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Abstract—We develop an online probabilistic metric-semantic
mapping approach for mobile robot teams relying on streaming
RGB-D observations. The generated maps contain full continuous
distributional information about the geometric surfaces and
semantic labels (e.g., chair, table, wall). Our approach is based on
online Gaussian Process (GP) training and inference, and avoids
the complexity of GP classification by regressing a truncated
signed distance function (TSDF) of the regions occupied by
different semantic classes. Online regression is enabled through
a sparse pseudo-point approximation of the GP posterior. To
scale to large environments, we further consider spatial domain
partitioning via a hierarchical tree structure with overlapping
leaves. An extension to a multi-robot setting is developed by
having each robot execute its own online measurement update
and then combine its posterior parameters via local weighted
geometric averaging with those of its neighbors. This yields
a distributed information processing architecture in which the
GP map estimates of all robots converge to a common map of
the environment while relying only on local one-hop commu-
nication. Our experiments demonstrate the effectiveness of the
probabilistic metric-semantic mapping technique in 2-D and 3-
D environments in both single and multi-robot settings and in
comparison to a deep TSDF neural network approach.

I. INTRODUCTION

Autonomous robot systems navigating and executing com-
plex tasks in real-world environments require an understanding
of 3-D geometry and semantic context. This paper devel-
ops a probabilistic metric-semantic mapping algorithm, using
streaming distance and semantic category observations (see
Fig. 1), to reconstruct geometric surfaces and their semantic
identity (e.g., chairs, tables, doors). To support collaboration
among multiple robots, we also consider a distributed setting
in which each robot observes the environment locally, with its
onboard sensors, and communicates with the other robots to
arrive at a common map.

We develop on a map representation which models geo-
metric surfaces implicitly as the zero level-set of a TSDF
function [1]–[3]. TSDF surface representations have gained
popularity due to their high accuracy (compared to regular,
adaptive, or sparse grid representations [4], [5]) and ability to
directly provide distance and gradient information (compared
to explicit mesh representations [6]) useful for specification of
safety and visibility constraints. Classification of the geometric
surfaces into semantic categories is also necessary to support
context understanding and robot task specification [7]–[10].
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Fig. 1: RGB images (first column), segmented images (second
column), and depth images (third column) used by the proposed
approach for online construction of dense metric-semantic maps.

We propose a multi-class TSDF inference approach based
on GP regression [11], [12]. GP inference techniques for
mapping [13]–[16] have key advantages, including uncertainty
quantification and resolution-free representation of the en-
vironment. Map uncertainty quantification is important for
motion planning, as it captures sensing errors during collision
checking, and for autonomous exploration, as the sensor mo-
tion can be planned to reduce uncertainty. In this paper specif-
ically, uncertainty information enables us to formulate 3-D
semantic segmentation as a regression problem by comparing
the signed distance estimates of different classes. As discussed
in more detail below, a regression formulation is conducive to
more computationally efficient algorithms than classification
for 3-D metric-semantic mapping. The uncertainty information
is also needed to weight the map estimates of different robots
appropriately when merging them across multiple robots to
obtain a consistent joint map of the environment.

Our work contributes to the family of GP mapping algo-
rithms by considering TSDF regression and multi-category
classification, instead of binary occupancy mapping. Range
sensors, such as LiDARs and depth cameras, do not provide
direct TSDF observations because they measure distance in a
specific viewing direction rather than to the nearest obstacle
surface. To obtain TSDF training examples, we triangulate
each depth image into a local mesh surface and measure the
distance to it from a set of 3-D locations. We use semantic
segmentation to divide the TSDF samples and train separate
GPs for each object category. While the GPs are trained
separately, all of their posteriors are taken into account when
deciding the nearest surface to and the semantic categories
of query points. This loosely coupled formulation is possible
because segmentation errors in the sensor observations are
related to physical proximity of objects of different classes
in 3-D space. Hence, (discrete) semantic segmentation errors



can be transferred into (continuous) distance measurement
errors, allowing us to use GP regression with efficient closed-
form incremental updates. In online mapping applications
training needs to done incrementally and efficiently. Relying
on GP regression with closed-form updates instead of GP
classification with iterative approximation has a significant
impact on the computational efficiency of our approach.

Efficient incremental training for GP classification [17]–
[20] is more challenging because the non-Gaussian likelihood
of the segmentation data is not conjugate with the GP prior
and makes the integral needed for posterior normalization
analytically intractable. Exciting recent developments enable
scalable variational inference [18] and conjugate GP classi-
fication using latent variable augmentation [19], and offer a
promising alternative to our approach.

Onboard sensors provide repeated observations of the same
scene. While this redundancy is important for mitigating
measurement noise, the amount of training data keeps growing
over time. Hence, an important consideration is to build maps
whose memory and computation requirements are determined
by the underlying structure of the environment, rather than the
number of observations. While GP training scales cubically
with the number training examples, there are various ways
to address this bottleneck [21]–[24]. We observe that, in
our setting, the data can be compressed significantly through
averaging before GP training and, notably, this does not affect
the posterior TSDF distribution. The remaining training pairs
are used as pseudo-points [21] to support the continuous
GP representation with a finite set of parameters. To reduce
the complexity in large maps further, one might consider
local kriging, decomposing the spatial domain into subdo-
mains and making predictions at a test location using only
the pseudo-points contained within the subdomain. Choosing
independent subdomains, however, leads to discontinuities of
the predicted TSDF function at the subdomain boundaries.
Ensemble methods that construct multiple local estimators
and use a weighted combination of their predictions include
Bayesian committee machines [25], [26], sparse probabilistic
regression [27], or infinite mixtures Gaussian process experts
[28]. These techniques avoid the discontinuities of local krig-
ing but their computation cost is still significant for online
training. Inspired by the adaptive occupancy representation of
Octomap [4], we propose a hierarchical tree structure that
decomposes the environment into overlapping subdomains,
which prevents discontinuities in the GP posterior. Combining
the data compression and hierarchical tree decomposition ideas
allows our method to generate dense metric-semantic surfaces
and, yet, remain efficient even in large environments.

Finally, we provide a distributed formulation of our TSDF
GP regression, enabling multiple robots to collaboratively
build a common metric-semantic map. Our distributed infer-
ence approach is inspired by probabilistic consensus tech-
niques [29], [30]. We generalize those techniques to enable
distributed function approximation instead of fixed-dimension
parameter estimation. Each robot updates a local GP pseudo-
point approximation and synchronizes its pseudo-point statis-
tics with its one-hop communication neighbors. The number of
pseudo-points maintained by a robot is increasing as the robot

explores new regions of the environment online. We prove
that the local GP estimates of each individual robot converge
in finite time to the same GP posterior that would have been
obtained by a central server using all observations obtained
from all robots.

This paper improves the theoretical development for the
single-robot setting in our prior work [31] and extends the
approach to a decentralized multi-robot setting by introducing
a novel approach for distributed incremental sparse GP regres-
sion with theoretical guarantees for consistent estimation. The
main contributions of this work are to:

• develop an scalable incremental GP training and inference
algorithm utilizing lossless data compression into a sparse
set of pseudo-points (Sec. IV-B) and pseudo-point decom-
position into a hierarchical tree structure (Sec. IV-D),

• achieve 3-D probabilistic metric-semantic mapping from
streaming sensor data using the GP algorithm (Sec. V),

• propose a new distributed algorithm for GP regression
for directed communication graphs and prove its conver-
gence to the same posterior distribution as centralized GP
regression (Sec. VI),

• enable a robot team to collaboratively build a common
metric-semantic map using local observations and one-
hop communication (Sec. VII, Sec. VIII, Sec. IX).

Our approach is demonstrated in simulated and real-world
datasets and may be used either offline, with all sensory
data provided in advance, or online, processing distance and
semantic category observations incrementally as they arrive.
We compare our incremental GP approach with a state-of-the-
art neural network approach for TSDF reconstruction, called
Implicit Geometric Regularization (IGR) [32].

II. RELATED WORK

Various representations have been proposed for occupancy
or geometric surface estimation from range or depth mea-
surements. Occupancy grid mapping [33] discretizes the en-
vironment into a regular voxel grid and estimates the oc-
cupancy probability of each voxel independently. A dense
voxel representation quickly becomes infeasible for large
domains and adaptive resolution data structures, such as an
octree, are necessary [4], [34]. While accurate maps may also
be constructed using point cloud [35], [36] or surfel [37],
[38] representations, such sparse maps do not easily support
collision and visibility checking for motion and manipulation
planning. Recent work is considering explicit polygonal mesh
[6], [39], [40] and implicit signed distance function [41]–[44]
models. We focus our review on TSDF techniques as they are
most closely related to our work.

The seminal work of Curless et al. [1] emphasized the
representation power of TSDF and showed that dense surface
modeling can be done incrementally using range images.
KinectFusion [41] achieved online TSDF mapping and RGB-
D camera pose estimation by storing weighted TSDF values
in a voxel grid and performing multi-scale iterative closest
point (ICP) alignment between the predicted surface and the
depth images. Niessner et al. [5] demonstrated that TSDF
mapping can be achieved without regular or hierarchical grid



data structures by hashing TSDF values only at voxels near
the surfaces. These three works inspired a lot of subsequent
research, allowing mapping of large environments [45], real-
time operation without GPU acceleration [46], [47], map
correction upon loop closure [48], [49], and semantic category
inference [50]. Bylow et al. [51] propose a direct minimization
of TSDF projective depth error instead of relaying on explicit
data association or downsampling as in ICP. TSDF maps are
accurate and collision checking in them is essentially a look-up
operation, prompting their use as an alternative to occupancy
grids for robot motion planning and collision checking [44],
[52]. Voxblox [43] incrementally builds a (non-truncated)
Euclidean signed distance field (ESDF), applying a wavefront
algorithm to the hashed TSDF values. Fiesta [44] improves
the ESDF construction by introducing two independent queues
for inserting and deleting obstacles. Saulnier et al. [53] show
that weights of the TSDF values arise as the variance of a
Kalman filter and may be used as an uncertainty measure for
autonomous exploration and active TSDF mapping.

Most TSDF mapping techniques, however, forgo proba-
bilistic representations in the interest of scalability. Gaussian
process (GP) inference has been used to capture correlation
in binary occupancy mapping. O’Callaghan et al. [13] is
among the first works to apply GP regression to infer a latent
occupancy function using data from a range sensor. The GP
posterior is squashed to a binary observation model a posteriori
to recover occupancy likelihood. The resulting probabilistic
least-squares method is more efficient than GP classification
but still scales cubically with the amount of training data.
To address this, several works [14], [26], [54], [55] rely on
sparse kernels to perform separate GP regressions with small
subsets of the training data and Bayesian Committee Machines
(BCM) to fuse the separate estimates into a full probabilistic
occupancy map. Ramos et al. [56], [57] proposed fast kernel
approximations to project the occupancy data into a Hilbert
space where a logistic regression classifier can distinguish
occupied and free space. This idea has been extended to dy-
namic maps [58], [59] as well as into a variational autoencoder
formulation [60] that compresses the local spatial information
into a latent low-dimensional feature representation and then
decodes it to infer the occupancy of a scene. Guo and Atanasov
[61] showed that using a regular grid discretization of the latent
function and a decomposable radial kernel leads to special
structure of the kernel matrix (kronecker product of Toeplitz
matrices) that allows linear time and memory representation
of the occupancy distribution.

