
Event-based Feature Tracking with Probabilistic Data Association

Alex Zihao Zhu, Nikolay Atanasov, and Kostas Daniilidis

Abstract— Asynchronous event-based sensors present new
challenges in basic robot vision problems like feature tracking.
The few existing approaches rely on grouping events into models
and computing optical flow after assigning future events to
those models. Such a hard commitment in data association
attenuates the optical flow quality and causes shorter flow
tracks. In this paper, we introduce a novel soft data association
modeled with probabilities. The association probabilities are
computed in an intertwined EM scheme with the optical flow
computation that maximizes the expectation (marginalization)
over all associations. In addition, to enable longer tracks we
compute the affine deformation with respect to the initial point
and use the resulting residual as a measure of persistence. The
computed optical flow enables a varying temporal integration
different for every feature and sized inversely proportional
to the length of the flow. We show results in egomotion and
very fast vehicle sequences and we show the superiority over
standard frame-based cameras.

I. INTRODUCTION

Robot vision continues to primarily rely on the main
paradigm of frame-based cameras that acquire whole frames
with fixed time exposure and frame rate. An alternative
camera paradigm has emerged recently, that captures at
almost unlimited frame rate changes in intensity and records
events at specific time-points and image locations. Such
sensors like the DVS [1] or DAVIS [2] cameras enable tasks
entailing very fast motions and high dynamic range. How-
ever, to facilitate these tasks we have to redefine basic vision
problems like optical flow or feature tracking because of the
lack of representations that could make use of fundamental
assumptions like the brightness change constraint [3].

The fundamental challenge underlying event-based track-
ing is the lack of any data association between event and
established features. Grouping the events and searching for
the most similar event group is impossible because events
are arriving asynchronously and grouping would require a
time window specification. Without knowing the optical flow
we are unable to assign a new event to the closest feature
unless the flow is under one pixel. In this paper, we introduce
a novel approach for feature definition by addressing the
data association for each event to a feature as a hidden soft
random variable. We regard the associations as probabilities
because we do not need to make a hard commitment of an
event to a feature. We apply an expectation-maximization
(EM) scheme, where given optical flow we compute prob-
abilities (weights) for data association and then we take
the expectation over these probabilities in order to compute
the optical flow. Inspired by the Good Features to Track
approach [4] we model the alignment between events and
features as an affine transformation and end the duration of
the feature based on the quality of the alignment as well as

0.03

0.04

0.02

0.01

0

t 
(s

)

Fig. 1: Selected features tracked on a semi truck driving at 60
miles/hr, 3 meters from the camera. Intermediate images are

generated by integrating events for a period equal to three times
their lifetimes.

the convergence of the EM iteration. Grouping of the events
into a feature is not by a fixed spatiotemporal window but
rather by a lifetime defined by a fixed length of the optical
flow computed in the previous steps.

We show in egomotion as well as in very fast motion
scenarios that we can track robustly features over long
trajectories. With this paper we make the following novel
contributions to the state of the art of event-based tracking:
• Events are grouped into features based on lifetime

defined by the length of the optical flow.
• Assignment of events to existing features is soft and

computed as probability based on a predicted flow.
• Flow is computed as a maximization of the expectation

over all data associations.
• Deformation of the feature is modeled as affine and the

residual of the affine fit serves as a termination criterion

II. RELATED WORK

Litzenberger et al. [5], inspired by mean-shift tracking [6],
create clusters of events by assigning events to the closest
centroid. Each cluster is weighted by the mean frequency of
the events and inactive clusters are eliminated. Kim et al.
[7] estimate a 3D-rotation for the purpose of mosaicking
by updating a particle filter with the likelihood of each
new event given the current pose estimate. [8] propose
an approach where an event is assigned to the spatially
closest feature model and its euclidean transformation and
scaling with respect to the model is computed. Initialization
is achieved by fitting spatiotemporal planes to the event
space, as in [9]. Lagorce et al. [10] define features using



Fig. 2: Graphical outline of the algorithm. From left to right: 1. Event stream within the spatiotemporal window. Note the diagonal lines
formed by the linear optical flow. 2. Events integrated directly onto the image with no flow correction. 3. Propagated events with

estimated flow. Note the removal of the motion blur. 4. Later set of propagated events before affine warping. The size of the blue circles
are the weights of each point after decimation. 5. Later set of propagated events after affine warping.

the Hough transform and then assign events using the ICP
principle. Tschechne et al. [11] introduced the notion of a
motion streak using biological vision principles where event
tracks are detected by tuning spatiotemporal orientation over
a longer temporal support. [12] and [13] were the first to
combine a frame-based camera and event-based sensor on
the same pixel-array for tracking. Using a corner and an
edge detector this approach initializes a feature patch which
is enhanced by new events that are registered using a 2D
euclidean transformation. The commitment of an event to a
feature is hard and hence the registration is prone to false
event associations.

