that LGV (x) 6= 0. Assume wh satisfies
LGh(x)wh > 0 for all x ∈ D\{0}. Then, for all x ∈ D\{0},
the solution of the LCP in (14b)-(14c) is unique and has a
closed-form:

ūl =

{
− Fl(x)
LGV (x)wl

, Fl(x) ≥ 0,

0, Fl(x) < 0,

ūh =

(
−Fh(x) + LGh(x)wlūl

LGh(x)wh

)
+

.

(15)

If Assumption 2 holds, then ūl and ūh are locally Lipschitz
continuous for all x ∈ D \ {0}.

Proof. Rewrite (14b)-(14c) as follows 0 ≤ z ⊥
A(x)z + q(x) ≥ 0 with q(x) = [−Fl(x), Fh(x)]> and

A(x) =

[
−LGV (x)wl 0
LGh(x)wl LGh(x)wh

]
to reflect (10). When

LGV (x) 6= 0, we have a(x) = −LGV (x)wl > 0 and
d(x) = LGh(x)wh > 0, which satisfies assumption i) in
Proposition 3. When LGV (x) = 0, we must have q1(x) =
−Fl(x) > 0 by our assumption on LGV (x) and Def. 1. Thus,
the LCP in (14b)-(14c) satisfies assumption ii) in Proposi-
tion 3. In both cases, by Proposition 3, the solution ūl, ūh
of LCP(q(x),A(x)) is unique, locally Lipschitz continuous,
and available in closed-form.

A naı̈ve choice of wl and wh that satisfies the requirements
of Thm. 1 is wl = −LGV (x)> and wh = LGh(x)>. It is
also possible to avoid the extra assumption LGV (x) 6= 0,
∀x ∈ E in Thm. 1. If both LGV (x) = 0 and Fl(x) = 0, then
ūl is not unique but, since stability is not endangered, we can
choose ūl = 0 to obtain the CLF-CBF-DCP controller:

ūl =

{
− Fl(x)
LGV (x)wl

, Fl(x) > 0,

0, Fl(x) ≤ 0,

ūh =

(
−Fh(x) + LGh(x)wlūl

LGh(x)wh

)
+

.

(16)

We propose an alternative choice of wh for our control law
and study the equilibria of the closed-loop system next.

B. Control Modification to Remove Undesired Equilibria
As noted in Proposition 2, QP-based methods introduce

undesired equilibria satisfying condition (8). We analyze the
equilibria under the CLF-CBF-DCP controller in (16) and
attempt to remove undesired ones using the degrees of freedom
allowed by wl and wh in (13). Since wh multiplies LGh(x)
in the CBF constraint, introducing a component from the null
space of LGh(x) to wh will not change the safety condition
but may be used to modify the control input. This motivates
a modification of the naı̈ve choice of wh:

wl = −LGV (x)>, wh = LGh(x)> + kwp(x), (17)

where k ∈ R and wp(x) is locally Lipschitz and satisfies:

LGh(x)wp(x) = 0, G(x)wp(x) 6= 0, ∀x∈D\{0}. (18)

The former requirement in (18) ensures that wp(x) does not
affect the safety condition, while the latter that wp(x) affects
the closed-loop dynamics. A sufficient condition for the latter
requirement that wp(x) is not in the null space of G(x) is
N(x)>wp(x) = 0, where N(x) ∈ Rm×(m−rank(G(x))) is
a null-space basis. Hence, (18) is satisfied if the following
system has a non-zero solution:[

∇h(x)>G(x)
N(x)>

]
wp(x) = 0. (19)

Since the matrix in (19) has m + 1 − rank(G(x)) rows,
a sufficient condition for the existence of non-zero wp(x)
satisfying (18) is rank(G(x)) ≥ 2.

Assumption 3. G(x) ∈ Rn×m satisfies rank(G(x)) ≥ 2.

To highlight the role of wp(x) in the closed-loop sys-
tem and simplify the notation, define Fu(x) := f(x) +
G(x)[−LGV

>(x)ūl+LGh
>(x)ūh] with ūl, ūh given in (16).

Then, the closed-loop system becomes:

ẋ = Fu(x) + ūhkG(x)wp(x). (20)

Proposition 4. Consider system (2) with the CLF-CBF-DCP
control law in (13), (16), and (17). There are no equilibria of
the closed-loop system in Int(C) except 0.

Proof. Any non-zero equilibrium x∗ of (20) satisfies:

−Fu(x∗) = ūh(x∗)kG(x∗)wp(x
∗). (21)



Suppose that x∗ ∈ Int(C) \ {0} and consider two cases.
(i): If ūh = 0, from (21):

− Fu(x∗) = −f(x∗) + G(x∗)LGV (x∗)>ūl = 0. (22)

However, the CLF condition in (14b) implies that
∇V (x∗)>Fu(x∗) ≤ −αl(V (x∗)). Since αl(V (x)) = 0
only when x = 0, the CLF condition yields Fu(x) 6= 0 for
all x ∈ D \ {0} and hence x∗ cannot be an equilibrium.