Augmenting occupancy representations with object and
surface category information is an important extension, al-
lowing improved situational awareness and complex mission
specification for robots. Several works [8], [62]–[65] employ
conditional random fields (CRFs) to capture semantic infor-
mation. Vineet et al. [62] provide incremental reconstruction
and semantic segmentation of outdoor environments using a
hash-based voxel map and a mean-field inference algorithm
for densely-connected CRFs. Grinvald et al. [50] reconstruct
individual object shapes from multi-view segmented images
and assemble the estimates in a voxelized TSDF map. Gan
et al. [66] propose a continuous-space multi-class mapping

approach, which relies on a Dirichlet class prior, a Categorical
observation likelihood, and Bayesian kernel inference to ex-
trapolate the class likelihoods to continuous space. Rosinol et
al. [6] provide a modern perception library combining the state
of the art in geometric and semantic understanding. Zheng
et al. [67] incorporate spatial information across multiple
levels of abstraction and form a probability distribution over
semantic attributes and geometric representations of places
using TopoNet, a deep sum-product neural network. Wang
et al. [3] propose a fully convolutional neural network for
semantic 3-D reconstruction that takes an octree of TSDFs
fused from different camera views as input and generates a
semantically labeled octree as output. IGR [32] uses a deep
fully connected network with skip connections and softplus
nonlinearity to map a 3D point and a latent shape vector
of an object category to the signed distance from that point
to the object surface. The authors observe that the norm of
the gradient of an SDF function should be 1 everywhere and
incorporate this in the training loss. Instead of single-object
reconstruction, recent deep learning methods have focused on
complete scene reconstruction using distance fields, radiance
fields, and multi-view stereo [68]–[71]. These techniques have
shown impressive performance but currently need all training
data at once and provide only most likely estimates instead
of complete posterior probability distributions. In contrast,
online mapping applications require incremental update and
expansion of the reconstructed scene as new data arrives.
Also, as discussed in Sec. I, uncertainty quantification is
needed to support safe navigation, autonomous exploration,
and collaborative multi-robot mapping.

In many applications, mapping may be performed by a
team of collaborating robots. Relying on centralized estimation
has limitations related to the communication, computation,
and storage requirements of collecting all robot measurements
and map estimates at a central server. Developing distributed
techniques that allow local inference and storage at each robot,
communication over few-hop neighborhoods, and consensus
among the robot estimates is important. Techniques extending
consensus [72] to distributed probabilistic estimation [29],
[73]–[75] are closely related to our work. These works show
that distributed estimation of a finite-dimensional parameter is
consistent when the probability density functions maintained
by different nodes are averaged over one-hop neighborhoods
in strongly connected di-graphs. We extend these results to
distributed probabilistic estimation functions relying on local
averaging of sparse (pseudo-point) GP distributions. Specific
to cooperative semantic mapping, Choudhary et al. [76] de-
velop distributed pose-graph optimization algorithms based on
successive and Jacobi over-relaxation to split the computation
among the robots. Koch et al. [77] develop a parallel multi-
threaded implementation for cooperative 2-D SDF mapping.
Lajoie et al. [78] propose a distributed SLAM approach with
peer-to-peer communication that rejects spurious inter-robot
loop closures using pairwise consistent measurement sets.

III. PROBLEM FORMULATION

Consider a team of n robots operating in an unknown
environment, represented by two disjoint sets O ⊂ R3 and



F ⊂ R3, comprising obstacles and free space, respectively.
The obstacle region is a pairwise disjoint union, O = ∪C

l=1Ol,
of C closed sets, each denoting the region occupied by object
instances from the same semantic class. For example, O1 may
be the space occupied by all chairs, while O2 may be the space
occupied by all tables.

Each robot is equipped with a sensor, such as a lidar
scanner or an RGB-D camera, that provides distance and class
observations of the objects in its vicinity. We assume that the
position pi

t ∈ R3 and orientation Ri
t ∈ SO(3) of each sensor

i ∈ V at time step t are known, e.g., from a localization
algorithm running onboard the robots. We model a sensor
observation as a set of unit-vector rays {ηi

k ∈ R3|∥ηi
k∥ = 1},

e.g., corresponding to lidar scan rays or RGB-D image pixels.
At time t, the k-th sensor ray of robot i, starts at position pi

t

and has direction Ri
tη

i
k. Each ray measures the distance to

and semantic class of the object that it intersects with first. In
practice, the class measurements are obtained from a semantic
segmentation algorithm (e.g., [79]), applied to the RGB image
or lidar scan (see Fig. 1), while the distance measurements
are provided either as a transformation of the depth image or
directly from the lidar scan.

Definition 1. A sensor observation of robot i at time t is
a collection of distance λi

t,k ∈ R≥0 and object class cit,k ∈
{1, ..., C} measurements acquired from position pi

t along the
sensor rays Ri

tη
i
k.

Given sensor poses pi
t, Ri

t and streaming observations
λi
t,k, cit,k for t = 1, 2, . . ., the main objective of this work

is to construct a 3-D metric-semantic map of the observed
environment incrementally by estimating the object class sets
Ol. We use an implicit TSDF representation of the sets Ol.

Definition 2. The truncated signed distance function (TSDF)
fl(x) of object class Ol is the signed distance from x to the
boundary ∂Ol, truncated to a maximum of d̄ ≥ 0:

fl(x) :=

{
−min

(
d(x, ∂Ol), d̄

)
if x ∈ Ol

min
(
d(x, ∂Ol), d̄

)
if x /∈ Ol,

d(x, ∂Ol) := inf
y∈∂Ol

∥x− y∥.
(1)

As we explained in Sec. V, we model the effect of noise
from various sources as Gaussian noise on the TSDF values.
We develop incremental sparse Gaussian Process regression to
maintain distributions GP(µi

t,l(x), k
i
t,l(x,x

′)) over the TSDF
functions fl(x) in (1) at each robot i, conditioned on the sensor
observations

{
λi
τ,k, c

i
τ,k

}
up to time t.

In Sec. IV, we review a sparse pseudo-point formulation
of GP regression and introduce lossless compression and
hierarchical decomposition of the training data to acheive
incremental and scalable training. In Sec. V, we apply our gen-
eral GP regression algorithm to the metric-semantic mapping
problem, discussing construction of GP training data from the
sensor measurements and semantic class prediction based on
the TSDF function distributions of the different object classes.
Next, we extend our approach from a centralized single-robot
to a distributed multi-robot formulation. We develop new
techniques for distributed incremental sparse GP regression

gt,1(x) x ∈ P#

x̂up

ct,k = 1
x̂ ∈ Gt,1
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Fig. 2: Sensor observation at time t showing the distance λt,k, λt,k′

and class ct,k, ct,k′ measurements obtained along sensors rays ηk,
η′
k when a camera sensor is at position pt with orientation Rt. The

pseudo-points P# (see Sec. V-A) close to the observed surface are
shown in gray.

in Sec. VI and apply them to the collaborative semantic
TSDF mapping problem in Sec. VII. Our method allows each
robot to update its own TSDF GP model using local sensor
observations and one-hop communication with its neighbors,
yet guarantees theoretically that the individual GP models
converge to the same posterior distribution as centralized GP
regression.

IV. DATA COMPRESSION AND DECOMPOSITION FOR
INCREMENTAL SPARSE GAUSSIAN PROCESS REGRESSION

This section reviews sparse Gaussian Process regression and
introduces a new approach for compressing and decomposing
training data acquired by repeated observation of the same
locations. The latter is typical when an onboard robot sensor
observes the same environment multiple times as discussed
in Sec. V-A. When repeated observations are present, our
data compression allows training a pseudo-point GP model
with much fewer samples, yet provably generates the same
GP posterior that would have been computed using the full
uncompressed training set. The pseudo-point GP model and
data compression allow us to design an efficient incremen-
tal GP algorithm that updates the posterior with sequential
data instead of recomputing it from scratch. To handle large
datasets, we introduce a hierarchical tree structure of pseudo-
points such that separate GPs may be trained efficiently within
each tree leaf.

A. Background on Sparse GP Regression

A Gaussian Process is a set of random variables such that
the joint distribution of any finite subset of them is Gaussian.
A GP-distributed function f(x) ∼ GP(µ0(x), k0(x,x

′)) is



defined by a mean function µ0(x) and a covariance (kernel)
function k0(x,x

′). The mean and covariance are such that
for any finite set X = {xj}j , the random vector f(X ) :=[
f(x1), . . . , f(x|X |)

]⊤ ∈ R|X | has mean with j-th element
µ0(xj) and covariance matrix with (j, l)-th element k0(xj ,xl)
for j, l = 1, . . . , |X |. To avoid introducing additional symbols,
we use the notation f(X ) to mean the application of the vector
function f(x) to each element of the set X . Given a training
set D = {(xj , yj)}|X |

j=1, generated according to yj = f(xj)+ηj
with independent Gaussian noise ηj ∼ N (0, σ2), the posterior
distribution of the random function f(x) can be obtained
from the joint distribution of the value f(x) at an arbitrary
location x and the random vector y :=

[
y1, . . . , y|X |

]⊤
of

measurements. In detail, the joint distribution is:[
f(x)
y

]
∼ N

([
µ0(x)
µ0(X )

]
,

[
k0(x,x) k0(x,X )
k0(X ,x) k0(X ,X ) + σ2I

])
,

while the corresponding conditional distribution f(x)|X ,y ∼
GP(µ(x), k(x,x′)) has mean and covariance functions [11]:

µ(x) := µ0(x) + k0(x,X )(k0(X ,X ) + σ2I)−1(y − µ0(X )),

k(x,x′) := k0(x,x
′)− k0(x,X )(k0(X ,X ) + σ2I)−1k0(X ,x′).

(2)
Computing the GP posterior has cubic complexity in the
number of observations |X | due to the matrix inversion in (2).