A common characteristic of the above approaches is the
hard commitment, usually via ICP, to the assignment of an
event to a model/feature with a subsequent estimate of a
transformation given that commitment. Our approach inte-
grates both data association and transformation estimation
into a sound probabilistic scheme that makes it less prone to
wrong correspondences. It does not make use of grayscale
feature initializations. It is tested in very fast sequences
where we show superiority over standard frame-based tech-
niques. Barranco et al. [14] have created an evaluation dataset
which offers ground truth optical flow but not longer feature
trajectories. It provides self-motion estimates and we plan to
use the dataset on the application of our feature tracking in
visual odometry.

III. PROBLEM FORMULATION

A. Sensor Model and Event Propagation

Let F ∈ R3 and f(t) ∈ R2 be the projection of F onto
the image plane at time t:(

f(t)
1

)
∼ K

[
R(t) T (t)

](F
1

)
(1)

where K is the camera calibration matrix and
[
R(t) T (t)

]
is the camera pose. In the remainder, we refer to the
projections f(t) as features and consider a set of features
F(t). Given a feature f ∈ F(0), define a spatial window
B(s) := {x ∈ R2 | ‖x − f‖ < s}. Let {Pj ∈ R3}mj=1 be
a set of 3-D points, whose projections {pj(0)}mj=1 onto the
image plane at time 0 are contained within the window B(s).
Let Pf (t) denote the set of point projections associated with
feature f ∈ F(0) at time t. At discrete times t1, . . . , tn, the

sensor generates a set of events {ei := (xi, ti)}ni=1, where

xi := pπ(i)(ti) + η(ti), η(ti) ∼ N (0,Σ), ∀i

and π : {1, . . . , n} → {1, . . . ,m} is an unknown many-to-
one function representing the data association between the
events {ei} and projections {pj} that generate them.

Problem (Event-based Feature Tracking). Given a
set of events E generated by the point projections⋃T
t=0

⋃
f∈F(0) Pf (t), estimate the feature projections F(t)

in the image plane over time.

IV. METHOD

In Section IV-A, we introduce an optical flow based
constraint within a spatiotemporal window. Section IV-B
then shows that we can optimize this constraint over the
optical flow using the Expectation Maximization algorithm.
The resulting flow can then be used to reconstruct the
set of point projections within the spatial window, which
we then use in Section IV-C to refine the feature position
using the EM-ICP algorithm [15]. Our tracking method
then iterates between Section IV-B and Section IV-C to
track a given set of features over time in the event stream.
Section IV-D outlines our technique to select the size of the
temporal windows in an asynchronous fashion, Section IV-
E details our method for initializing the feature positions,
and Section IV-F summarizes our method for estimating the
image features within each window. The entire algorithm is
also summarized in Algorithm 1 and Figure 2.

A. Spatiotemporal Optical Flow Constraint

The motion of a feature f(t) ∈ F(t) in the image plane
can be described using its optical flow ḟ(t) as follows:

f(t) =f(0) +

∫ t

0

ḟ(s)ds = f(0) + tv(t), (2)

where v(t) := 1
t

∫ t
0
ḟ(s)ds is the average flow of f(0)

over time. If t is sufficiently small, we can assume that the
average flow v is constant and equal to the average flows
of all point projections P(0) associated with f(0). We can
define a spatiotemporal window around f(0) as the collection
of events up to time t that propagate backwards onto B(s):

W (s, t) := {ei | ti < t, xi − tiv ∈ B(s)} (3)



Thus, provided that t is small, events corresponding to the
same point in P(0) should propagate backwards onto the
same image location. In other words, the following equality
should hold for any pair i, k ∈ [n] of events:

‖(xi − tiv)− (xk − tkv)‖21{π(i)=π(k)=j} = 0, ∀ i, k ∈ [n]
(4)

However, since the data association π between events and
3D points is unknown, we can hope to satisfy the above
requirement only in expectation:

Eπ(i),π(k)‖(xi − tiv)− (xk − tkv)‖21{π(i)=π(k)=j} (5)

=

 m∑
j=1

rijrkj

 ‖(xi − tiv)− (xk − tkv)‖2 = 0

where rij := P(π(i) = j) and we assume that π(i) is
independent of π(k).