(ii): If ūh > 0, the CBF constraint in (14c) implies:

LFu
h(x∗) + ūhkLGh(x∗)wp(x

∗) + αh(h(x∗)) = 0. (23)

From (18), (23) becomes ∇h(x∗)>Fu(x∗) = −αh(h(x∗)).
For all x ∈ Int(C), it holds that h(x) > 0 and αh(h(x)) >
0. As a result, ∇h(x∗)>Fu(x∗) 6= 0 but, from (18),
∇h(x∗)>G(x∗)wp(x

∗) = 0, indicating that Fu(x∗) and
G(x∗)wp(x

∗) are linearly independent. Hence, they cannot be
collinear as required by (21), and x∗ cannot be an equilibrium.
By contradiction, there are no equilibria of the closed-loop
system in Int(C) \ {0}.

Remark. Our CLF-CBF-DCP formulation guarantees safety
because the control law u(x) given by (13), (16), and (17)
satisfies u(x) ∈ Kcbf (x), ∀x ∈ D, making C invariant [17].

As shown in Proposition 4, equilibria besides 0 occur only
on ∂C with ūh > 0, which implies Fu(x) 6= 0 if (21) holds.
To eliminate an undesired equilibrium x∗ ∈ ∂C, we consider
how to choose k ∈ R such that (21) does not hold. Let a ‖ b
indicate that vectors a and b are linearly dependent and in the
same direction. Define the following sets:

Ω := {x ∈ ∂C | −Fu(x) ‖ G(x)wp(x), Fu(x) 6= 0},
X := {x ∈ Ω | ūh > 0},

where X is the set inside which undesired equilibria might
occur. If X ≡ ∅, then it is clear that (21) does not hold and no
undesired equilibria occur. Consider X 6= ∅ hereafter. Since
X ⊆ ∂C ⊂ D, the requirement on wp(x) in (18) implies that
infx∈X ‖G(x)wp(x)‖ > 0. If infx∈X ūh > 0, then choosing

k >
supx∈X ‖Fu(x)‖

infx∈X ūh‖G(x)wp‖
(24)

ensures that all equilibria satisfying (21) would be removed.
However, such k may not exist if infx∈X ūh = 0, which may
be attained for some x ∈ S := {x ∈ Ω | ūh = 0, Bε(x)∩X 6=
∅, ∀ε > 0} where Bε(x) is a Euclidean ball at x with radius
ε. Instead, suppose that with user-specified ν > 0:

k >
supx∈X ‖Fu(x)‖

ν infx∈X ‖G(x)wp‖
. (25)

Proposition 5. Consider system (2) with the CLF-CBF-DCP
control law in (13), (16), (17), and parameter k satisfying (25).
Then, closed-loop system eqilibria x∗ ∈ D \ {0} exist only in
Q := {x ∈ Ω | 0 < ūh < ν} ⊂ ∂C and satisfy (21).

Proof. For all x ∈ X , (25) implies kν‖G(x)wp‖ ≥
kν infx∈X ‖G(x)wp‖ > supx∈X ‖Fu(x)‖ ≥ ‖Fu(x)‖. Thus,
for x ∈ X such that ūh ≥ ν, the inequality kūh‖G(x)wp‖ >
‖Fu(x)‖ holds and implies that (21) does not hold. From

this and Proposition 4, non-zero eqilibria may only occur in
Q = X \ {x ∈ Ω | ūh ≥ ν}.

Remark. Our method of using wl, wh, wp to parameterize the
degrees of freedom in the control law can be formulated as
a quadratic program, with cost function 1

2 (ū2l + ū2h) and con-
straints −Fl(x)−LGV (x)wlūl ≥ 0, Fh(x)+LGh(x)[wlūl+
whūh] ≥ 0.

Proposition 5 suggests that the set Q of potential equilibria
on ∂C can be shrunk towards a small set S, defined above (25),
by increasing k in (17). Hence, our CLF-CBF-DCP controller
can avoid all undesirable equilibria in Int(C) and some on
∂C. If Fu(x) and G(x)wp(x) are linearly independent for all
x ∈ X , then Q is empty and no local equilibria exist on ∂C.
Compared with [5], which only requires existence of valid
CLF and CBF, our formulation has two additional assump-
tions: LGh(x) 6= 0 (Assumption 1) and rank(G(x)) ≥ 2
(Assumption 3). Assumption 1 may be relaxed by considering
cases a(y0) > 0, d(y0) = 0 and a(y0) = d(y0) = 0
in Proposition 3, which we leave for future work. It is not
possible to relax Assumption 3 because our approach relies on
the extra degrees of freedom to define a direction G(x)wp(x)
avoiding undesired equilibria.