Inspired by Snelson and Ghahramani [21], we introduce
a sparse approximation to the GP posterior in (2) using a
set of pseudo-points P ⊂ D whose number is |P| ≪ |X |.
Maintaining a GP distribution only over the pseudo-points is
sufficient to obtain a high-fidelity approximation of the true
GP posterior, assuming that the training data are independent
samples drawn from the pseudo-point GP. The key idea is
to first determine the distribution N (µ,Σ) of f := f(P)
conditioned on X , y according to (2):

µ := µ0(P) + k0(P,X )(k0(X ,X ) + σ2I)−1(y − µ0(X ))

= µ0(P) + k0(P,P) (k0(P,P) + Γ)
−1

γ (3)

Σ := k0(P,P)− k0(P,X )
(
k0(X ,X ) + σ2I

)−1
k0(X ,P),

= k0(P,P) (k0(P,P) + Γ)
−1

k0(P,P)

where Γ := k0(P,X )
(
Λ + σ2I

)−1
k0(X ,P), Λ :=

k0(X ,X ) − k0(X ,P)k0(P,P)−1k0(P,X ), and γ :=

k0(P,X )
(
Λ + σ2I

)−1
(y − µ0(X )). Using the definitions

of information matrix Ω := Σ−1 and information mean
ω := Ωµ, we can equivalently write:

ω = Ωµ0(P) + k0(P,P)−1γ,

Ω = k0(P,P)−1 (k0(P,P) + Γ) k0(P,P)−1.
(4)

Then, the posterior density of f(x) conditioned on X ,y is:

p(f(x)|X ,y) =

∫
p(f(x)|f)p(f |X ,y)df (5)

which is a GP with mean and covariance functions:

µ(x) = µ0(x) + k0(x,P)k0(P,P)−1
(
Ω−1ω − µ0(P)

)
k(x,x′) = k0(x,P)k0(P,P)−1Ω−1k0(P,P)−1k0(P,x′)

+ k0(x,x
′)− k0(x,P)k0(P,P)−1k0(P,x′). (6)

If we assume that conditioned on P , the measurements
yj are generated independently, i.e., Λ is approximated by
a diagonal matrix with elements λ(xj) := k0(xj ,xj) −
k0(xj ,P)k0(P,P)−1k0(P,xj), then the complexity of com-
puting µ, Σ in (3) (training) and µ(x), k(x,x′) in (6) (testing)
are O(|P|2|X | + |P|3) and O(|P|2), respectively, instead of
O(|X |3) and O(|X |2) without pseudo-points in (2). The use
of pseudo-points leads to significant computational savings
when |P| ≪ |X |. To select the locations and values of the
pseudo-points P , the main approach in the literature is to
perform iterative optimization to maximally approximate the
training data [16], [27], [80]. However, iterative optimization
is expensive in an incremental or distributed setting, which is
the focus of this paper. Instead, we exploit the structure of the
TSDF reconstruction problem to select pseudo-points close to
the end points of the senor rays (observed surface) on a latent
grid over the environment. This allows selecting pseudo-points
and computing the GP posterior very efficiently. We assume
that the kernel parameters are optimized offline and focus on
online computation of the terms in (6), needed for prediction.

B. Repeated Input Data Compression

Next, we detail a way to obtain additional savings in terms
of data storage requirements. Specifically, if the training data
D = (X ,y) contains repeated observations from the same
locations, i.e., the points in X are not unique, then the GP
training complexity can be reduced from cubic in |X | to cubic
in the number of distinct points in X . We formalize this
in the following proposition, which establishes that the GP
posterior is unchanged if we compress the observations in y
obtained from the same locations in X . Repeated observations
are meaningful when there is measurement noise, i.e., σ > 0.
In this case the matrix k0(X ,X )+σ2I in (2) is never singular.

Proposition 1. Consider f(x) ∼ GP(µ0(x), k0(x,x
′). Let:

X = {x1 , . . . ,x1 ,x2 , . . . ,x2 , . . . ,xn , . . . ,xn }
y = [y1,1, . . . , y1,m1

, y2,1, . . . , y2,m2
, . . . , yn,1, . . . , yn,mn

]
⊤

be data generated from the model yi,j = f(xi) + ηi,j with
ηi,j ∼ N (0, σ2) for i = 1, . . . , n and j = 1, . . . ,mi. Let:

P = {x1, . . . ,xn}, ζ =

 1

m1

m1∑
j=1

y1,j , . . . ,
1

mn

mn∑
j=1

yn,j

⊤

(7)

be a compressed version of the data generated from f(xi) with
noise η̂i ∼ N (0, σ2

mi
). Then, f(x)|X ,y and f(x)|P, ζ have the

same Gaussian Process distribution GP(µ(x), k(x,x′)) with:

µ(x) = µ0(x) + k0(x,P)Z(ζ − µ0(P)),

k(x,x′) = k0(x,x
′)− k0(x,P)Zk0(P,x′),

(8)

where Z−1 := k0(P,P) + σ2 diag(m)−1 and m is a vector
with elements mi.

Proof. The distribution of f(x)|X ,y is provided in (2). Using
the data P , ζ, instead of X , y, to compute the posterior GP
distribution of f(x), according to (2), leads to the expression
in (8). We need to show that (2) and (8) are equal given
the relationship between X , y and P , ζ in (7). Let E be a



binary matrix defined such that k0(X ,x) = Ek0(P,x). Note
that k0(X ,X ) = Ek0(P,P)E⊤, k0(x,X ) = k0(x,P)E⊤,
E⊤E = diag(m), and ζ = (E⊤E)−1E⊤y. Using these
expressions in (2) leads to:

µ(x) = µ0(x)+

k0(x,P)E⊤(Ek0(P,P)E⊤ + σ2I)−1(y − Eµ0(P)),

k(x,x′) = k0(x,x
′)− (9)

k0(x,P)E⊤(Ek0(P,P)E⊤ + σ2I)−1Ek0(P,x′).

An application of the matrix inversion lemma followed
by algebraic manipulation shows that E⊤(Ek0(P,P)E⊤ +

σ2I)−1 =
(
k0(P,P) + σ2(E⊤E)−1

)−1
(E⊤E)−1E⊤ =

Z(E⊤E)−1E⊤. Replacing this and ζ = (E⊤E)−1E⊤y in (9)
shows that the GP distributions of f(x)|X ,y and f(x)|P, ζ
are equal.

Prop. 1 allows us to summarize a training set X , y by
keeping the distinct points P ⊂ X as well as the average
observation value ζ(p) and number of times m(p) that each
point p ∈ P has been observed. Given these statistics, the
mean function µ(x) and covariance function k(x,x′) of the
posterior GP can be obtained according to (8) with ζ := ζ(P)
and m := m(P). The number of observations m determines
the value of the matrix Z in (9) and correctly scales the
influence of the points that are observed more frequently.
When the training points X contain many repetitions, the
subset P of distinct points is a natural choice of pseudo-
points (Sec. IV-A). In this case, Prop. 1 shows that the GP
posterior obtained from training with P is exactly equal to the
GP posterior obtained from training with X . This is illustrated
in Fig. 3, where a dataset with repeated observations is used
for GP regression of sin(x) with or without the compression
of Prop. 1. Our result is related to a general distribution-to-
distribution regression formulation in [81]. It is interesting
to consider whether this connection can allow removing the
assumption that the training data contains observations from
the same locations, while keeping the simplicity of computing
summary statistics in (7).

The raw sensor data in the mapping problem does not
directly satisfy the assumption of Prop. 1. In Sec. V-A, we first
construct a set of pseudo-points with TSDF values computed
from the sensor data and only then apply Prop. 1 to compute
the GP posterior efficiently. We exploit this compression
technique for efficient incremental GP training since the same
pseudo-point locations are observed multiple times.

C. Incremental Compressed Sparse GP Regression

Suppose now that, instead of a single training set D, the
data are provided sequentially, i.e., an additional dataset D̃t

of points X̃t with labels ỹt is provided at each time step t.
The cumulative data up to time t are Dt := ∪t

τ=1D̃τ . Based on
Prop. 1, we can define an incrementally growing set of pseudo-
points Pt with associated number of observations mt(p)
and average observation ζt(p) for p ∈ Pt and observation
precision Zt. We show how to update these statistics when
a new dataset D̃t+1 = (X̃t+1, ỹt+1) arrives at time t + 1.

Fig. 3: Noisy data (red) obtained from a sine function (teal) at 5
equidistant pseudo-points (magenta). Two measurements are obtained
at each pseudo-point. GP regression using all data is equivalent to
GP regression with a compressed dataset described in Prop. 1.

Let P̃t+1 be the set of unique points in X̃t+1 with number
of observations m̃t+1(p) and average observation ζ̃t+1(p) for
p ∈ P̃t+1. The update of Pt, mt(p) and ζt(p) is:

Pt+1 = Pt ∪ P̃t+1

mt+1(p) =

{
mt(p) + m̃t+1(p), if p ∈ Pt,

m̃t+1(p), else,

ζt+1(p) =

{
mt(p)ζt(p)+m̃t+1(p)ζ̃t+1(p)

mt+1(p)
, if p ∈ Pt,

ζ̃t+1(p), else.

(10)

To update the observation precision Zt, first consider the
existing pseudo-points Pt. Let l be the index of p ∈ Pt in
Zt. Define ϵl := σ2

(
1

mt+1(p)
− 1

mt(p)

)
, B0 := Zt, and for

l = 1, . . . , |Pt|:

Bl+1 =
(
B−1

l + ϵlele
⊤
l

)−1
= Bl −

Blele
⊤
l Bl

1
ϵl
+ e⊤l Blel

. (11)

This update is applied only to P̃t+1∩Pt because the rest of the
pseudo-points have ϵl = 0 and, hence, Bl+1 = Bl. With some
abuse of notation, let B := B|Pt| be the observation precision
after all p ∈ Pt have been updated. Finally, we update B
by introducing the pseudo-points P̃t+1 \ Pt that have been
observed for the first time:

Zt+1 =

[
B−1 C
C⊤ D

]−1

=

[
B +BCSC⊤B −BCS

−SC⊤B S

]
, (12)

where C := k0(Pt, P̃t+1 \ Pt), D := k0(P̃t+1 \ Pt, P̃t+1 \
Pt)+σ2 diag(m̃t+1(P̃t+1\Pt))

−1, and S := (D−C⊤BC)−1.
The equality in (12) follows from the block matrix inversion
lemma, which relates the blocks of a matrix inverse to the in-
verse of their Schur complement [82, Ch. 9.1]. By recursively
tracking these matrix inverses, the posterior update can be
executed efficiently every time a new observation arrives with
complexity that is cubic in the number of new distinct points.
This is a significant improvement over naı̈ve GP training.

D. Hierarchical Tree Structure

Even after compressing the training data to a set of distinct
pseudo-points using Prop. 1, the GP training complexity still
scales cubically with the number of pseudo-points. In the
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Fig. 4: Illustration of a hierarchical tree data structure
, containing two pseudo-points (blue and cyan) in two

dimensions. The support regions S(·) and test regions T (·)
of three nodes Nr, Ng , N b are shown as dashed and filled

areas with red, green, and blue color, respectively. No
pseudo-points are contained in the test region T (Ng) (filled
green) of node Ng but two pseudo-points are in its support

region S(Ng) (dashed green). In this example, the maximum
number of allowable pseudo-points for each region is

max(N) = 1, so node Ng is split into the red (Nr) and
yellow (not labeled) regions. The cyan pseudo-point belongs

to both Pt(N
b) and Pt(N

r).

mapping problem, the correlation between two sufficiently
distant points is negligible. To ensure that online training is
possible for large datasets, we develop a hierarchical tree data
structure that decomposes the sample space into overlapping
regions to store the pseudo-points. Our data structure is similar
to an octree [4] but the regions associated with the tree nodes
overlap. We train separate GPs in each region, which is effi-
cient since the maximum number of pseudo-points per region
is fixed. The resolution of the pseudo-points and the kernel
parameters are fixed and are not different in different levels of
the tree. The region overlap serves to eliminate discontinuities
in the resulting GP estimate. The GPs associated with different
regions are not statically independent because they may share
some of the same pseudo-points and associated measurements.
However, to enable efficient inference, we approximate the
joint GP model over all pseudo-points with separately trained
GP models, each using training data only from one region. At
test time, the value of a query point is inferred using only the
parameters of the corresponding region according to (8). The
overlapping regions are illustrated in Fig. 4.