Given an affine transformation (A, b) and the flow v of fea-
ture f(0), we model the noise in the event generation process
by defining the probability that event ei was generated from
point pj as proportional to the pdf φ(A(xi− tiv) + b; pj ,Σ)
of a Normal distribution with mean pj and covariance Σ,
i.e.,

rij({pj}) :=
φ(A(xi − tiv) + b; pj ,Σ)∑m
l=1 φ(A(xi − tiv) + b; pl,Σ)

(6)

Where the argument {pj} is the set of points over which the
means are defined. From here on, we will assume that rij
with no argument implies that the set is the point projections
{pj}. Note also that Σ is a parameter to be experimentally
tuned.

We propose an iterative approach to estimate the data
assocation probabilities rij between the events {efi } and
points {pfj }, the affine transformation A, b, and the optical
flow v of feature f .

B. EM Optical Flow Estimation

In this section, we propose an Expectation Maximization
algorithm for solving (5) over a spatiotemporal window
W (s, t) with a set of events {ei, i ∈ [1, n]}. Within this
window, our optical flow constraint becomes

min
v

n∑
i=1

n∑
k=1

 m∑
j=1

rijrkj

 ‖(xi − tiv)− (xk − tkv)‖2 (7)

In the E step, we update the rij and rkj , given v using
(6). Initially, the set of point positions {pj} is unknown, and
so we first approximate the {pj} by the set of propagated
events {xi − tiv}. In general, xi − tiv → pπ(i) as v → v′,
where v′ is the true optical flow. In addition, as A and b are
unknown, we initialize them as A = I and b = 0. The full
update, then, is rij({ei}).

The M step now involves solving for v given the rij . As
we assumed that the average optical flow v is constant, (7)

Algorithm 1 Event-based Feature Tracking with Probabilistic Data
Association

Initialization
Initialize τ as t′/k and integrate events for a short

period of time over the image.
Detect corner points using Harris corners on the

integrated image, and initialize features fj at each
corner.

Tracking
Collect events for kτ seconds
for each feature do

A← I2, b← 0, v ← 0, cost←∞, {pj} ← {}
while cost > ε do

Find events within W (s, kτ) (3)
Update rij({pj}) (6)
Update A, b (8)
Calculate cost (7)

end while
Propagate events within the window to t0 using v
if {pj} = {} then
{pj} ← propagated events
continue

end if
cost←∞
while cost > ε do

Find events within W (s, t) (3)
Update rij({pi}) (6)
Estimate A, b and ẋ using (11)
Calculate cost (10)

end while
{pj} ← {pj} − b+ v × kτ

end for
τ ← 1/median({‖v‖})

is a linear least squares problem in v, which corresponds to
the general overdetermined system:

Y D =X (8)

where Y :=vT

D := [
√
w12(t1 − t2), . . . ,

√
w1n(t1 − tn), . . . ,

√
wn(n−1)(tn − tn−1)

]
X := [

√
w12(x1 − x2), . . . ,

√
w1n(x1 − xn), . . . ,

√
wn(n−1)(xn − xn−1)

]
wik :=

n∑
j=1

rijrkj

To get the normal equations, we multiply both sides on the
right by DT :

Y = (XDT )(DDT )−1 =

∑n
i=1

∑n
k=1 wik(xi − xk)(ti − tk)∑n

i=1

∑n
k=1 wik(ti − tk)2

(9)
We iterate equations (6) and (8) until convergence of

the error (4). As in [15], we reject outlier matches by
thresholding the likelihood wik when computing (8) by
setting all the wik higher than some threshold ε to 0.

C. Feature Alignment

The flow estimate from Section IV-B can then be used
to propagate the events within the window to a common
time t0. Given the correct flow, this set of propagated events



is then the approximation to the projection of the points
Pj at time t0, up to an affine transformation. As a result,
given an estimate of the set of point projections at time
t0, {pj := pj(t0) ∈ R2}mj=1, we can align the events with
their corresponding points using a similar EM formulation
as in Section IV-B. These estimated point projections are
initialized on the first iteration, and the method is outlined
in Section IV-F. The cost function for this alignment is that
of the EM-ICP algorithm [15]:

min
A,b,r

n∑
i=1

m∑
j=1

rij‖A(xi − tiv) + b− pj‖2 (10)

We can minimize this cost function using exactly the steps
from Section IV-B. In the E step, we can use (6) to update
rij .