VI. EVALUATION

We compare our CLF-CBF DCP with the relative CLF-
CBF QP in [5], the adaptive CLF-CBF QP in [4] and the
Lyapunov shaping method in [6]. Consider three scenarios for
a fully actuated system, ẋ = x + u, with x,u ∈ R2.
Case 1: We use CBF h(x)=x21+(x2−4)2−4 with αh(h) =
h and CLF V (x) = 1

2 (6x21 + x22) with αl(V ) = V .
Case 2: We use CBF h(x) =

(
(x1−2)2 + (x2−3)2

)(
(x1 +

2)2 + (x2 − 3)2
)
− 2.14 with αh(h) = h and CLF V (x) =

1
2 (x21 + x22) with αl(V ) = V .

Case 3: We use CBF h(x) =
(
(x1−2)2 + (x2−3)2

)(
(x1 +

2)2 + (x2 − 3)2
)
− 2.14 with αh(h) = h and CLF V (x) =

1
2 (x21 + 2x22) with αl(V ) = V .
In each case, there are two choices of wp satisfying (18)

with opposite signs. In the simulations, for some interesting
initial conditions, we show the closed-loop CLF-CBF-DCP
trajectory for both choices. The trajectories of the four con-
trollers are shown in Fig. 2. The baseline methods converge
to undesirable equilibria for some initial conditions, depending
on the safe set shape. Our DCP controller achieves both safety
and asymptotic stability at the origin for all tested initial
conditions. The diamond and square points in Fig. 2 depict
the locations of the set S, which is determined by wp(x). If
the system trajectory passes through the diamond point, then
only the square point belongs to S, and vice versa. Fig. 3
shows the effect of the term k in (17) on the DCP controller.
For small values of k in Fig. 3(a), the trajectory gets stuck at
an undesired local equilibrium, while for larger k, in Fig. 3(b),
it converges to the origin.

Our CLF-CBF DCP and the relative CLF-CBF QP [5]
introduce no local equilibria in Int(C), while the adaptive CLF-
CBF QP [4] needs to satisfy [4, Corollary 5.4] to remove local
equilibria in Int(C). Fig. 2a and Fig. 2c show that Lyapunov
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(a) Case 1 (b) Case 2 (c) Case 3
Fig. 2: Comparison of our CLF-CBF-DCP controller to controllers obtained from the relative CLF-CBF-QP [5], adaptive CLF-CBF-QP
[4], and the Lyapunov shaping approach [6] with various initial conditions (black dots) and obstacles (green) defined by the three cases
in Sec. VI. In Case 1, the relative and adaptive CLF-CBF-QP methods converge to an undesired local equilibrium (0, 6) on the safe set
boundary with initial conditions satisfying x2(0) > 4. In Case 2 and 3, these methods converge to the same boundary local equilibrium
(0, 3.65) under initial conditions (±0.5, 4). The Lyapunov shaping method avoids boundary equilibria for Case 1 but fails for Case 3, where
it converges to boundary equilibria from initial conditions (±0.5, 4). For all other initial conditions in Case 1 and 3, the Lyapunov shaping
method converges to interior equilibria that are not the origin. The Lyapunov shaping method cannot be applied in Case 2 because the
Lyapunov function is radial. In contrast, the CLF-CBF-DCP controller achieves both safety and stability at the origin in all three cases.
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(a) k = 14.6 at the plus point
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(b) k = 15 at the plus point
Fig. 3: The CLF-CBF-DCP controller with different choices of k
initialized at the black plus point (−5, 4). Fig. 3a shows that if k
is not sufficiently large, a local equilibrium exists on the obstacle
boundary at the orange star point. Fig. 3b shows that this equilibrium
can be eliminated by increasing k.

shaping [6] fails to address local equilibria in Int(C). The
relative CLF-CBF QP can get stuck at local equilibria on ∂C
if LGh(x) 6= 0 [5, Theorem 3.(3)] and so can the adaptive
CLF-CBF QP if [4, Remark 2] holds. Lyapunov shaping avoids
local equilibria on ∂C caused by collinearity among the vectors
f(x), G(x)∇V (x, Q) and G(x)∇h(x), as shown in Fig. 2.
Our CLF-CBF-DCP formulation has a closed-form solution,
which can be obtained in constant time and is suitable for
real-time operation.

VII. CONCLUSION

We formulated control synthesis with CLF stability and
CBF safety constraints as a DCP. We proved that the CLF-
CBF-DCP control law is Lipschitz continuous and character-
ized the closed-loop system equilibria. We demonstrated how
an extra forcing term may eliminate undesired equilibria that
CLF-CBF-QP techniques encounter.
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