Formally, a hierarchical tree structure of pseudo-points in
d dimensions is a tree data structure such that each internal
node has 2d children. Each node N is associated with a
spatial region. The root is associated with a hypercube with
side length s > 0, which is recursively subdivided into
2d overlapping regions by the child nodes. Each node N
maintains the following information:

1) ℓ(N) ≥ 0: level of N in the tree, starting from 0 at the
root node.

2) ctr(N) ∈ Rd: center of the region associated with N .

3) S(N) := {x ∈ Rd| ∥x−ctr(N)∥∞ ≤ δ s
2ℓ(N)+1 }: support

region of N with δ > 1.
4) T (N) := {x ∈ Rd| ∥x − ctr(N)∥∞ ≤ s

2ℓ(N)+1 }: test
region of N .

5) P(N) ⊆ S(N) ∩ P#: set of pseudo-points assigned to
this node

6) max(N): node N splits into 2d children if the number
of observed pseudo-points P(N) exceeds max(N)

7) children(N): empty set if N is a leaf and, otherwise, a
set of 2d nodes at level ℓ(N)+1 with centers in {ctr(N)+
c | ci ∈ {− s

2ℓ(N)+1 ,+
s

2ℓ(N)+1 }}.
The pseudo-points Pt observed up to time t are stored in the

hierarchical tree structure. The points assigned to node N at
time t are Pt(N) := Pt∩S(N). The pseudo-points Pt(N) of
each leaf node N are used to train a separate GP. At time step
t, prediction for test points in the region T (N) is performed
by the GP associated with node N .

V. PROBABILISTIC METRIC-SEMANTIC MAPPING

In this section, we address the single-robot mapping prob-
lem using the incremental GP regression theory developed in
Sec. IV. For simplicity, we suppress the robot index superscript
i. We apply GP regression to estimate the TSDF fl(x) of each
semantic class l. Since the sensor measurements {λt,k, ct,k}
are not direct samples from the TSDFs, in Sec. V-A we
transform them into training sets D̃t,l, suitable for updating the
GP distributions of fl(x). In Sec. V-B, we apply incremental
updates to GPs for each class and discuss how to predict the
semantic class labels on the surfaces of the implicitly estimated
object sets Ol.

A. Training Set Construction

The class measurements allow us to associate the sensor
data with particular semantic classes, while the distance mea-
surements allow us to estimate the points where the sensor
rays hit the object sets Ol. We define the following point sets
for each detected semantic class at time t:

Gt,l = {x̂ ∈ R3
∣∣ x̂ = λt,kRtηk + pt and ct,k = l}. (13)

The values fl(x̂) of the TSDFs are close to zero at points
x̂ ∈ Gt,l because the sensor rays hit an object surface close
to these locations.

As shown in Prop. 1, the complexity of online GP training
can be improved by forcing the training data to repeatedly
come from a finite set of points. We choose a grid discretiza-
tion P# of the environment O∪F and construct a training set
by selecting points x ∈ P#, that are at most ϵ > 0 away from
the points x̂ ∈ Gt,l, and approximating their TSDF values
fl(x) ≈ gt,l(x) (see Fig. 2). Precisely, the training data sets
are constructed at time t as:

D̃t,l = {(x, gt,l(x))|x ∈ P#,∃x̂ ∈ Gt,l s.t. ||x− x̂||2 ≤ ϵ}.
(14)

In the case of a camera sensor, the TSDF value gt,l(x) of
a pseudo-point x is obtained by projecting x to the image
plane and approximating its distance from the distance values
of nearby pixels. In detail, suppose ηk is the unit vector



Fig. 5: Illustration of pseudo-point selection. For each sensor ray end
point (red), we select pseudo-points (blue) from a regular grid P#

(gray) according to (14). For efficiency, instead of choosing points
within radius ϵ, we choose a rectangular region of frame size = 3
such that (frame size− 1)× voxel size ≥ 2ϵ.

corresponding to the pixel closest to the projection of x (red
pixel in Fig. 2) and let x̂ ∈ Gt,l be the coordinates of its ray
endpoint (blue point in Fig. 2). Let x̂right and x̂up (two cyan
points in Fig. 2) be the ray endpoints of two adjacent pixels.
Then, gt,l(x) is the signed distance from x to the plane defined
by x̂, x̂right, and x̂up:

gt,l(x) := n⊤(x− x̂), n := sign(q⊤(pt − x̂))q,

q =
(x̂right − x̂)× (x̂up − x̂)

∥(x̂right − x̂)× (x̂up − x̂)∥
,

(15)

where q is the normal of the plane and the signed distance
from pt to the plane is positive because the sensor is known
to be outside of the object set Ol. Approximating the pseudo-
point SDF values by measuring the distances to triangles
formed by the nearest pixels means that the SDF values
may be larger or smaller than the ground-truth SDF and
using a Gaussian noise model is reasonable. The pseudo-
point locations in the world frame are known since the sensor
position pt and orientation Rt are assumed known in this
paper. If sensor pose uncertainty is considered, the Gaussian
noise model for the measured SDF values needs to be modified
to account for localization errors.

In the experiments, we discretize the workspace as a grid
P# with resolution voxel size. Given a sensor ray end point
x̂ in (13), instead of a sphere (circle) with radius ϵ, we
choose a cubic (square) region of pseudo-points from P#

around x̂. This is illustrated in Fig. 5. The cubic region
is parameterized by the number of pseudo-points on its
the edge, called frame size. This parameter is such that
(frame size−1)×voxel size ≥ 2ϵ. We do not use ϵ but only
frame size as one of the hyperparameters of our method.

B. TSDF Mapping and Semantic Class Prediction

Given the transformed TSDF training data D̃t,l obtained
from the sensor measurement {λt,k, ct,k}k at time t, we update
the GP distribution of the TSDF fl(x) for each class l using
the approach in Sec. IV-C. At time t, the new data are D̃t,l =

(X̃t,l, ỹt,l), the new pseudo-points are P̃t,l = X̃t,l \ Pt−1,l,
and we update Pt,l, ζt,l, mt,l via (10). If online prediction is
required, we can also update the precision matrix Zt,l using

(11) and (12). Once we have the GPs of all classes updated,
and can predict the TSDF at any query point according to (8).
Next, we discuss how to predict the semantic class labels on
the surfaces of the implicitly estimated object sets Ol.

Semantic segmentation algorithms applied to camera images
may produce incorrect pixel-level classification. This leads to
some observations λt,k, ct,k being incorrectly included into
the training set D̃t,l of a different semantic class. We model
the classification error as one of the sources of noise in the
measured TSDF. This is motivated by the following observa-
tions. First, the GP models for different classes are trained
using the TSDF values of the pseudo-points rather than the
sensor ray endpoints, which semantic segmentation is based
on. A pseudo-point has TSDF values for all semantic classes
so it should not be considered to belong to a specific class. The
association between pseudo-points and ray endpoints is based
on the TSDF value so a misclassification of a ray endpoint
may be interpreted as noise on the measured TSDF value.
Second, the misclassification probability is not uniform across
the semantic categories. Rather, it is larger when two objects
of different classes are close to each other in 3-D space. In
the region around the object surfaces, the pseudo-points will
have very small and very similar TSDF values. To predict
the correct semantic class, we compare the likelihoods of
the different classes at surface points using the posterior GP
distributions of the TSDFs fl(x).

Proposition 2. Let GP(µt,l(x), kt,l(x,x
′)) be the distribu-

tions of the truncated signed distance functions fl(x) at time
t, determined according to (8). Consider an arbitrary point
x ∈ ∂O on the surface of the obstacle set, i.e., x is such that
fl(x) = 0 for some class l ∈ {1, . . . , C}. Then, the probability
that the true class label of x is c ∈ {1, . . . , C} is:

P
(
argmin

l
|fl(x)| = c

∣∣∣∣ min
l

|fl(x)| = 0

)
=

1
σt,c(x)

ϕ(
µt,c(x)
σt,c(x)

)∑
l

1
σt,l(x)

ϕ(
µt,l(x)
σt,l(x)

)
,

where ϕ(·) is the probability density function of the standard
normal distribution and σt,l(x) :=

√
kt,l(x,x).

Proof. Let x be an arbitrary (test) point. Denote the probability
that closest surface at x is of class c and distance |z| away

by lc(z) := P
(
argmin

l
|fl(x)| = c and minl |fl(x)| ≤ |z|

)
.

Since P (minl |fl(x)| ≤ |z|) =
∑

l ll(z), we have:

P
(
argmin

l
|fl(x)| = c

∣∣∣∣ min
l

|fl(x)| ≤ |z|
)

=
lc(z)∑
l ll(z)

.

The term we are interested in computing is limz→0
lc(z)∑
l ll(z)

.
Define µl := µt,l(x) and σl := σt,l(x) for l = 1, . . . , C.
The GP distribution of fl stipulates that its value at x has a
density function p(z) = 1

σl
ϕ
(
z−µl

σl

)
. Hence, P(|fl(x)| ≥ z) =

1 − Φ( |z|−µl

σl
) + Φ(−|z|−µl

σl
). Note that lc(z) corresponds to

the probability that |fc(x)| ≤ |fl(x)| for all l. Since all fl are
independent of each other:

lc(z) =
1

σc

∫ z

−z

ϕ
(ζ − µc

σc

)∏
l ̸=c

(
1− Φ

( |ζ| − µl

σl

)
+Φ

(−|ζ| − µl

σl

))
dζ

The claim is concluded by lim
z→0

lc(z)
2z = 1

σc
ϕ
(−µc

σc

)
.



The class distribution for an arbitrary point x ∈ O∪F , not
lying on an object surface, may also be obtained, as shown in
the proof of Prop. 2 but is both less efficient to compute and
rarely needed in practice.

VI. DISTRIBUTED INCREMENTAL SPARSE
GP REGRESSION

In this section, we develop a distributed version of the
incremental sparse GP regression in Sec. IV. Suppose that
the n robots communicate over a network, represented as a
strongly connected directed graph G = (V, E) with vertices
V := {1, ..., n} and edges E ⊆ V × V . An edge (i, j) ∈ E
from robot i to robot j exists if the two robots can com-
municate. The robots directly connected to robot i are called
neighbors and will be denoted by N ei = {j ∈ V | (i, j) ∈ E}.
Let W ∈ Rn×n be a weighted adjacency matrix such that
Wi,j > 0 if j ∈ N ei and Wi,j = 0, otherwise. Assume that W
is a row-stochastic nonnegative and primitive matrix [72] and,
hence, has a stationary distribution. The stationary distribution
π is specified by the left eigenvector of W associated with the
eigenvalue 1 and satisfies

∑n
i=1 πi = 1. This weight matrix

construction is common in consensus and distributed gradient
descent algorithms [72], [83], [84]. Relying on consensus
results for switching networks [72], [85], [86], our results may
be generalized to time-varying graphs assuming that the graph
sequence is uniformly strongly connected, i.e., there exists an
integer T > 0 such that the union of the edges over any time
interval of length T is strongly connected. However, we leave
such an extension for future work.