The M step is also similar:

M : Y =(XDT )(DDT )−1 (11)

where:

Y :=
[
A b

]
X :=

[√
r11p1, . . . ,

√
r1mpm, . . . ,

√
rnmpm

]
D :=

[
√
r11

(
x1 − t1v

1

)
, . . . ,

√
r1m

(
x1 − t1v

1

)
, . . . ,

√
rnm

(
xn − tnv

1

)]
As in Section IV-B, we iterate (6) and (11) until the error
function (10) converges. We then use the new estimate for b
to refine the prior estimate for the image feature positions,
and propagate them to the next window as:

fj(tn) =fj(t0)− b+ v(tn − t0) (12)

Similarly, the point projections are propagated to the next
time:

pj(tn) =pj(t0) + v(tn − t0) (13)

If the EM fails to converge, or if the value of (10) is too high
after convergence, we consider the tracker lost and abandon
the feature.

D. Temporal Window Selection

Many event based techniques work with temporal windows
of fixed size. However, these techniques have many similar
drawbacks to traditional cameras, as the amount of informa-
tion within the windows is highly variable depending on the
optical flow within the image. Due to the quantization of the
spatial domain, no information about the optical flow can
be gained from the event stream until the projected points
have moved at least one pixel within the image. On the other
hand, too large of a window may violate the constant optical
flow assumption made in Section IV-B. To ensure that the
temporal windows are of an appropriate size, we dynamically
adjust them using the concept of event ‘lifetimes’ [16]. Given
the optical flow of a feature within a prior spatiotemporal

window, we can estimate its lifetime τ as the expected time
for the feature to move one pixel in the spatial domain:

τ =
1

‖v‖
(14)

For robustness against erroneous flow estimates, we estimate
the lifetimes of several windows, and set the next temporal
window size as k times the median lifetime. In our exper-
iments, we observed that k = 3 was a reasonable value to
avoid large optical flow deviations while still capturing a
sufficient number of events. This technique can be extended
to have separate temporal window sizes for each tracked
feature for fully asynchronous tracking between features.
However, we found that, in our testing, the variation in
optical flow of our features was not large enough to require
this.

E. Feature Selection

As this method relies on the assumption that the projected
points are sparse, it will fail on spatial windows with dense
points throughout. In addition, the matching scheme in
Section IV-C suffers from the same aperture problem as
traditional feature matching techniques. To avoid selecting
such windows for our tracker, we propagate all events within
each temporal window onto the image plane with zero flow
to generate an integrated image. As events are typically
generated over edges in the image, this integrated image
is similar to an edge map. We then use the Harris corner
detector [17] to select spatial windows with edge orientations
in multiple directions.

F. Point Set Generation

In order to perform the affine feature alignment step in
Section IV-C, we must have an initial estimate of the set
of point projections {pj}. As the true point projections are
unknown, we approximate them with the events in the first
spatiotemporal window, propagated to the last time in the
window, T , using the flow calculated in Section IV-B. This
gives us a noisy set of points that approximate the true
point projections, without motion blur. For each subsequent
iteration, these points are propagated to the current time
using (13), and aligned with the propagated events for
that iteration. To reduce the computation time for matching
against this potentially large feature set, we perform the
sphere decimation algorithm in [15] to reduce the cardinality
of this set.

V. EXPERIMENTS

We present the results of our approach using a DAVIS-
240C sensor [2] in two situations. First, we compare the
tracking accuracy of our tracking algorithm on a structured,
textured area at normal speeds against traditional image
based tracking on the frame-based intensity values from
the DAVIS. We then demonstrate qualitative results of our
algorithm on tracking a vehicle on a highway travelling at
roughly 60 miles/hr, which we qualitatively compare to the
tracking results on the 240FPS output of an iPhone 6.



Fig. 3: Comparison between frame-based and integrated-event images.

0 0.2 0.4 0.6 0.8 1

Time (s)

0

0.5

1

1.5

2

2.5

E
rr

o
r 

(p
ix

e
ls

)

Fig. 4: Norm of feature position error between
our method and KLT.