Each robot i ∈ V receives its own local observations
D̃i

t = (X̃ i
t , ỹ

i
t) at time t and extracts newly observed pseudo-

points P̃i
t , with associated number of observations m̃i

t and
average values ζ̃

i

t, as detailed in Sec. IV-C. This information is
used to update the complete set of pseudo-points Pi

t observed
up to time t, along with the number of observations mi

t and
average values ζi

t, according to (10). These parameters Θi
t :={

Pi
t ,m

i
t, ζ

i
t

}
, maintained by robot i, define a complete GP

distribution for the function f(x), with mean and covariance
functions in (8).

While each robot can estimate f(x) individually, we con-
sider how the robots may exchange information to estimate
f(x) collaboratively. We observe that the continuous-space GP
distribution of f(x) is induced by the statistics mi

t, ζ
i
t of the

pseudo-points Pi
t . Hence, if the robots exchange information

about and agree on these finite-dimensional parameters, then
the corresponding GP distributions of f(x) at each robot
will agree. Our main innovation is a distributed algorithm
for updating the sparse GP parameters of one robot using
the parameters of its one-hop neighbors’ distributions. While
existing results apply to fixed finite-dimensional parameter
estimation, our approach considers function estimation with
an infinite-dimensional GP distribution, updated via consensus
over an incrementally growing set of pseudo-point parameters.

To gain intuition about the construction of consensus
schemes over GP posteriors, we first review distributed
Kalman filtering for fixed-dimensional parameter estimation
in Sec. VI-A. Then, we use the connection between the GP

posterior induced by pseudo-points and the joint Gaussian dis-
tribution over the pseudo-points described from Sec. IV-A to
develop distributed GP regression in Sec. VI-B. In Sec. VI-C,
we prove that the distributed algorithm converges to the
same posterior GP distribution as a centralized sparse GP
regression that uses the observations from all robots. Finally, in
Sec. VI-D, we provide an approach to label the messages that
the robots exchange in order to avoid repeated communication
of the same information.

A. Distributed Kalman Filtering

Suppose that the robots aim to estimate a fixed (finite-
dimensional) vector f cooperatively using local observations
yi
t, generated according to a linear Gaussian model:

yi
t = Hif + ηi

t, ηi
t ∼ N (0, V i). (16)

Assume that the observations yi
t received by robot i are

independent over time and from the observations of all other
robots. Assume also that the graph G is connected and that
f is observable if one has access to the observations received
by all robots, i.e., the matrix

[
H1 · · · Hn

]
has rank equal

to the dimension of f . Since individual observations yi
t alone

may be insufficient to estimate f , the robots need to exchange
information. We suppose that each robot starts with a prior
probability density function pi0(f) over the unknown vector f
and updates it over time, relying on its local observations yi

t

as well as communication with one-hop neighbors in G.
Rahnama Rad and Tahbaz-Saleh [73] developed a consistent

distributed estimation algorithm, in which each agent i uses
standard Bayesian updates with its local observations yi

t+1

but, instead of its own prior pit, each agent uses a weighted
geometric average of its neighbors’ priors:

pit+1(f) ∝ pi(yi
t+1|f)

n∏
i=1

(pit(f))
Wij , (17)

where pi(yi
t+1|f) is an observation model, such as (16), that

should satisfy certain regularity conditions [73]. Atanasov et
al. [74] showed that if the prior distributions pi0 are Gaussian
and the observation models are linear Gaussian as in (16), the
resulting distributed Kalman filter is mean-square consistent
(the estimates argmaxf p

i
t(f) of all agents i converge in

mean square to the true f ). Specifically, if the priors are
f ∼ N (µi

0,Σ
i
0) with information matrix Ωi

0 := (Σi
0)

−1 and
information mean ωi

0 := Ωi
0µ

i
0, the Gaussian version of the

distributed estimator in (17) is:

ωi
t+1 =

n∑
i=1

Wijω
j
t +Hi⊤V i−1

yi
t+1

Ωi
t+1 =

n∑
j=1

WijΩ
j
t +Hi⊤V i−1

Hi

(18)

because geometric averaging and Bayesian updates with Gaus-
sian densities lead to a Gaussian posterior density [74]. The
relationship between geometric means being used for belief
propagation in (17) and weighted averaging via mixing matrix
W forms the conceptual basis for message passing in the more
general GP posterior inference setting which we detail next.



B. Distributed Incremental Sparse GP Regression

The distributed estimation algorithm in (18) does not di-
rectly apply to GP regression because the estimation target
f(x) is infinite-dimensional. However, the sparse GP regres-
sion, described in Sec. IV, relies on a finite (albeit incremen-
tally growing) set of pseudo-points Pt, and we show that it is
possible to obtain distributed incremental sparse GP regression
based on (18). As discussed earlier, each robot i maintains
parameters Θi

t :=
{
Pi
t ,m

i
t, ζ

i
t

}
based on its local observations

D̃i
t = (X̃ i

t , ỹ
i
t). Our key idea is to perform weighted geometric

averaging over local posteriors, which translates to simple
weighted averaging of the means and covariances in (3) of f at
a finite set of points Q ⊇ Pi

t , which will be specified precisely
below. The parameters Θi

t induce a GP distribution over f
in (8), which in turn provides a Gaussian probability density
function pit(f) := p(f |Θi

t) over the vector f := f(Q) with
mean µi

t(Q) and covariance Σi
t(Q), obtained from (8). In order

to derive decentralized updates for GPs akin to (18), we first
present the iterative updates associated with the robots’ local
posteriors in terms of their information mean and information
matrix corresponding to the mean and covariance of pit(f).

Lemma 1. The information mean ωi
t(Q) := Ωi

t(Q)µi
t(Q)

and information matrix Ωi
t(Q) := (Σi

t(Q))−1 of the Gaussian
probability density function pit(f) := p(f |Θi

t) of f := f(Q)
with parameters Θi

t :=
{
Pi
t ,m

i
t, ζ

i
t

}
are:

ωi
t(Q) = ki0(Q,Q)−1µi

0(Q) + σ−2 diag(mi
t(Q))ζit(Q)

Ωi
t(Q) = ki0(Q,Q)−1 + σ−2 diag(mi

t(Q)),
(19)

where, similar to Sec. IV-C, mi
t(p) and ζit(p) denote the

number of observations and average observation, respectively,
for p ∈ Pi

t and their domains have been extended to Q ⊇ Pi
t

by defining mi
t(q) = ζit(q) = 0 for q ∈ Q \ Pi

t .

Proof. Similar to the proof of Prop. 1, let E be a binary
matrix such that ki0(Pi

t ,x) = Eki0(Q,x), i.e., E selects the
points from the superset Q which correspond to Pi

t . Note
that ki0(Q,Pi

t) = ki0(Q,Q)E⊤, ki0(Pi
t ,Q) = Eki0(Q,Q),

and ki0(Pi
t ,Pi

t) = Eki0(Q,Q)E⊤. The expression for Ωi
t(Q)

follows from the matrix inversion lemma applied to the
covariance matrix Σi

t(Q) and noting that E⊤ diag(mi
t)E =

diag(mi
t(Q)). Then, note that:

Ωi
t(Q)ki0(Q,Pi

t)Z
i
t

=
(
I + σ−2E⊤ diag(mi

t)Eki0(Q,Q)
)
E⊤Zi

t

= σ−2E⊤ diag(mi
t)(Z

i
t)

−1Zi
t = σ−2E⊤ diag(mi

t).

Thus, the information mean is:

ωi
t(Q) = Ωi

t(Q)
(
µi
0(Q) + ki0(Q,Pi

t)Z
i
t

(
ζi
t − µi

0(Pi
t)
))

= Ωi
t(Q)µi

0(Q) + σ−2E⊤ diag(mi
t)
(
ζi
t − µi

0(Pi
t)
)

= ki0(Q,Q)−1µi
0(Q) + σ−2E⊤ diag(mi

t)ζ
i
t

= ki0(Q,Q)−1µi
0(Q) + σ−2 diag(mi

t(Q))ζit(Q).

With the expression for the parametric updates associated
with the posterior inference defined by observations acquired
locally at robot i only, we next detail how to augment this
update with neighboring robots’ information.

1) Distributed updates with a fixed pseudo-point set: To
begin, suppose that the pseudo-point sets are fixed across all
robots, i.e., P ≡ Pi

t , and the local observations D̃i
t+1 =

(X̃ i
t+1, ỹ

i
t+1) satisfy X̃ i

t+1 ⊆ P for all t, i. Then, the informa-
tion means and matrices in (19) have equal dimensions across
the robots. By defining Hi

t+1 := ki0(X̃ i
t+1,P)ki0(P,P)−1,

ωi
t := ωi

t(P), and Ωi
t := Ωi

t(P) we can apply the update
in (18) directly. The information means and matrices have
a simple structure, and, similar to (10), it is sufficient to
track only the number of observations mi

t and the average
observations ζi

t over time:

ωi
t+1 =

n∑
i=1

Wijω
j
0 +

1

σ2

n∑
i=1

Wij diag(m
j
t )ζ

j
t +

1

σ2
diag(m̃i

t+1)ζ̃
i

t+1

Ωi
t+1 =

n∑
j=1

WijΩ
j
0 +

1

σ2

n∑
i=1

Wij diag(m
j
t ) +

1

σ2
diag(m̃i

t+1), (20)

where m̃i
t+1 and ζ̃

i

t+1 are the number of new observations and
new observation averages received by robot i of the pseudo-
points P at time t + 1. We consider the case with incremen-
tally growing pseudo-point sets that are potentially different
across the robots before presenting the final distributed update
equations for mi

t and ζi
t. This is the focus of the following

subsection.
2) Distributed updates with dynamic pseudo-point sets:

Consider the general case where each robot maintains its
own pseudo-point set Pi

t and the observations D̃i
t+1 =

(X̃ i
t+1, ỹ

i
t+1) may introduce new pseudo-points P̃i

t+1 ̸⊆ Pi
t .

Our key observation is that the parameters Θi
t induce a GP

distribution over the whole function f and, hence, can be used
to obtain a Gaussian distribution over a pseudo-point set that
is larger than Pi

t according to (19):

Pi
t+1 =

⋃
j∈Nei∪{i}

Pj
t ∪ P̃i

t+1. (21)

Note that the structure of the information mean and infor-
mation matrix in (19) was derived for an arbitrary pseudo-
points set Q. First, without considering the observations D̃i

t+1,
we let Q = Pi

t+1 and calculate ωj
t (Pi

t+1), Ω
j
t (Pi

t+1). Then,
the distributed averaging in (18) can be performed over the
information means and information matrices in (19) with
Q = Pi

t+1 and Hi
t+1 := ki0(X̃ i

t+1,Pi
t+1)k

i
0(Pi

t+1,Pi
t+1)

−1:

ωi
t+1(Pi

t+1) =
n∑

i=1

Wijω
j
t (Pi

t+1) +Hi⊤
t+1(σ

2I)−1ỹi
t+1,

Ωi
t+1(Pi

t+1) =
n∑

i=1

WijΩ
j
t (Pi

t+1) +Hi⊤
t+1(σ

2I)−1Hi
t+1.

(22)

We may rewrite the preceding expressions in terms of the
number of observations mi

t+1(p) and average observations
ζit+1(p) for any p ∈ Pi

t+1, akin to (10), by following the
steps in (20) for the dynamic pseudo-point case, leading to:

mi
t+1(p) =

∑
j∈Nei∪{i}

Wijm
j
t (p) + m̃i

t+1(p), (23)

ζit+1(p) =

∑
j∈Nei∪{i} Wijm

j
t (p)ζ

j
t (p) + m̃i

t+1(p)ζ̃
i
t+1(p)

mi
t+1(p)

.



With the updates for robot i in terms of its local observations
and message passing with its neighbors N ei specified, we
shift in the following subsection to establishing its statistical
properties.

C. Theoretical Guarantee for Consistent Estimation

We show that the proposed distributed incremental sparse
GP regression defined by (21), (23), and (8) converges to a
centralized sparse GP regression, which uses the observation
data ∪t ∪i D̃i

t from all robots. At each time step t, the
centralized estimator receives data ∪iD̃i

t, and, as discussed
in Sec. IV-C, updates a global set of pseudo-points Pctr

t ,
the number of times mctr

t (p) each pseudo-point p ∈ Pctr
t

has been observed, and the average observation ζctrt (p) of
p ∈ Pctr

t . In order to show that the GP maintained by
each robot i eventually agrees with the centralized GP, the
centralized estimator should also be affected by the Perron
weight matrix W . If W = 1

n11
⊤, the information provided

by different robots is equally credible and the centralized
estimator can use the combined set of observations ∪iD̃i

t

directly. If, however, the left eigenvector π of W is not 1, then
its elements πi specify different credibility for the different
robots. More precisely, the centralized estimator should treat
the measurements D̃i

t of robot i as if they were generated
with noise variance σ2/πi, instead of the true noise variance
σ2. This is equivalent to scaling the number of observations
m̃i

t provided by robot i by its “credibility” πi, leading to
the following update for the centralized sparse GP regression
parameters:

Pctr
t+1 = ∪n

i=1P̃i
t+1 ∪ Pctr

t ,

mctr
t+1(p) = mctr

t (p) +

n∑
i=1

πim̃
i
t+1(p), (24)

ζctrt+1(p) =
mctr

t (p)ζctrt (p) +
∑n

i=1 πim̃
i
t+1(p)ζ̃

i
t+1(p)

mctr
t+1(p)

,

for all p ∈ Pctr
t+1. The next result shows that the individual GP

distributions maintained by each robot using the distributed
updates in (23) converge to the centralized GP distribution
determined by the parameters above.

Proposition 3. Let D̃i
t = (X̃ i

t , ỹ
i
t) be the data received by

robot i at time t, associated with pseudo-points P̃i
t ⊂ P# and

number of observations m̃i
t(p) and average observation ζ̃it(p)

for p ∈ P#. If the data streaming stops at some time T <
∞, then as t → ∞, the distributions GP(µi

t(x), k
i
t(x,x

′))
maintained by each robot i, specified according to (8) with
parameters Pi

t , mi
t(p), ζit(p) in (21) and (23) converge to

the distribution GP(µctr
t (x), kctrt (x,x′)) of the centralized

estimator with parameters Pctr
t , mctr

t (p), ζctrt (p) in (24), i.e.,
|µi

t(x)−µctr
t (x)| → 0 and |kit(x,x′)−kctrt (x,x′)| → 0 almost

surely for all i ∈ V , x,x′.

Proof. Since the distributions GP(µi
t(x), k

i
t(x,x

′)) and
GP(µctr

t (x), kctrt (x,x′)) are completely determined by the
parameters Pi

t , mi
t(p), ζ

i
t(p) and Pctr

t , mctr
t (p), ζctrt (p), re-

spectively, it is sufficient to show that |mi
t(p)−mctr

t (p)| → 0
and |ζit(p) − ζctrt (p)| → 0 for all i ∈ V , p ∈ P#. Let

p ∈ P# be arbitrary and note that mi
0(p) = mctr

0 (p) = 0
and ζi0(p) = ζctr0 (p) = 0 since no pseudo-points have been
observed initially. Expand (24) recursively to obtain mctr

t (p)
and ζctrt (p) in terms of the observation statistics:

mctr
t (p) =

t∑
τ=0

n∑
i=1

πim̃
i
τ (p),

ζctrt (p) =
1

mctr
t (p)

t∑
τ=0

n∑
i=1

πim̃
i
τ (p)ζ̃

i
τ (p).

(25)

Similarly, expand (23) to obtain mi
t(p) and ζit(p) in terms of

the observation statistics:

mi
t(p) =

t∑
τ=0

n∑
j=1

[
W t−τ

]
ij
m̃j

τ (p),

ζit(p) =
1

mi
t(p)

t∑
τ=0

n∑
j=1

[
W t−τ

]
ij
m̃j

τ (p)ζ̃
j
τ (p),

(26)

where the weights [W t−τ ]ij appear since the data m̃j
τ (p) and

ζ̃jτ (p) propagate through the network with weight matrix W
and reach robot i via all paths of length t− τ . Alternatively,
(26) can be viewed as the solution of the discrete-time linear
time-invariant system in (23) with transition matrix Φ(t, τ) =
W t−τ , t ≥ τ . Since the data collection stops at some finite
time T , m̃i

t(p) = ζ̃it(p) = 0 for all t > T , i ∈ V . The
convergence of (26) to (25) is concluded from the fact that
[W t]ij → πj > 0 since W is a row-stochastic nonnegative
and primitive matrix.

Prop. 3 is a similar result to [73, Thm. 3], where it is shown
that, if the weight matrix W is doubly stochastic, a distributed
parameter estimator is as efficient as any centralized parameter
estimator. However, Prop. 3 applies to distributed function es-
timation using an incrementally growing set of parameters and
re-weights the observations used by the centralized estimator
via the stationary distribution π of W to ensure convergence
even when W is not doubly stochastic.

D. Echoless Distributed GP Regression

The distributed pseudo-point update we derived in (23) is
not efficient for two reasons. First, convergence to the central
GP estimate is guaranteed only in the limit, as t → ∞
(Prop. 3). Second, every time robots exchange messages, all
information they have must be sent. This is inefficient as may
be seen in the proof of Prop. 3, the observations are exchanged
an infinite number of times (echos in the network). To address
these limitations, we label the communication messages with
the list of robots that have already received them and show
that convergence to the centralized estimate can, in fact, be
achieved in finite time. Let Θ̃i

t := {P̃i
t , m̃

i
t(P̃i

t), ζ̃
i
t(P̃i

t), ℓ
i
t}

define a communication package which contains the new
observations P̃i

t , m̃i
t(P̃i

t), ζ̃
i
t(P̃i

t) of robot i at time t as well
as a list of robots ℓit that have already received this package.
The list ℓit is initialized at time t with {i}. For each robot i,
define also a set of packages Bi

t+1 that the robot should use
at time t to update its GP parameters. The set Bi

t from the
previous time step contains old packages that robot i should



transmit to its neighbors. Inspired by the similarity of (25) and
(26), we propose a distributed protocol which ensures that:

• each package, which contains the processed observations of
robot i at time t, visits each robot once rather than echoing
in the network, relying on ℓit to keep track of visited robots,

• convergence to the centralized GP distribution is achieved in
finite and minimum time by using the stationary distribution
(left eigenvector) π of W as the coefficient in (26).

The distributed parameter update for robot i at time t is:

Bi
t+1 =

⋃
Θ̃j

τ∈Br
t ,r∈Nei,i/∈ℓjτ

Θ̃j
τ ∪ Θ̃i

t+1,

ℓjτ = ℓjτ ∪ {i} for all Θ̃j
τ ∈ Bi

t+1,

Pi
t+1 =

⋃
Θ̃j

τ∈Bi
t+1

Pj
τ ∪ Pi

t ,

mi
t+1(p) = mi

t(p) +
∑

Θ̃j
τ∈Bi

t+1

πjm̃
j
τ (p),

ζit+1(p) =
mi

t(p)ζ
i
t(p) +

∑
Θ̃j

τ∈Bi
t+1

πjm̃
j
τ (p)ζ̃

j
τ (p)

mi
t+1(p)

.

(27)

We prove that this distributed update rule converges in
finite time to the centralized GP distribution. Compared with
(23), the distributed update in (27) is able to achieve finite-
time convergence because it uses the weights π from the
stationary distribution of W right away, instead of processing
the same information an infinite number of times to determine
π. Moreover, (23) stipulates that two robots should exchange
all of their information at each time step, which is very
inefficient in practice. The messages in (27) allow the robots to
exchange only the latest information and guarantee that each
observation reaches each robot once.

Proposition 4. Let D̃i
t = (X̃ i

t , ỹ
i
t) be the data received by

robot i at time t, associated with pseudo-points P̃i
t ⊂ P#

and number of observations m̃i
t(p) and average observation

ζ̃it(p) for p ∈ P#. If the data streaming stops at some time
T < ∞, then at time t = T + n − 1, the distributions
GP(µi

t(x), k
i
t(x,x

′)) maintained by each robot i, specified
according to (8) with parameters in (27) are exactly equal
to the distribution GP(µctr

t (x), kctrt (x,x′)) of the centralized
estimator with parameters in (24), i.e., µi

t(x) = µctr
t (x) and

kit(x,x
′) = kctrt (x,x′) almost surely for all i ∈ V , x,x′.

Proof. As in the proof of Prop. 3, it is sufficient to show that
at t = T + n − 1, mi

t(p) = mctr
t (p) and ζit(p) = ζctrt (p)

for all i ∈ V , p ∈ P#. As before, we express mi
t(p) and

ζit(p) in terms of m̃j
τ (p) and ζ̃jτ (p) for arbitrary p ∈ P# and

τ ≤ t. The key is to decide whether package Θ̃j
τ is received

by robot i. Since the package exchanges are happening based
on the communication graph structure, the elements of W t−τ

determine which robots have received a package released at
time τ by time t. Precisely, if [W t−τ ]ij > 0, then robot i has
received package Θ̃j

τ by time t and otherwise, if [W t−τ ]ij = 0,
it has not received it. Let sign(x) denote the sign of a scalar

Algorithm 1 Distributed Metric-Semantic Mapping
1: Routine for robot i at time step τ :
2: Input: sensor observation: {λi

τ,k, c
i
τ,k}k

3: Construct training set via Sec. V-A:{
λi
τ,k, c

i
τ,k

}
k
→

{
D̃i

τ,l

}
l
→

{
Θ̃i

τ,l

}
l

4: Receive packages Bj
τ from neighbors j ∈ N ei

5: Update the pseudo-point parameters via (27)
6: Update the GP tree data structure for each class l via Sec. IV-D
7: for each leaf N of each tree do
8: Update precision matrix Zi

τ,l(N) in Sec. V-B via (11), (12)
9: if TSDF and class evaluation for a set of points is requested then

10: Evaluate the class of each point via Prop. 2 in Sec. V-B
11: Evaluate the TSDF of each point via (8)
12: if mesh reconstruction is requested then
13: Apply Marching Cubes [87] to the TSDF values

x with sign(0) = 0. Expanding (27) recursively leads to:

mi
t(p) =

t∑
τ=0

n∑
i=1

sign(
[
W t−τ

]
ij
)πjm̃

j
τ (p) (28)

ζit(p) =
1

mi
t(p)

t∑
τ=0

n∑
j=1

sign(
[
W t−τ

]
ij
)πjm̃

j
τ (p)ζ̃

j
τ (p)

Since the data collection stops at some finite time T , m̃i
τ (p) =

ζ̃iτ (p) = 0 for all τ > T , i ∈ V . Comparing (26) and (25),
equality of µi

t(x) and µctr
t (x) and kit(x,x

′) and kctrt (x,x′) at
t = T + n − 1 is concluded by the fact that

[
Wn−1

]
ij

> 0
because the network is connected.