Fig. 5: Images of a truck driving on a highway recorded from the 240 FPS video.

-4000 -2000 0 2000 4000 6000 8000

flow in x (pixels/s)

-4000

-2000

0

2000

4000

6000

8000

fl
o
w

 i
n
 y

 (
p
ix

e
ls

/s
)

Fig. 6: From left to right: (1) Optical flow estimates from our method (red) and KLT tracking (blue), (2) Polar histogram (20 bins) of
optical flow directions estimated by our method, (3) Polar histogram (20 bins) of optical flow directions estimated by KLT.

In each experiment, we used 31x31 pixel patches, with Σj
set to 2× I2. At the beginning of each sequence, a manually
picked integration time is selected to start the algorithm to
guarantee that the first temporal window contained signifi-
cant apparent motion in the spatial domain. However, this
time is very robust, and we found that any integration time
where points moved at least 2 pixels was sufficient. In both
experiments, 20 features were generated, with new features
initialized if fewer than 12 remained.

A. Comparison with Frame-Based Tracking
To quantitatively analyze the performance of our algo-

rithm, we compare our results to the KLT Tracker [18] on
a sequence where the DAVIS camera was moved in front of
a textured surface (Fig. 3). Due to the relatively low frame
rate of 25Hz for the frame based images on the DAVIS, this
motion was restricted to relatively low speeds. Features were
initialized from the integrated event image, and tracked in

both the event stream as well as the frame based images until
the majority of features were lost in both trackers. During the
one second tracking period, the features moved on average
100 pixels.

We show the mean tracking error for features that have not
been discarded in Fig. 4, where the black line is the mean
tracking error over all the features, and the cyan region is one
standard deviation around the mean error. As the event based
measurements arrive much faster than the frame based ones,
we interpolate the event based feature position estimates to
the nearest frame based position estimate in time using the
event based optical flow estimate. The overall mean error
from this technique is 0.9492 pixels, which is comparable to
the state of the art in this topic [12].

B. Tracking on Scenes with High Apparent Motion
To test the algorithm on scenes with very high apparent

motion, the camera was placed on the side of a highway with



a speed limit of 60 miles per hour. Cars passed the camera
at a distance between 3-4 meters, and passed the field of
view in under 0.5s. We present here the results of tracking
on a semi truck driving by at the posted speed limit. In this
sequence, the average flow magnitude was 4000 pixels/s, and
the (roughly) 15m long truck passed the camera’s field of
view in 800ms. The frame based images from the DAVIS
sensor for these vehicles were almost completely blurred out.
For comparison, we also recorded the scene with an iPhone
6 at 240 FPS (Fig. 5), on which we also ran a KLT tracker.
The 240 FPS video is sufficient to capture the motion in this
sequence, but is beginning to show motion blur on the order
of one or two pixels. The two cameras’ extrinsic parameters
were estimated using stereo calibration. Unfortunately, due to
the relatively close distance of the vehicles to the camera, we
were unable to accurately warp the images onto one another
for a quantitative comparison, and so we will instead give
qualitative comparisons for our flow estimation based on a
warp of the iPhone images assuming that points all have a
depth of 3 meters.

We visualize a subset of the feature tracks in Fig. 1. It is
interesting to note that, while the first integrated event image
(superimposed over the iPhone image) has a significant
amount of motion blur, the subsequent images have structures
only a few pixels thick, due to the lifetime estimation from
the optical flow.

In Fig. 6, we analyze the distribution of the direction of
the optical flow vectors estimated by our method and by the
KLT tracker. We can see that the majority of flow vectors
lie between 0 and 20 degrees. This can also be seen in the
left-most plot in Fig. 6, which shows individual flow vectors,
with optical flow calculated within tracks shorter than 20ms
removed. From these plots, we can see that both the direction
and magnitude of the KLT flow vectors are very similar,
although they should not perfectly correspond. For a visual
comparison, we provide the tracking segment in our video
accompanying this paper.

VI. CONCLUSION

We have presented a novel approach for feature tracking in
asynchronous event-based sensors that relies on probabilistic
data association. Estimating optical flow becomes, thus, not
sensitive to erroneous associations of new events and is
computed from the expectation over all associations. To
increase persistence of our tracks we compute the affine
transformation for each feature with respect to the starting
time. Existing approaches use a hard correspondence com-
mitment and usually compute a similitude transformation.
The spatiotemporal support of our features is adaptive and
defined by the size of the flow rather than a fixed time or a
number of events. We show that it outperforms classic KLT
trackers when they are applied to 240 FPS cameras capturing
very fast motions of the order of one field of view per half
a second. We plan a real-time implementation so that we
can apply it in real robot scenarios of visual odometry and
moving object tracking.