To ensure that each package is received by each robot once,
we assumed that the package keeps a list of visited robots.
Since a package may be received by several robots at the same
time, the robots should keep a list of received packages. More
precisely, each package should be labeled based on the robot
that observed it and the time slot the package is observed.
Then, each robot keeps the list of received packages and
always removes the packages with time label earlier than n−1.

VII. DISTRIBUTED METRIC-SEMANTIC MAPPING

We apply the distributed GP regression technique devel-
oped in Sec. VI to the multi-robot metric-semantic TSDF
mapping problem. Each robot i receives local distance and
class observations

{
λi
t+1,k, c

i
t+1,k

}
, which are transformed

using the procedure in Sec. V-A into training data sets
D̃i

t+1,l =
(
X̃ i

t+1,l, ỹ
i
t+1,l

)
for estimating the TSDFs {fl(x)}

of the different object classes. Each dataset D̃i
t+1,l is com-

pressed into a set of pseudo-points P̃i
t+1,l with associated

number of observations m̃i
t+1,l(p) and average observation

ζ̃it+1,l(p) for p ∈ P̃i
t+1,l. Each robot maintains a separate

GP GP(µi
t,l(x), k

i
t,l(x,x

′) for each class TSDF fl(x). In
the multi-robot case, the GP distributions of robot i are
updated simultaneously and separately for all classes using
the new class-specific observation data P̃i

t+1,l, m̃
i
t+1,l(P̃i

t+1,l),
ζ̃it+1,l(P̃i

t+1,l) as well as information from the neighboring
robots in the form of class-specific packages Bi

t+1,l as de-
scribed in (27). To make the GP models scalable to large



Fig. 6: Ground-truth 2-D simulated environment (top left) with two
object classes (red, blue), ground-truth TSDF for the blue class (top
middle), and reconstructed TSDF with frame size = 10 (top right).
The reconstructed TSDF boundaries are shown for three different
frame size parameters on the bottom row: 10 (bottom left), 3
(bottom middle), 2 (bottom right). Sharp edges are captured better
with frame size 3 vs. 10 but using frame size less that 3 caused
missing parts at the boundaries.

environments, we organize the pseudo-points Pi
t,l for each

robot i and class l in a hierarchical tree data structure, as in
Sec. IV-D, and predict the class of a query point via the method
in Sec. V-B. Prop. 4 guarantees that the local TSDF GPs at
each robot converge to a common GP, which is equivalent
to the one that would be obtained by centralized sparse GP
regression. Moreover, when the streaming of new observations
stops, the convergence happens in finite time as soon as each
observation is received by each robot exactly once. There is
no unnecessary communication in the network. The algorithm
is summarized in Alg. 1.

VIII. EVALUATION USING 2-D SIMULATED DATA

In this section, we evaluate our semantic TSDF mapping
approach in 2-D simulated environments. We first demonstrate
the qualitative and quantitative performance of the single-robot
approach of Sec. V. Then, we report results for the multi-robot
approach of Sec. VII using three robots to map the same
environment collaboratively. In all experiments, we use an
isotropic sparse Matérn kernel (ν = 3/2) [26]. Since a TSDF
value of zero indicates an object surface, while an unknown
environment is predominantly empty, we use a constant GP
prior equal to the truncation value, µi

0,l(x) = d̄ > 0.

A. Single-Robot 2-D Evaluation

We generate random 2-D environments (see Fig. 6) and
robot trajectories by sampling poses sequentially and keeping
the ones that are in free space. Observations are obtained along
the robot trajectories using a simulated distance-class sensor.
We apply our incremental sparse GP regression method to
obtain a probabilistic TSDF map and compare it with the
ground truth TSDF.

1) TSDF Accuracy: A sample environment from our 2-
D simulation with ground-truth and reconstructed TSDF and
boundaries is shown in Fig. 6. Our method provides continuous
probabilistic TSDF estimates. The choice of frame size
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Fig. 7: Misclassification Rate, Precision, Recall, and Normalized SDF
Error for different class error probability and distance noise variance.
The top right plot shows the average SDF error over 10 random 40×
40 maps with a 100 random observations each, with voxel size =
0.1, max(N) = 100, δ = 1.2.

is dependent on the desired truncation value for the SDF
reconstruction. Larger frame size allows estimating larger
truncation values but incurs additional computation cost. The
precision and resilience to measurement noise of our method
are evaluated in Fig. 7. The test points are chosen from a grid
with resolution 0.5×voxel size within the truncation distance
from the ground-truth object boundaries.

2) Classification Accuracy: We evaluate the average preci-
sion and recall of our posterior classification over 50 random
2-D maps. In each map, we pick uniformly distributed random
points along the obstacle boundaries, and calculate the SDF
error and the class-detection accuracy. Since the values are
symmetric for binary classification, we present the average
precision and recall over the two classes in Fig. 7. The figure
shows that the misclassification rate, precision, recall, and SDF
error are not very sensitive to class error probability. The
misclassification rate is the ratio of all to the misclassified test
points. The SDF error is the average absolute value difference
between the estimated and ground-truth SDF values. We report
normalized SDF error: SDF error

voxel size . Fig. 8 investigates the effect
of the parameters of our algorithm on misclassification rate,
normalized SDF error, False Discovery Rate (FDR := 1 −
Precision), and False Negative Rate (FNR := 1 − Recall).
We see that the misclassification rate, FNR, and FDR respond
similarly to parameter variations.

Increasing the maximum number of pseudo-points per
support region, max(N), in the hierarchical tree structure
improves the (normalized) SDF error. The improvement is
significant at first but after a certain support region size, even
exponential increases in max(N) do not significantly affect
the SDF error. The geometric prediction improvement caused
by an initial increase in max(N), improves the classification
measures at first. The classification noise is iid and, hence, the
training data have a Bernoulli misclassification probability and
are roughly uniformly distributed in space. Further increase of
max(N) results in larger pseudo-point region being used for
GP training. Since the misclassified samples are more and not
concentrated, the classification measures deteriorate slightly
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Fig. 8: Misclassification rate, normalized SDF error, False Discovery
Rate (FDR), and False Negative Rate (FNR) as a function of the
number of pseudo-points per tree support region (max(N)), support
region overlap ratio (δ), GP noise variance σ2, and workspace
discretization (voxel size). The default parameter values are δ = 1.5,
max(N) = 100, σ2 = 1, voxel size = 0.1. Class and distance
measurements with class error probability of 0.05 and distance noise
variance 0.5 are obtained from 100 random observations in each of
50 random 2-D maps. Test points are selected within a threshold of
0.05 from the ground truth class boundaries.

with the increase of max(N). Nevertheless, our approach
remains accurate in the classification errors are low in all cases.
Increasing δ has a similar effect on all performance measures.
Increasing the GP noise variance σ2 improves all the measures
at first but then worsens them. A correct choice of σ2 is critical
to the method but affects the misclassification rate smoothly
so as long as the value of σ2 is in the right ballpark, choosing
the optimal σ2 is not critical.

B. Multi-Robot 2-D Evaluation

Next, we evaluate the distributed GP regression in a three-
robot simulation and investigate the convergence of the local
GP estimates of each robot to a centralized GP estimate.
We use the same random polygonal 2-D environments with
two object classes but this time generate trajectories for three
different robots (see Fig. 9). The robots communicate with
each other over a graph with a fixed weight matrix:

W =

 0.5 0.25 0.25
0.25 0.75 0
0.25 0 0.75

 . (29)

The GP regression parameters at each robot are the same as
the defaults in Sec. VIII-A. To verify Prop. 4 empirically,
we compare the mean absolute error (MAE) between the
GP prediction of an individual robot i and the centralized
estimator ctr using all observations as described in Sec. VI-C.
Specifically, at each t, we consider all classes l and associated

Fig. 9: Three robot trajectories (green, orange, purple) in a 2-D
simulated environment (top left) with two object classes (red, blue).
The zero level-sets of the TSDF reconstructions for the two classes by
centralized GP regression (bottom left) and distributed GP regression
from the perspective of the orange robot (bottom right) are shown.
As expected, due to Prop. 2, the centralized and individual robot
reconstructions are identical. This is verified quantitatively in the
GP mean and variance mean absolute error (MAE) plot (top right).
The initial GP parameters for each robot and object class were
µi
0,l(x) = 0.5, ki

0,l(x,x) = 1.

pseudo-points Pctr
t,l that have been observed by the centralized

estimator and calculate the mean MAE as:

MAEt =
1

Lt|Pctr
t,l |

∑
ℓ

∑
p∈Pctr

t,l

∣∣µi
t,l(p)− µctr

t,l (p)
∣∣ , (30)

where Lt is the number of observed object classes by time
t. The variance MAE is computed equivalently to (30) with
µi
t,l(p) and µctr

t,l (p) replaced by kit,l(p,p) and kctrt,l (p,p).
Fig. 9 shows the final reconstructions of one robot and the

centralized estimator. As expected, the final reconstructions
are identical and convergence happens in finite time. The
behavior of the mean and variance MAE curves is similar.
This is expected because the distance between the local and
centralized GP parameters is due to unobserved information
rather than stochastic noise. We see that the MAE curves
approach 0 quickly. Several peaks are observed in the curves
when new sections of the environment that are not visible to
robot i are observed by another robot in the network. The new
information disseminates in the network and the MAE curves
approach zero again.

IX. EVALUATION USING 3-D REAL DATA

In this section, we evaluate our approach using real RGB-
D data from physical 3-D environments. As before, we use
an isotropic sparse Matérn kernel (v = 3/2) and a grid of
potential pseudo-points P# with resolution voxel size. Given
a query point x̂, we choose a cubic region around it such that
(frame size−1)×voxel size ≥ 2×ϵ to construct the training
data in (13). All points from P# that lie in the cubic region
are chosen as pseudo-points associated with x̂.



A. Single-Robot 3-D Evaluation

We compare our method to the incremental Euclidean
signed distance mapping method Fiesta [44] on the Cow
and Lady dataset [43]. We also demonstrate 3-D semantic
reconstruction on the SceneNN dataset [88].

1) Cow and Lady Dataset: The reconstruction of the Cow
and Lady dataset with 829 depth images and known camera
trajectory by the single-robot TSDF GP regression of Sec. V is
shown in Fig. 13. A triangular mesh is extracted from the mean
TSDF prediction using the Marching Cubes algorithm [89].
The reconstruction time and error with respect to the ground-
truth scene point cloud are reported in Fig. 10. The error of
Fiesta with default parameters is shown as well. Similar to the
2-D simulations, increasing the maximum number of pseudo-
points max(N) per tree support region improves the SDF error
of our approach. The improvement is significant at first and
less pronounced afterwards. Conversely, the computation time
decreases at first because the number of leaves in the hierar-
chical tree structure decreases and then increases afterwards as
the GP covariance matrices get larger. Increasing δ leads to an
insignificant improvement in the SDF error at the expense of
a significant reconstruction time increase. Increasing the GP
noise variance improves the SDF error at first (especially when
the error is close to zero) but worsens it afterwards without
significant impact on time. As voxel size varies, our method
outperforms Fiesta noticeably.