VII. ACKNOWLEDGEMENT

We are grateful for support through the following grants:
NSF-DGE-0966142 (IGERT), NSF-IIP-1439681 (I/UCRC),
NSF-IIS-1426840, ARL MAST-CTA W911NF-08-2-0004,
ARL RCTA W911NF-10-2-0016, ONR N00014-17-1-2093,
and ONR STTR (Robotics Research), and the DARPA FLA
program.

REFERENCES

[1] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128× 128 120 dB 15 µs
latency asynchronous temporal contrast vision sensor,” IEEE journal
of solid-state circuits, vol. 43, no. 2, pp. 566–576, 2008.

[2] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240×
180 130 dB 3 µs latency global shutter spatiotemporal vision sensor,”
IEEE Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2333–2341,
2014.

[3] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial
intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.

[4] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision
and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE
Computer Society Conference on, pp. 593–600, IEEE, 1994.

[5] M. Litzenberger, C. Posch, D. Bauer, A. Belbachir, P. Schon, B. Kohn,
and H. Garn, “Embedded vision system for real-time object tracking
using an asynchronous transient vision sensor,” in 2006 IEEE 12th
Digital Signal Processing Workshop & 4th IEEE Signal Processing
Education Workshop, pp. 173–178, IEEE, 2006.

[6] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-
rigid objects using mean shift,” in Computer Vision and Pattern
Recognition, 2000. Proceedings. IEEE Conference on, vol. 2, pp. 142–
149, IEEE, 2000.

[7] H. Kim, A. Handa, R. Benosman, S.-H. Ieng, and A. J. Davison,
“Simultaneous mosaicing and tracking with an event camera,” J. Solid
State Circ, vol. 43, pp. 566–576, 2008.

[8] Z. Ni, S.-H. Ieng, C. Posch, S. Régnier, and R. Benosman, “Vi-
sual tracking using neuromorphic asynchronous event-based cameras,”
Neural computation, 2015.

[9] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi,
“Event-based visual flow,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 25, no. 2, pp. 407–417, 2014.

[10] X. Lagorce, C. Meyer, S.-H. Ieng, D. Filliat, and R. Benosman,
“Asynchronous event-based multikernel algorithm for high-speed vi-
sual features tracking,” IEEE transactions on neural networks and
learning systems, vol. 26, no. 8, pp. 1710–1720, 2015.

[11] S. Tschechne, T. Brosch, R. Sailer, N. von Egloffstein, L. I. Abdul-
Kreem, and H. Neumann, “On event-based motion detection and
integration,” in Proceedings of the 8th International Conference on
Bioinspired Information and Communications Technologies, BICT ’14,
2014.

[12] D. Tedaldi, G. Gallego, E. Mueggler, and D. Scaramuzza, “Feature
detection and tracking with the dynamic and active-pixel vision sensor
(davis),” in Int. Conf. on Event-Based Control, Comm. and Signal
Proc.(EBCCSP), Krakow, Poland, 2016.

[13] B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza, “Low-latency
visual odometry using event-based feature tracks,” in IEEE/RSJ Inter-
national Conference on Robotics and Intelligent Systems, IEEE/RSJ,
2016.

[14] F. Barranco, C. Fermuller, Y. Aloimonos, and T. Delbruck, “A dataset
for visual navigation with neuromorphic methods,” Frontiers in neu-
roscience, vol. 10, 2016.

[15] S. Granger and X. Pennec, “Multi-scale em-icp: A fast and robust ap-
proach for surface registration,” in European Conference on Computer
Vision, pp. 418–432, Springer, 2002.

[16] E. Mueggler, C. Forster, N. Baumli, G. Gallego, and D. Scaramuzza,
“Lifetime estimation of events from dynamic vision sensors,” in 2015
IEEE International Conference on Robotics and Automation (ICRA),
pp. 4874–4881, IEEE, 2015.

[17] C. Harris and M. Stephens, “A combined corner and edge detector.,”
Citeseer, 1988.

[18] B. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Int. Joint Conf. on Artificial
Intelligence (IJCAI), vol. 81, pp. 674–679, 1981.