2) SceneNN Dataset: We evaluate the classification ac-
curacy of our method on the SceneNN dataset in Fig. 11.
The GP posterior is evaluated on a test grid with resolution
0.5× voxel size. The test points with posterior variance less
than a threshold are used to reconstruct a triangular mesh
via Marching Cubes [89]. We use Prop. 2 for classification.
The effect of the different parameters is illustrated in Fig. 11.
Increasing max(N) improves both classification and TSDF
reconstruction results. The improvement after max(N) = 100
is negligible but time increases significantly. Increasing δ
improves the TSDF reconstruction significantly at first. After
δ = 1.4, the improvement is negligible. As seen in the 2-D
simulations, choosing a correct magnitude for the GP noise
variance σ2 is very important for both the classification and
TSDF reconstruction but choosing the optimal value for σ2 is
not critical. Our method provides continuous TSDF estimates
but this does not mean that the zero-level set of the estimated
TSDF is necessarily continuous. A positive TSDF prediction
by the GP means that the corresponding location is empty.
Choosing the truncation value as the prior GP mean results
in assuming that space is empty by default. The presence of
pseudo-points, generated around observed surfaces, is what
introduces occupied space in the GP estimation. For example,
the grid-like empty spots in Fig. 11, resulting when the
parameter choices are suboptimal, are due to the choice of
pseudo-points on a regular grid.

B. Parameter Selection

This section discusses parameter selection for our algorithm,
based on the results in Sec. IX-A. With parameter selection
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Fig. 10: Evaluation of the SDF reconstruction time (sec) and error (m)
of our incremental sparse GP regression algorithm on the Cow and
Lady dataset [43] and in comparison with Fiesta [44]. The errors
are evaluated with respect to the ground-truth scene point cloud
provided by the dataset. Training is done with 829 depth images and
known camera trajectory. The default parameters for our algorithm
are max(N) = 200, δ = 1.5, σ2 = 25, voxel size = 0.1,
frame size = 5, and SDF truncation value 3× voxel size.

there is a trade-off between accuracy and computational ef-
ficiency. For the hierarchical tree structure, as observed in
Sec. IX-A2, it is critical to select the maximum number of
pseudo-points per node as max(N) > 100 and the size of the
node support region as δ > 1.4 to ensure continuous surface
representation, robustness to noise, and sufficient accuracy of
the decomposition into separate GPs. The larger these two
parameters are, however, the more computationally expensive
our algorithm becomes. Our experiments suggest optimal
choices around δ = 1.5 and max(N) = 200.

The noise parameter σ2 of the GP model depends on the
measurement data. For the RGB-D data used in our experi-
ments σ2 = 3 was a good choice. The voxel size parameter
depends on the level of detail that needs to be captured in
the reconstruction, with smaller values increasing the accuracy
but also the computational complexity. In our experiments,
voxel size = 0.03 was a good choice. A trade-off between
accuracy and computation time is associated with the choice
of frame size, which determines how many pseudo-points
are added per sensor ray (Fig. 5). While frame size = 2 is
very efficient and captures fine details, as discussed in Fig. 6
and Sec. IX-C, it might miss surface boundaries. Choosing
frame size = 3 alleviates this issue while keeping the
approach efficient. If TSDF reconstruction accuracy close to
the surface, in addition to the surface extraction itself, is
important, then frame size ≥ 5 is a good choice (Fig. 10).

C. Comparison with Deep TSDF Reconstruction

This section compares our sparse GP approach to IGR [32],
a deep learning approach for SDF reconstruction introduced
in Sec. II. We evaluated the two approaches on five car



(a) n : 5,t : 58.15 (b) δ : 1, t : 32.62 (c) σ2 : 0, t : 42.43 (d) v : 0.06, t : 23.24

(e) n : 100,t : 45.15 (f) δ : 1.4, t : 39.11 (g) σ2 : 10, t : 41.07 (h) v : 0.03, t : 45.15

(i) n : 1000,t : 96.83 (j) δ : 2, t : 57.41 (k) σ2 : 40, t : 43.76 (l) v : 0.01, t : 381.02

Fig. 11: Single-robot reconstructions of sequence 255 (top left), containing 2450 RGB-D images and 85 semantic categories (in random
colors), and sequence 011 (bottom left), containing 3700 RGB-D images and 61 semantic categories (in random colors), of the SceneNN
dataset [88]. The incremental sparse GP TSDF mapping process took 1040.41 sec. for sequence 255 and 1885.72 sec. for sequence 011.
The following default parameters were used for the hierarchical tree structure: δ = 1.5, n = max(N) = 100 and the GP training: σ2 = 3,
v = voxel size = 0.03, frame size = 2. On the right we see the effect of these parameters (t is time in seconds) on the metric-semantic
reconstruction over 140 RGB-D images.

instances from the ShapeNet dataset [90]. Both methods were
trained using 100 depth images of size 512 × 512, obtained
from a sphere around the object with camera orientation
facing the object. To make the measurement noise independent
of the object scale, each element of the depth image was
multiplied with Gaussian noise with mean 1 and three levels of
standard deviation: 0 (no noise), 0.025 (low noise), and 0.05
(high noise). Our method was trained on a single CPU with
parameters: σ2 = 3, voxel size = 0.03, frame size = 2,
and tree support regions with δ = 1.5 and max(N) = 200.
IGR was trained without a latent shape vector (single shape
estimation) on an Nvidia GTX 1080 Ti GPU with initial
learning rate 0.005 and decay factor of 2 every 200 steps
for 2k iterations. Mesh reconstruction from the SDF values
was performed using Marching Cubes [87] with the same
resolution of voxel size = 0.015 for both methods.

Qualitative results for three of the object instances are
shown in Fig. 12. The color patterns observed in the variance
prediction of our method correspond to convex object parts
which more visible (so the uncertainty is lower) from various
camera poses. The meshes in ShapeNet are combinations of
flat faces and the object surfaces are not smooth. Quantitative
results for noise evaluation are shown in Table I. In the absence
of noise IGR is more accurate but the difference is minor.
Examining the qualitative results in Fig. 12 suggests that
our method is able to capture fine details more precisely. As
the measurement noise increases, our method’s reconstruction

TABLE I: Quantitative comparison between our approach and
IGR [32] for TSDF reconstruction, averaged over 5 car instances
from ShapeNet [90] and evaluated using the metrics from [91]. The
metrics are computed after the reconstructed meshes are normalized
in a unit-length bounding box.

Method Noise st. dev. Chamfer-L2 Chamfer-L1 Accuracy Completeness

Ours 0 0.0010 0.0091 0.0078 0.0105
IGR 0.0007 0.0071 0.0072 0.0070

Ours 0.025 0.0007 0.0104 0.0114 0.0093
IGR 0.0014 0.0262 0.0269 0.0255

Ours 0.05 0.0013 0.0198 0.0248 0.0148
IGR 0.0072 0.0677 0.0863 0.0492

accuracy remains robust while IGR’s accuracy deteriorates.
Fig. 12 shows that with large measurement noise the recon-
struction from IGR may sometimes fail, while our method is
still able to capture the overall object shape.

The total training time per instance for IGR, including mesh
reconstruction, was 783.27 sec. Timing results for our method
are provided in Table II. Our method was able to process
depth images for training set construction and incremental GP
training at roughly 6.2 Hz. In robotics applications, such as
autonomous navigation, only the dataset construction and GP
training steps need to be performed online and a small local
portion of the TSDF values may be predicted for collision
checking. Prediction at a single test-point took 7.7 µs. If com-
plete TSDF reconstruction and mesh extraction are considered,
our method took 66.4 sec to process 100 images.



Fig. 12: Reconstruction of car instances from the ShapeNet dataset using our incremental GP approach (top row) and IGR [32] (bottom
row). The color indicates the reconstruction variance provided by our model, ranging from cold (low confidence) to hot (high confidence).
The first three car instances are reconstructed from RGB-D images with zero measurement noise, while the last instance is obtained with
noise standard deviation of 0.05.

TABLE II: Profiling our python implementation of Alg. 1 with
average times obtained from 5 ShapeNet [90] with 100 RGB-D
images each.

Online TSDF mapping without mesh reconstruction

Data construction and training (42214 pseudo-points, 944970 updates) 16.02 s
Single pseudo-point update 17.13 µs
Single test-point prediction 7.68 µs
Image processing and training rate 6.24 Hz

Online TSDF mapping with mesh reconstruction

Data construction and training (42214 pseudo-points, 944970 updates) 16.02 s
TSDF prediction (4138478 test points) 31.78 s
Marching cubes mesh reconstruction (944× 969× 1066 grid) 11.00 s
Other operations 7.58 s
Total reconstruction time (100 RGB-D images) 66.38 s
Image processing, training, and reconstruction rate 1.51 Hz

D. Multi-Robot 3-D Evaluation

Finally, we evaluate our distributed GP regression on the
Cow and Lady and SceneNN datasets. We split the RGB-D
image sequences into equal parts and consider each as data
obtained by a different robot. As in the 2-D simulation, we
use three robots with communication weight matrix W in
(29). Each robot uses the distributed update rule in (27) and
communication continues for 2 rounds after the last RGB-D
image from the individual robot sequences is received. The
individual robot parameters are the same as in the single-
robot experiments in Sec. IX-A. The choice of additional
communication rounds is due to Prop. 4, where we showed
theoretically that T + n − 1 rounds are needed for the local
GP distributions to agree with the centralized GP estimator.
As in the 2-D simulations, to verify Prop. 4 empirically, we
compare the mean absolute error (MAE) in (30) between
the GP mean and variance of an individual robot and the
centralized estimator.

The results from the Cow and Lady dataset are reported in
Fig. 13 and Fig. 14, while those from the SceneNN dataset are

in Fig. 15 and Fig. 16. The local and centralized reconstruction
results are identical in both data sets, which confirms the
expected theoretical consistency. The mean and variance MAE
curves also behave similarly in both data sets because the
errors in the local GP regression are due to unobserved
information, that has not yet been received by the robot, rather
than measurement noise. As in the 2-D simulation, the peaks
in the MAE curves are due to another robot in the network
observing a new region that has not yet been observed by this
robot. These peaks quickly decrease, which indicates the fast
empirical convergence of the distributed sparse GP algorithm.

X. CONCLUSION

This paper developed an online Gaussian Process regression
method that enables a robot team to build metric-semantic
maps collaboratively. A theorem to compress repeated ob-
servations before GP training, combined with hierarchical
data decomposition, allows scaling to large domains. The
presence of distance information allows GP regression instead
of computationally challenging GP classification to recover the
semantic class distribution. Our approach achieves comparable
accuracy to deep neural network techniques for scene recon-
struction but offers better robustness to noise, incremental
training, and uncertainty quantification. It also enables collabo-
rative inference through distributed GP regression with guaran-
teed finite-time convergence to the distribution of a centralized
estimator. Our probabilistic metric-semantic mapping results
offer a promising direction for future research in semantic task
specifications and uncertainty-aware task planning.
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R. Koch, M. Fees, J. Martin, D. Ammon, and A. Nüchter, “Multi-robot
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